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Type-| seesaw

@ The most common and simplest explanation of neutrino masses is through addition
of N

LD YZELHZR-I—YD EL.HN-I— %MR NCN-i-h.C.

@ In flavor basis, type-l seesaw mass matrix

(0 Mp
o= atp arp )
where Mp = Ypu, for [ MpMg'| <1 = m, ~mp Mz ' m},.

@ It can connect neutrino mass mechanism and matter-antimatter asymmetry.
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Type-| seesaw with Discrete Symmetries

@ Usually Mg and Yp are free parameters but we can constrain their form using
Flavor and CP symmetries.
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Flavor and CP symmetries.

Gy and CP
e h
charged leptons neutrinos
Ge = Z3 G, =7y xCP
U, U,



Residual Flavor and CP Symmetries

o Given X (CP transformation) and Z (generator of Z3 in 3)

Z'(3)Yp Z(8)=Yp and X*(3)Yp X(3) =Y} .
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Residual Flavor and CP Symmetries

o Given X (CP transformation) and Z (generator of Z3 in 3)
Z'(3)Yp Z(8)=Yp and X*(3)Yp X(3) =Y} .

o Changing to a different basis by the unitary matrix €2 that diagonalizes Z.
@ Then we have Yp as

Y1 0 0
Yp = 9(3) Rij (OL) 9(3/)]L 0 Y2 0 RM(—GR) .
0 0 Y3

e Upmns = Q(3) Ri;(0r) Ko, K, = Re-phasing Matrix



Decay Lengths

o The decay widths I'; of the RH neutrinos N; are given at the tree level by
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Decay Lengths

The decay widths I'; of the RH neutrinos N; are given at the tree level by

(Y[T, YD)ii M= (’ﬁ’bTD mp)ii M,

Fi% P i
87 8 w2

The expressions for decay widths of the 3 heavy RH neutrinos :

M .
' = EYe. (2y% cos203+y§+2y§ 51n29R) ,

Ty = % (y% cos? O + 2932 + y2 sin® 0r) ,
I's =~ % (y% sin? 0R+y§ cos? GR) .
o If Or = /2, 37/2 (for strong NO i.e. y1 = 0) or g =~ 0, 7 (for strong 1O i.e.
ys = 0),
I's >0

termed Enhanced Residual Symmetry points.

@ Near points of ERS , N3 can have a very long lifetime — may be detected in
long-lived particle searches.



Decay Lengths

Assuming Z' — NN and M, = 4 TeV
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Decay Lengths

For M,/ =4 TeV, My = 250 GeV
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Decay Lengths

For M, = 4 TeV
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Collider Signal

o In our scenario, y; < 107% supresses the Drell Yan production
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Collider Signal

o In our scenario, y; < 107% supresses the Drell Yan production

pp— W = Nyl

@ We need to go beyond the minimal type-l seesaw to realize a sizable LNV signal.
@ This scenario can also be embedded in SM with extended gauge symmetry

o We consider minimal U(1)p_r extension for enhanced production of N; at colliders.

/AU

AR
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Collider Signal

100

s =100 TeV

aprod (fb)

1000 1500 2000 2500 3000
My (GeV)

For /s =14 TeV and Mz = 4 TeV, events < O(1)
For /s =14 TeV and Mz = 6 TeV, events ~ O(10)
For /s =100 TeV and M,/ = 4 TeV, events ~ 800
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Conclusion

@ Type-| seesaw can generate neutrino masses and baryon asymmetry.

o Generically free, parameters in Type-l can be constrained through flavor and CP
symmetries.

@ The decay lengths of heavy neutrinos determined by Yp, might exhibit ERS points.
@ At ERS, N3 becomes long-lived which can be probed at LLP searches.

o While remaining two N, can be searched for via either prompt or displaced vertex
signals at the LHC.

o Effiecient production requires embedding in a UV complete model like U(1)p—1.



Thank you!
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Supplementary Material
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Residual Flavor and CP Symmetries

e Given X (CP transformation) and Z (generator of Z> in 3)
Z'3)Yp Z(3')=Yp and X*(3)Yp X(3) =Y.

@ Consistency condition : X (r) Z(r) = Z(r)* X(r)
@ Changing to a different basis by the unitary matrix €2 that fulfills

Q120 = diag((-1)™, (~1)2, (~1)7) 2 = 0,1

o It follows then X = QQT and QTYpQ real.
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Our chosen case : A(6n?)

o QTYHQ can be diagonalized by two rotation matrices from the left and right,
respectively

Y1 0 0
Q(s)(8)"Yp Q(s)(3') = Ri; (01) ( 0 y2 0 ) Rii(—0g) .
0 0 Y3

where s =0ton — 1.
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Our chosen case : A(6n?)

o QTYHQ can be diagonalized by two rotation matrices from the left and right,
respectively

Y1 0 0
Qs)(3) Yo Qs)(3) =Ri;(0r) | 0 w2 0 | Ru(—0r).
0 0 Y3
where s =0ton — 1.
1 0 0
o Upmnns = Q(3) Ri;(0L) Ko, K,=| 0 i o0 k; =0,1,2,3
0 0

@ This determines all the mixing angles, Dirac phase and the Majorana phases.
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Our chosen case : A(6n?)

e For G, we use a group of the form A(6n?) with n even , 3{n and 41 n..
@ Residual symmetries : G; = Z3, G, = Z2 x CP
o A(6n?) = (Zn X Zy) % Ss

3 1 11 -1
ao=e, c"=e, d"=e, cd=dc, aca”  =c d , ada  =c

bv’=e, (ab’=e, beb ' =d ', bdb ' =c".
o For case in consideration : Z = ¢"/? and X = abc® d®* with s =0,1,...,n— 1

@ As Mg leaves Gy and CP invariant, its form is simply

1 0 0
Mg = My 0 0 1
0 1 0



Implications

o Dirac CP phase is trivial 6 = 0.
@ For miightest = 0, only one Majorana phase «, which depends on the chosen CP

transformation:

sina = (=1) T sin6¢, and cosa = (—1)" T cos 6 with ¢ = %

where k = 0(k = 1) for cos20r > 0(cos20r < 0) and r = 0(r = 1) for NO(10).
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Our chosen case : A(6n?)

@ The light neutrino mass matrix m, follows from the type-l seesaw mechanism

-1, T
my, =mp Mg mp .




Our chosen case : A(6n?)

@ The light neutrino mass matrix m, follows from the type-l seesaw mechanism

-1, T
my, =mp Mg mp .

°
y? cos20r 0  yiyssin20gr
yr7 0 3 0 s even
m yiyssin20r 0 —y2cos20r
v —yi cos20r 0 —y1yssin20g
MLN 0 3 0 s odd
—y1y3sin20r 0 Y3 cos 20R
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Collider Signal - Branching Ratio

Let's look at s =2, n = 26
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