
Statistical Models for the Overhead of Thread Divergence in
Variable Length Workloads on SIMT Architectures

Stephen Nicholas Swatman1,2

18 February 2022
1CERN 2University of Amsterdam

Prelude

• Please note I am not a statistician: take the statistical part of this with a grain of salt.
• Please feel free to ask any questions as they come to you during the talk.

1

Introduction

• Like physics, computing has
many useful models!

• Performance models can
describe, predict, and
prescribe thing about
computer programs:

• Roofline models
• Polyhedral models
• Simulator models
• Statistical models

• Can we use models to make
parallel ACTS software even
better?

HPC HEP

Descriptive “The application
achieves 18.4
GFLOPs because
the L2 cache band-
width is saturated.”

“Neutrinos rarely
interact with matter,
because the weak
nuclear force has
such a short range.”

Predictive “This algorithm will
be able to utilise
roughly 80% of
the targeted GPU’s
capacity.”

“The Higgs boson
should decay into
a charm-anticharm
pair, but we’ve not
observed this yet.”

Prescriptive “It is worth in-
vesting dozens of
person-hours into
developing this im-
plementation”

“It is worth investing
billions of currency
units into a new ac-
celerator.”

2

Introduction

• In this talk: can we model the suitability of some algorithm for execution on a GPU?
• This is a vague term, suitability for GPU computing can mean many things:

• Is there sufficient parallelism in the algorithm? For example, SSSP vs APSP.
• Is there no risk of exhausting the device’s limited memory? For example, scrypt vs
SHA-256.

• Is there not too much chance for threads to diverge?

• We will focus, in this talk, on thread divergence.

3

Recap

• CPU, MIMT: fully independent processing
cores, each of which has its own silicon
for arithmetic and control flow.

• GPU, SIMT: replace the control flow with
more arithmetic, increasing raw
performance but reducing flexibility.

• A group of threads share the same
control flow, meaning that if one thread
does something, they all.

• Thread divergence slows a program
down if threads are constantly waiting
for other threads hogging the control
flow.

1 __global__ void diverge () {
2 i n t t i d = threadIdx . x + b lock Idx . x *

blockDim . x ;
3

4 i f (t i d % 4 == 0) {
5 expensive_computation_1 () ;
6 } e lse i f (t i d % 4 == 1) {
7 expensive_computation_2 () ;
8 } e lse i f (t i d % 4 == 2) {
9 expensive_computation_3 () ;
10 } e lse i f (t i d % 4 == 3) {
11 expensive_computation_4 () ;
12 }
13 }

4

Recap

• Food for thought: the code on this slide
contains zero if-statements.

• Does this code suffer from thread
divergence?

• Yes, it does!
• If the number of times the loop is
executes differs between threads, this is
thread divergence.

• Remember: a loop is just a
Dijkstra-approved replacement for a
conditional go-to statement.

1 __global__ void matrix_pow (
2 matr ix ms [] , u in t ps []
3) {
4 i n t t i d = threadIdx . x + b lock Idx . x *

blockDim . x ;
5

6 matr ix m = ms[t i d] ;
7 matr ix a = m;
8

9 f o r (i n t i = 0 ; i < ps [t i d] ; ++ i) {
10 a *= m;
11 }
12

13 ms[t i d] = a ;
14 }

5

Recap

• Food for thought: the code on this slide
contains zero if-statements.

• Does this code suffer from thread
divergence?

• Yes, it does!
• If the number of times the loop is
executes differs between threads, this is
thread divergence.

• Remember: a loop is just a
Dijkstra-approved replacement for a
conditional go-to statement.

1 __global__ void matrix_pow (
2 matr ix ms [] , u in t ps []
3) {
4 i n t t i d = threadIdx . x + b lock Idx . x *

blockDim . x ;
5

6 matr ix m = ms[t i d] ;
7 matr ix a = m;
8

9 f o r (i n t i = 0 ; i < ps [t i d] ; ++ i) {
10 a *= m;
11 }
12

13 ms[t i d] = a ;
14 }

5

Thesis

• When we think of thread divergence, we tend to think of suitability as binary:
• Algorithms which are suitable: pixel shading, horizontal sums, convolutions, etc.
• Algorithms which are not suitable: branch-and-bound, many graph algorithms, etc.

• In reality, this is a spectrum: some problems have more thread divergence than
others.

• Problem is there exists a massive void between the two ends of this scale, and we
lack models to place algorithms on the spectrum.

• This spectrum is (if you squint your eyes) equivalent to the question of whether we
should run algorithms in a one-element-per-thread mapping or a
one-element-per-warp mapping.

• We’re seeing increasing support for this intermediate range, a prime example being
cooperative groups, where you can elegantly split up a warp into multiple parts.

6

Metrics

• Let’s define the suitability of a particular implementation as the ratio between its
computational cost on our real-world SIMT device and its computational cost on an
idealised MIMT device of equivalent processing power.

