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Bayesian Neural Network
and

Its application in ATLAS

Jiahang ZHONG (Academia Sinica)
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& Neural Network following Bayesian statistical
interpretation

Ner-pe

& Features:

@ Fitting of probability function
® Regulator to avoid overtraining
@ Uncertainty estimation

@ Based on the MLP algorithm

@ Configurable as options of the algorithm
@ Available in rel. 4.1.0 (ROOT 5.28)



Statistical interpretation of MLP

N> r=>

@ Generic multivariate function approximator
(Think of polynomial in 1D)

® Training:
® Unbinned fitting with D={x, t;}
@ Cost function (y(x,w)-t)?>= -log(L), L=P(D|w)
@ Min cost function=Max likelihood

& Prediction:

@ Obtained fitted value in the phase space By = 2% | A= 2w,
® Classification: cut at the fitted value for hy=t0@P) | y=1?@?)
discrimination fO(x) =tanh(x)] f@(x)=x




Bayesian implementation (I)

@ Fitting probability function
@ Probability Yy € [01] is more useful than proposition Y € {01}
@ Not for probability density function j ydx =1 => PDERS

@ To constrain y between 0 and 1, transform y by
f @ (x) =1/(1+exp(—x))

& To make y=P(t==1).
Bernoulli likelihood< Cross entropy cost function

~log(L) = >"(~t, *log y(x) - (1—t) *log(1- y(x)))

@ MLP option: EstimatorType=CE



Bayesian implementation (II)

Early stop
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® Regulator to avoid overtraining

® Overtraining is caused by excessive o
complexity of NN o
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Estimator
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@ A prior knowledge prefer “simpler”
model < small w
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@ Gaussian prior —109(P(w)) = Z(am < W) 30205000 139141 ks 18000
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® P(WD)=P(D|W)P(w). Add to the log

likelihood (cost function) i Regulator o
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® Optimize o during training oseh ,, E
<~ Adaptive complexity control osel E

& MLP option: UseRegulator :jlﬂj:r:}%
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Bayesian implementation (III)

® Uncertainty estimation

® Training:

Probability

® Most probable value wy

& P(w|D)
Probability of other w

& Prediction

@ Probability
P(y|x") = [P(y|x',w)*P(w]|D)dw

@ Uncertainty of y
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@ Avoid excessive extrapolation (non-trivial for multivariate

analysis)

& MLP option: CalculateErrors (interface need to be completed)



Application in ATLAS analysis(I)

@ Isolated di-lepton search
(Exotic/SUSY)
@ Double-fake bkg: bb/cc
@ True-fake bkg: W/Z+jet

@ Data-driven estimation

@ Extrapolate from non-
isolated control samples to
signal region

@ Weight each event by the

(product of ) pass/fail ratio
k of the failed muon(s)
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Application in ATLAS analysis(II)

@ P(pass) is obtained from a single-muon control sample
@ Strong dependence of P(pass) over kinematics x
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@ Different distributions between control samples
@ Correlation between the two leptons

@ Proper parameterization of P(pass|x) is crucial



Application in ATLAS analysis(III)

@ The BNN is used for

< . 90
unbinned fitting of P(pass|x) & ATLAS workin progress IEE .
= 105 ©
404
103
@ Training sample: 0.2
@ Single muons in
background control region, : “ﬁ‘@g
0.06
@ D=ix;,t} 0.05
0.04
@ x={pr, Hy} %10 20 30 40 50 60 70 8 90 100
@ t=1 (pass isolation cut ) Pr [Gev]

t=0 (fail isolati t '
(fail isolation cut) 2D fake rate fitted by BNN

@ Could add more variables
for parameterization: Eta,
n_vertex



Data-driven background estimation(V)

Number of observed events= 149

Number of predicted background yield= 141 +15 Observation

Prediction
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Summary

@ The Bayesian implementations
@ As easy as polynomial fitting !!
@ Fitting of probability function
@ Regulator to avoid overtraining
@ Uncertainty estimation

@ Probability fitting in data analysis
@ Shows good performance in one ATLAS application
@ Open the door to more delicate study

@ Could be applied to many other analysis:
Trigger/Charge/ParticlelD



