

Cuts and Likelihood Classifiers in 7MVA

Jörg Stelzer – Michigan State University

TMVA Workshop 2011, CERN, Geneva, Switzerland, January 21st

Cut and Likelihood Based Classifiers in TMVA

Rectangular Cut Optimization

- Widely used because transparent
- Machine optimization is challenging:
 - MINUIT fails for large n due to sparse population of input parameter space
 - Alternatives are Monte Carlo Sampling, <u>Genetic Algorithms</u>, Simulated Annealing

Projective Likelihood Estimator

- Probability density estimators for each variable combined into one
- Much liked in HEP
 - Returns the likelihood of a sample belonging to a class
- Projection ignores correlation between variables
 - Significant performance loss for correlated variables

PDE Range-Search, k Nearest Neighbors, PDE Foam

- n- dimensional signal and background PDF, probability obtained by counting number of signal and background events in vicinity of test event
 - Range Search: vicinity is predefined volume
 - k nearest neighbor: adaptive (k events in volume)

Rectangular Cut Optimization

Classical method because simple and transparent

$$X_{\text{cut}}(i_{\text{event}}) \in \{0,1\} = \bigcap_{v \in \{\text{variables}\}} (X_v(i_{\text{event}}) \subset [X_{v,\text{min}}, X_{v,\text{max}}])$$

■ Rectangular cuts best on independent variables

- Often the variables with separation power are not as independent as you wish.
 - - TMVA provides methods to linearly de-correlate or PCA transform input data (see Peters talk)
 - Apply some transformation that reflects the correlation in your data. E.g. at BABAR and Belle, two uncorrelated variables used to select candidates for B-mesons

$$m_{\rm ES} = \sqrt{\left(E_{\rm beam}^{\rm cm}\right)^2 - \left(p_{\rm B}^{\rm cm}\right)^2}$$
 and $\Delta E = E_{\rm B}^{\rm cm} - E_{\rm beam}^{\rm cm}$

- How to find optimal cuts?
 - Human: look at the variables in one and two dimensions, sequentially in order of separation power.

How TMVA Finds the Optimal Cuts

- Three implemented methods to optimize the cut parameters
 - Monte Carlo sampling (MC)
 - Test the possible cuts in the variable phase space (random points)
 - Genetic algorithm (GA)
 - Biology-inspired optimization algorithm. Preferred algorithm.
 - Simulated annealing (SA)
 - slow "cooling" of system to avoid "freezing" in local solution
 - (MINUIT) standard minimizer in HEP, but ...
 - Poor performance to find global
- All methods are basically trial and error.
 - Sample set of cuts across the phase space to find the best one
 - GA and SA have build-in sophistication about the trials they do.
 - Make use of computers data grinding power
 - Since they probe out the full phase space, they suffer with increasing number of dimensions
 - TMVA sorts the training events in a binary search tree, which reduces the training time substantially.
 Box search: ~ (N_{events})^{Nvar}
 - BT search: $\sim N_{\text{events}} \cdot N_{\text{var}} \ln_2(N_{\text{events}})$

How MethodCuts Works

- MethodCuts finds a single signal box, ie a lower and upper limit for each variable.
 - Example of a 2-D Gaussian signal above a uniform background
 - It does not work on a checker board pattern. (There are not many variables in HEP with such a distribution though)

Unlike all other classifiers, which have one response function to be applied to an event, MethodCuts provides a different signal box definition for different efficiencies, the response is 0 or 1.

```
y_mva = reader->EvaluateMVA( vec<float>, "PDERS method" ); // usually [0,1]
passed = reader->EvaluateMVA( vec<float>, "CutsGA method", effS=0.7 ); // {0,1}
```

Weight file shows you which cuts are applied for a certain efficiency

Details about the TMVA Minimizers

- Robust global minimum finder needed at various places in TMVA
- Brute force method: Monte Carlo Sampling
 - Sample entire solution space, and chose solution providing minimum estimator
 - Option "SampleSize=200000", depends on dimensionality of the problem
 - Good global minimum finder, but poor accuracy
- Default solution in HEP: (T)Minuit/Migrad
 - Gradient-driven search
 - Poor global minimum finder, gets quickly stuck in presence of local minima
- Genetic Algorithm:
 - Inspired by biological principal of producing slight modifications of successful cuts. Most important parameter
 - Option "PopSize=300", could be increase to ~1000
- Simulated Annealing:
 - Avoids local minima by continuously trying to jump out of the these
 - "InitialTemp=1e06" and "TempScale=1" can be adjusted to increase performance

Likelihood based Classifiers in TMVA

- Basic feature of all LH based classifiers
 - Signal likelihood ratio as response function

$$y(\vec{x}) = \frac{P(X = \vec{x} \mid C = S)}{P(X = \vec{x} \mid C = S) + P(X = \vec{x} \mid C = B)} = \frac{1}{1 + f_B(x)/f_S(x)}$$

- Training means building a data model for each class
- Two basic types
 - Projective Likelihood Estimator (Naïve Bayes)
 - Flavors of how to build the variable densities (PDFs)
 - Multidimensional Probability Density Estimators (PDEs)
 - Various ways to parcel the input variable space and weight the event contributions within each cell
 - Search trees are used to provide fast access to cells

Probability Density

Posterior probability P(C|x)

probability that the observed event is of class C, given the measured observables $\mathbf{x}=\{x_1,...,x_D\}$

Prior probability P(C)

Relative abundance of "class C" in the data

Likelihood PDF P(x|C)

Probability density distribution of **x** in "class C"

$$P(C \mid \vec{x}) = \frac{P(C) \times P(\vec{x} \mid C)}{P(\vec{x})}$$

Evidence P(x)

probability density to observe the actual measurement y(x)

For signal classification:

$$P(C = S \mid X = \vec{x}) = \frac{N_S f_S(\vec{x})}{N_S f_S(\vec{x}) + N_B f_B(\vec{x})}$$

- We can't answer P(C=S|X=x), since we don't know the true numbers N_S and N_B of signal and background events in the data.
- \blacksquare Confidence of classification only depends on $f_S(x)/f_B(x)$! Remember that the ROC curve also does not include knowledge about class sizes.

