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Type-I seesaw

The most common and simplest explanation of neutrino masses is through addition
of N

Ll ⊃ Yl L̄lHlR + YD L̄lH̃N +
1

2
MR N̄cN + h.c.

In flavor basis, type-I seesaw mass matrix

Mν =

(
0 MD

MT
D MR

)
where MD = YDv, for |MDM−1

R | ≪ 1 =⇒ mν ≃ mD M−1
R mT

D .

It can connect neutrino mass mechanism and matter-antimatter asymmetry.
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Type-I seesaw with Discrete Symmetries

Usually MR and YD are free parameters but we can constrain their form using
Flavor and CP symmetries.
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Residual Flavor and CP Symmetries

Given X (CP transformation) and Z (generator of Z2 in 3)

Z†(3)YD Z(3′) = YD and X⋆(3)YD X(3′) = Y ⋆
D .

Changing to a different basis by the unitary matrix Ω that diagonalizes Z.

Then we have YD as

YD = Ω(3)Rij(θL)Ω(3
′)†

 y1 0 0
0 y2 0
0 0 y3

 Rkl(−θR) .

UPMNS = Ω(3)Rij(θL)Kν , Kν = Re-phasing Matrix
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Decay Lengths

The decay widths Γi of the RH neutrinos Ni are given at the tree level by

Γi ≈
(Ŷ †

D ŶD)ii
8π

Mi =
(m̂†

D m̂D)ii
8π v2

Mi

The expressions for decay widths of the 3 heavy RH neutrinos :

Γ1 ≈
M

24π

(
2 y21 cos2 θR + y22 + 2 y23 sin2 θR

)
,

Γ2 ≈
M

24π

(
y21 cos2 θR + 2 y22 + y23 sin2 θR

)
,

Γ3 ≈
M

8π

(
y21 sin2 θR + y23 cos2 θR

)
.

If θR ≈ π/2, 3π/2 (for strong NO i.e. y1 = 0) or θR ≈ 0, π (for strong IO i.e.
y3 = 0),

Γ3 → 0

termed Enhanced Residual Symmetry points.

Near points of ERS , N3 can have a very long lifetime → may be detected in
long-lived particle searches.
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Decay Lengths
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Assuming Z′ → NN and MZ′ = 4 TeV

θR ≈ π/2, 3π/2 (ERS points)
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For MZ′ = 4 TeV

θR ≈ 0, π (ERS points)



Decay Lengths
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For MZ′ = 4 TeV, MN = 250 GeV

θR ≈ 0, π (ERS points)



Decay Lengths
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For MZ′ = 4 TeV

θR ≈ 0, π (ERS points)



Collider Signal

In our scenario, yi ≲ 10−6 supresses the Drell Yan production

pp → W (∗) → Nilα

We need to go beyond the minimal type-I seesaw to realize a sizable LNV signal.

This scenario can also be embedded in SM with extended gauge symmetry

We consider minimal U(1)B−L extension for enhanced production of Ni at colliders.
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Collider Signal
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For
√
s = 14 TeV and MZ′ = 4 TeV, events ≲ O(1)

For
√
s = 14 TeV and MZ′ = 6 TeV, events ∼ O(10)

For
√
s = 100 TeV and MZ′ = 4 TeV, events ∼ 800



Conclusion

Type-I seesaw can generate neutrino masses and baryon asymmetry.

Generically free, parameters in Type-I can be constrained through flavor and CP
symmetries.

The decay lengths of heavy neutrinos determined by YD, might exhibit ERS points.

At ERS, N3 becomes long-lived which can be probed at LLP searches.

While remaining two Ni can be searched for via either prompt or displaced vertex
signals at the LHC.

Effiecient production requires embedding in a UV complete model like U(1)B−L.
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Thank you!
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Supplementary Material
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Residual Flavor and CP Symmetries

Given X (CP transformation) and Z (generator of Z2 in 3)

Z†(3)YD Z(3′) = YD and X⋆(3)YD X(3′) = Y ⋆
D .

Consistency condition : X(r)Z(r) = Z(r)⋆ X(r)

Changing to a different basis by the unitary matrix Ω that fulfills

Ω†ZΩ = diag((−1)z1 , (−1)z2 , (−1)z3) zi = 0, 1

It follows then X = ΩΩT and ΩTYDΩ real.
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Our chosen case : ∆(6n2)

ΩTYDΩ can be diagonalized by two rotation matrices from the left and right,
respectively

Ω(s)(3)† YD Ω(s)(3′) = Rij(θL)

 y1 0 0
0 y2 0
0 0 y3

 Rkl(−θR) .

where s = 0 to n− 1.

UPMNS = Ω(3)Rij(θL)Kν , Kν =

 1 0 0

0 ik1 0

0 0 ik2

 ki = 0, 1, 2, 3

This determines all the mixing angles, Dirac phase and the Majorana phases.
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Our chosen case : ∆(6n2)

For Gf , we use a group of the form ∆(6n2) with n even , 3 ∤ n and 4 ∤ n..
Residual symmetries : Gl = Z3, Gν = Z2 × CP

∆(6n2) = (Zn × Zn)⋊ S3

a3 = e , cn = e , dn = e , c d = d c , a c a−1 = c−1d−1 , a d a−1 = c

b2 = e , (a b)2 = e , b c b−1 = d−1 , b d b−1 = c−1 .

For case in consideration : Z = cn/2 and X = a b cs d2s with s = 0, 1, ..., n− 1

As MR leaves Gf and CP invariant, its form is simply

MR = MN

 1 0 0
0 0 1
0 1 0


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Implications

Dirac CP phase is trivial δ = 0.

For mlightest = 0, only one Majorana phase α, which depends on the chosen CP
transformation:

sinα = (−1)k+r+s sin 6ϕs and cosα = (−1)k+r+s+1 cos 6ϕswith ϕs =
πs

n

where k = 0(k = 1) for cos 2θR > 0(cos 2θR < 0) and r = 0(r = 1) for NO(IO).
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Our chosen case : ∆(6n2)

The light neutrino mass matrix mν follows from the type-I seesaw mechanism

mν = mD M−1
R mT

D .

mν :



1
MN

 y2
1 cos 2θR 0 y1y3 sin 2θR

0 y2
2 0

y1y3 sin 2θR 0 −y2
3 cos 2θR

 s even

1
MN

 −y2
1 cos 2θR 0 −y1y3 sin 2θR

0 y2
2 0

−y1y3 sin 2θR 0 y2
3 cos 2θR

 s odd
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Collider Signal - Branching Ratio
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Let’s look at s = 2, n = 26


