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BNN
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Neural Network following Bayesian statistical 
interpretation

Features:

Fitting of probability function

Regulator to avoid overtraining

Uncertainty estimation

Based on the MLP algorithm

Configurable as options of the algorithm

Available in rel. 4.1.0 (ROOT 5.28)



Statistical interpretation of MLP
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Generic multivariate function approximator
(Think of polynomial in 1D)

Training:

Unbinned fitting with D={xi, ti}

Cost function (y(x,w)-t)2= -log(L), L=P(D|w)

Min cost function=Max likelihood

Prediction:

Obtained fitted value in the phase space

Classification: cut at the fitted value for 
discrimination
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Bayesian implementation (I)
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Fitting probability function

Probability  is more useful than proposition 

Not for probability density function =>  PDERS

To constrain y between 0 and 1, transform y by 

To make y=P(t==1).
Bernoulli likelihood Cross entropy cost function

MLP option: EstimatorType=CE  
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Bayesian implementation (II)
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Regulator to avoid overtraining

Overtraining is caused by excessive 
complexity of NN

A prior knowledge prefer “simpler” 
model  small w

Gaussian prior 

P(w|D)=P(D|w)P(w). Add to the log 
likelihood (cost function)

Optimize α during training
 Adaptive complexity control

MLP option: UseRegulator
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Bayesian implementation (III)
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Uncertainty estimation

Training: 

Most probable value wMP

P(w|D)

Probability of other w

Prediction

Probability 

Uncertainty of y

Avoid excessive extrapolation (non-trivial for multivariate 
analysis)

MLP option: CalculateErrors (interface need to be completed)

Histogram
BNN
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isol Npf

Signal 
region

Npp=k2*Nff

Npp=k*Npf

non-isol Nff Npf

Lep1     

Lep2
non-isol Isol

Application in ATLAS analysis(I)
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Isolated di-lepton search 

(Exotic/SUSY)

Double-fake bkg: bb/cc

True-fake bkg: W/Z+jet

Data-driven estimation 

Extrapolate from non-

isolated control samples to 

signal region

Weight each event by the 

(product of ) pass/fail ratio 

k of the failed muon(s) )pass(1
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P(pass) is obtained from a single-muon control sample

Strong dependence of P(pass) over kinematics x

Different distributions between control samples

Correlation between the two leptons

Proper parameterization of P(pass|x) is crucial

Application in ATLAS analysis(II)
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ATLAS work in progress ATLAS work in progress



Application in ATLAS analysis(III)
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The BNN is used for 
unbinned fitting of P(pass|x)

Training sample:

Single muons in 
background control region, 

D={xi ,ti}

x={pT , Hϕ}

t=1 (pass isolation cut )
t=0 (fail isolation cut)

Could add more variables 
for parameterization: Eta, 
n_vertex

ATLAS work in progress

2D fake rate fitted by BNN



Data-driven background estimation(V)
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Number of observed events= 149

Number of predicted background yield= 141±15
Observation

Prediction



Summary
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The Bayesian implementations

As easy as polynomial fitting !!

Fitting of probability function

Regulator to avoid overtraining

Uncertainty estimation

Probability fitting in data analysis

Shows good performance in one ATLAS application

Open the door to more delicate study

Could be applied to many other analysis:  

Trigger/Charge/ParticleID