Projective Likelihood Estimator (Naïve Bayes)

 Much liked in HEP: probability density estimators for each input variable combined in overall likelihood estimator

- Naïve assumption about independence of all input variables
 - Optimal approach if correlations are zero (or linear → decorrelation)
 - Otherwise: significant performance loss
- Advantages:
 - independently estimating the parameter distribution alleviates the problems from the "curse of dimensionality"
 - Simple and robust, especially in low-D problems

Building the PDF

- Technical challenge: estimating the PDF of the input variables. Three ways:
 - Parametric fitting: excellent if the variable distribution function is known (in this case use RooFit package). Cannot be generalized to a-priori unknown problems.
 - Non-parametric fitting: easy to automate, but can create artifacts (edge effects, outliers) or hide information (smoothing) and hence might need tuning.
 - Event counting: unbiased PDF (histogram), automatic. Sub-optimal since it exhibits details of the training sample.
- TMVA uses nonparametric fitting
 - Binned shape interpolation using spline functions or adaptive smoothing
 - Option "PDFInterpol[2]=KDE" or "=Spline3"
 - Unbinned adaptive kernel density estimation (KDE) with Gaussian smearing
 - TMVA performs automatic validation of goodness-of-fit
 - Option "CheckHistSig[2]=1"

Multi-Dimensional PDE (Range-Search)

- Use a single, n-dimensional PDF per event class (S, B), n=N_{var}.
- PDE Range-Search:
 - Count number of signal and background events in "vicinity" of test event
 → preset or adaptive rectangular volume defines "vicinity"

■ Improve y_{PDERS} estimate within volume by using various N_{var}-D kernel estimators

LanczosX(x) = sinc(x)/sinc(x/X)

VolumeRangeMode Adaptive Method to determine volume size

[Unscaled, MinMax, RMS, Adaptive, kNN]

KernelEstimator Box Kernel estimation

[Box, Sphere, Teepee, Gauss, Sinc, LanczosX, Trim]

Controls for the size and complexity of the volumes ...

Configuration parameters

Multi-Dimensional PDE (kNN)

k-Nearest Neighbor

- Better than searching within a volume (fixed or floating), count adjacent reference events till statistically significant number reached
- Method intrinsically adaptive
- Very fast search with kd-tree event sorting (training)
 - kd-tree is a binary search tree that sorts objects in space by their coordinates

For evaluation = event building					
nkNN	20	Number of k-nearest neighbors			
UseKernel	False	Use kernel			
Kernel	Gaus	Use polynomial (=Poln) or Gaussian (=Gaus) kernel			
UseWeight	True	Use weight to count kNN events			
SigmaFact	1	Scale factor for sigma in Gaussian kernel			
For training = kd-tree building					
ScaleFrac	0.8	Fraction of events used to compute variable width			
Trim	False	Use equal number of signal and background events			
BalanceDepth	6	Binary tree balance depth Configuration parameters			

Multi-Dimensional PDE (Foam)

 $y_{\text{PDEFoam}}(i) = \frac{n_{\text{sig}}/V_{\text{sig}}}{\frac{n_{\text{bg}}}{V_{\text{bg}}} \frac{N_{\text{sig}}}{N_{\text{bg}}} + \frac{n_{\text{sig}}}{V_{\text{sig}}}}$

- Evaluation can use kernels to determine response
- Advantage over PDERS is the limited number of cells, independent of number of training events
- Different parceling for signal and background possible, in case S and B distributions are very different.
- Regression with multiple targets possible

SigBgSeparate False Separate foams for signal and background

Kernel None Kernel type used for calculating cell densities

[None, Gauss, LinNeighbors]

DTLogic None Use decision tree algorithm to split cells [None,

GiniIndex, MisClassificationError, CrossEntropy]

Controls for the size and complexity of the foam ...

Weight treatment ...

Regression ...

Configuration parameters

Concluding Remarks on Cuts and Likelihoods

Criteria		Classifiers			
		Cuts	Likeli- hood	PDERS / k-NN	
Performance	no / linear correlations	<u>•</u>	©		
	nonlinear correlations	<u>•</u>	8	©	
Speed	Training				
	Response	<u></u>		%/(
Robust -ness	Overtrainin g	(i)	<u></u>	<u>•</u>	
	Weak input variables	(3)	©	8	
Curse of dimensionality			<u></u>	8	
Clarity		②	<u>©</u>	(2)	

- Cuts and Likelihood are transparent, so if they perform (not often the case) use them (think about transforming variables first)
- In <u>presence of correlations</u> other, multidimensional, classifiers are better
 - Correlations are difficult to visualize and understand at any rate, no need to hang on to the transparency of Cuts and 1D LH
- Multivariate classifiers are <u>no black</u>
 <u>boxes</u>, we just need to understand the underlying principle