Detecting diphoton events with the FASER upgraded preshower

Jordi Sabater on behalf of the FASER collaboration

02.06.2022

ForwArd Search ExperRiment

Forward physics at the LHC

Main detectors at the LHC look at high momentum particles in the transverse plane

Large forward cross section is not being used

- $N_{\pi^0} \sim 10^{17}$ $\,$ From inelastic pp collisions ($_{150}$ fb $^{-1}$)

→ FASER located 480m downstream of the ATLAS interaction point Forward particles are very collimated

- pp \rightarrow LLP + X, LLP travels O(100m) forward, LLP $\rightarrow e^+e^-, \gamma\gamma, \dots$
- $\theta \sim \frac{m}{E} = 100 \ \mu \text{rad} \rightarrow 100 \ \text{microns after 1m}$

Dark photon production mechanisms

Dark photon detection at FASER

Magnets+tracker stations allow to separate the electron and positron

Axion like particle (ALP) production mechanisms

arXiv: 1611.09355

ALP production mechanisms: Primakoff

ALP diphoton signature

The need for an upgrade

FASER preshower upgrade

Install a preshower in front of the calorimeter to distinguish the two (or more) photons

Preshower using Tungsten + Silicon \rightarrow Perfect for high position resolution

Installation scheduled for the HL-LHC phase

Preshower layout

6 layers of W+Si Preshower size ~ 200 mm x 200 mm Hexagonal pixels of 65um sides Tungsten thickness = 1X0 (3.5mm) → Total thickness 6X0 → 99% probability of conversion

Shower profiles and reconstruction

2 photons with E = 2 TeV shot at the preshower with a separation of 500um

Signals are clearly distinguisable

Shower profiles and reconstruction

Signals are clearly distinguisable

Efficiencies above 80% obtained for separations above ~250um

Neutrino interacting with the preshower may fake a photon signal!

nttps://cds.cern.ch/record/2803084

Expected sensitivity at FASER

- Sensitivity reach for different photon separations
- FASER has access to an unprobed regions of the phase space!
- Lots of room for improvement since a simple reconcstruction algorithm was used

Acknowledgements

The development of the new pre-shower by the FASER collaboration was funded by a Swiss National Science Foundation (SNSF) grant at the University of Geneva, with financial contributions also from KEK, Kyushu University, Mainz University, Tsinghua University and the Heising-Simons Foundation.

ALP production mechanism

