Latest CODEX-b Developments

Dean Robinson

June 2022

CODEX-b concept

Physics paradigm:

- Theoretically well-motivated $\lesssim O(10 \text{GeV})$ Long-lived Particles (LLPs) can be produced predominantly at high \sqrt{s} (eg Higgs decays)
- Motivates shielded displaced LLP detector transverse to a LHC interaction point

Detector paradigm:

COmpact Detector for EXotics at LHCb

[Original proposal: <u>1708.09395</u>]

[Expression of Interest: 1911.00481]

$\mathsf{CODEX}\text{-}\beta \text{ Demonstrator Update}$

Demonstrator detector

To be installed in the old LHCb HLT server room; $2\times 2\times 2\,m^3$ cube of RPC triplets

Main Goals

- Enable data-driven background measurements to validate the preliminary background simulations
- Demonstrate the seamless integration of the detector with the LHCb readout
- Demonstrate the suitability of RPC technology for tracking
- Demonstrate the ability to reconstruct known SM backgrounds from expected decays inside detector
- Demonstrate the suitability of the mechanical support structure and its scalability to the full CODEX-b detector

Milestone achievements

- Demonstrator location secured
- Funding to build RPC chambers secured
- Mechanical design done
- Everything in place to integrate with LHCb DAQ
- Plan to produce modules 2nd half this year, then install
- CERN-based team secured to commission demonstrator

	2021 2022		2023	2024	2025	2026	2027
		LS 2		Run 3	LS 3		
$CODEX-\beta$		Pro	duction I	nstall d	ata taking	Removal	
CODEX-b						Production	Install

CODEX-b Geometry Optimization

(Funded by LBL LDRD)

Baseline Design

Our proof-of-concept analyses used a simple regular cubic design with inner + hermetic surface tracking layers:

- Demonstrated $\mathcal{O}(1)$ LLP vertex reconstruction efficiencies (subject to hit resolution and momentum thresholds)
- Used 400 2 \times 2 m² RPC triplet panels \Rightarrow 4800 m² of RPC

The tracking layer surface area is the main driver of costs and installation time.

Baseline Design

Our proof-of-concept analyses used a simple regular cubic design with inner + hermetic surface tracking layers:

- Demonstrated $\mathcal{O}(1)$ LLP vertex reconstruction efficiencies (subject to hit resolution and momentum thresholds)
- Used 400 $2\times2\,m^2$ RPC triplet panels \Rightarrow 4800 m^2 of RPC

The tracking layer surface area is the main driver of costs and installation time.

Challenge

Optimize detector shape and tracking layers for best sensitivity:

- Probe many different portals; many detection signatures, kinematics; select representative portals over the theory and phenomenological space
- Model response of different configurations to different theoretical scenarios with newly developed adaptive simulation framework

Consider more possible panel locations/orientations Require for track reconstruction:

- 6 hits per track
- 2cm separation
- *p* > 600 MeV

Finite element is $2\times 2\,m^2$ RPC triplet

Naive Optimization Estimator

Order by naive hit weight density on each panel. Compute relative vertex reconstruction efficiencies as a function of number of panels

- Weighting by hits ⇔ weighting panels closer to decay vertex. Leads to good vertex reconstruction
- High negative curvature \Rightarrow most 'work' done by relatively few panels
- Estimator does well for all Higgs benchmarks, and some B benchmarks!
- Can nominally reduce RPC coverage by about 30-50% for some portals (replace with cheaper scintillator for soft BG control)

150 panels: rel. eff. \sim 40 - 80% 2

For this estimator, external panels on 'back' and 'downstream' faces, plus internal panels along x transverse direction are favored. Similar to baseline configuration.

Systematic Optimization

Can implement a more systematic 'branch and bound' optimization method

Naive (fast) estimator does comparably well!

Outlook

- CODEX-b can attain good sensitivity over the space of LLP scenarios while reducing the required amount of tracking layers by an O(1) factor
- We have an efficient optimization estimator of best partial configurations, plus full optimization pipeline, as needed
- Can rapidly update results for variations in configuration.

Thanks

More updates: @CodexExperiment

Extras:

Scenarios

Study 11 benchmarks, that well-represent the typical different kinematic configurations for different LLP portals

Portal/Model	Production		Finite hit resolution	Track momentum threshold	Acoplanar topology	Masses	Analogous simplified model
	single	multiple	(opening angle)	(soft tracks)	(missing energy)	[GeV]	
$\begin{array}{c} h \rightarrow A'A' \\ [A' \rightarrow 2e] \end{array}$	_	~	V	_	—	0.5, 1.2, 5, 10	ALP
$b \rightarrow sS$ $[S \rightarrow 2e]$	~	—		\checkmark	_	0.5,1,2.5,4	ALP
$b \rightarrow sS$ $[S \rightarrow 4\pi]$	~	—	—	\checkmark	\checkmark	1,2.5,4	ALP, HNL

TABLE I: The three benchmark production and decay portals and their topologies and typical sensitivity-limiting features, along with the selected mass points for each portal, for a total of elevent benchmark models. Also indicated are other simplified models—variations of axion-like particles (ALP) and heavy neutral leptons (HNL)—with analogous features.