• For the idealized MIMT device, imagine the exact same processor but with additional
control flow installed so that each thread can run independently.

• Note that h(f) = 1 implies an ideal scenario, and higher is worse (less GPU-friendly).

h(f) = CSIMT(f)
CMIMT(f)

7

Algorithms

• Solving this modeling problem for arbitrary algorithms is the holy grail, we will
consider a smaller class of algorithms:

• Formally, we restrict ourselves to the class of parallel anamorphisms (g,p) where
g ∈ O(1).

• Less formally, we have some non-recursive endomorphism g : A→ A and our
algorithm is equivalent to f : [A× N] → [A] such that f = map (λ(v,n).g◦nv).

• Even less formally, if we have some operation which we can perform iteratively,
repeatedly apply that operation to each element of some container, each element
being processed in parallel. The number of times we apply the operation to each
element is determined by come condition, or equivalently is just a given number.

8

Algorithms

• This might seem unreasonably specific, but I argue that this problem is common:
• Navigation between surfaces is an algorithm of this type given
g : TrackState → TrackState × Intersection and p : TrackState → Bool s.t. g
calculates the intersection with the closest surface.

• Propagation of a particle is an algorithm of this type given g a Runge-Kutta step1.

1Propagation is a hylomorphism, but this is its anamorphic part; the catamorphic part executes in O(1) time
and is not very interesting.

9

Statistics

• This problem is still not quite solvable, we need one more piece of a priori
knowledge.

• We need the distribution F of the sizes of our units of work.
• We will look at some well-behaved distributions today: uniform, binomial, Poisson, and
geometric.

• Works for generalised distributions, including those defined as outcome-probability pairs!

• Such that one unit of work is w = {X1, X2, . . . , Xn} where X1, X2, . . . Xn i.i.d. ∼ F .
• As we are taking a discrete number of steps, will assume F is discrete, i.e.
X1, X2, . . . , Xn ∈ N.

• Run-time is given by t(x) ∈ Θ(x), which we will now promptly forget about because it
is irrelevant (we are looking for a ratio).

10

Example

• As an example, we see that
work load is quite widely
distributed.

• {4, 2, 7, 1, 6, 4, 3, 6}
• {1, 4, 2, 3, 5, 4, 5, 3}

• The SIMT computational cost is
96.

• The MIMT computational cost
is 60.

• Thus, the thread divergence
overhead is 96

60 = 1.60

t0 t1 t2 t3 t4 t5 t6 t7 t0 t1 t2 t3 t4 t5 t6 t7

11

Example

• In this example, the
distribution of work lengths is
much tighter.

• {4, 3, 4, 4, 5, 2, 4, 5}
• {3, 5, 4, 5, 4, 3, 4, 4}

• On the SIMT machine, the
computational cost is now 80.

• On the MIMT machine, it is 63.
• Thus, the overhead is now only
80
63 = 1.27.

t0 t1 t2 t3 t4 t5 t6 t7 t0 t1 t2 t3 t4 t5 t6 t7

12

Model

• Key insight: we can express the computational cost for our SIMT and MIMT machines
quite succinctly.

• Work a set of work items w (w.l.o.g. w equals the number of threads), we find:
• For our SIMT device, the computational cost is equal to the w times the span of the
computation:

CSIMT(w) = max{w0,w1, . . . ,w|w|}

• For our MIMT device, the computational cost is equal to the work of the computation:

CMIMT(w) =
|w|∑
i=0

wi

13

SIMT

• To find the distribution of our SIMT computation cost, we look towards order
statistics:

• Sort sample in ascending order: X(0), X(1), . . . , X(|w|).
• Then find the distribution of X(|w|)...
• This becomes trivial if we are looking for the maximum!
• To calculate the PMF of this distribution:

P(X(n) = x) = P(X(n) ≤ x)− P(X(n) < x)
= P(X ≤ x)n − P(X(n) < x)
= P(X ≤ x)n − P(X < x)n

= F(x)n − (F(x)− f(x))n

14

MIMT

• Finding the distribution of our MIMT computation cost is even easier if we’re talking
about well-behaved source distributions:

•
∑|w|

i=0(Xi ∼ B(n, p)) ∼ B(n|w|, p)
•
∑|w|

i=0(Xi ∼ Pois(λ)) ∼ Pois(λ|w|)
•
∑|w|

i=0(Xi ∼ G(p)) ∼ NB(|w|, p)
• Ironically, finding the sum of uniform distributions is hardest, but can be found using
the same technique we use for arbitrary distributions:

• Add two variables together by finding all combinations that sum to each supporting
outcome (multiplying their probabilities).

• Extend to arbitrary number of distributions via induction.

15

Overhead

• Now it gets a little more funky, because we need the ratio distribution between the
SIMT model and the MIMT model.

• First, take a look at the support of our two distributions FSIMT and FMIMT with
source distribution F .

• supp(FSIMT) = supp(F).
• FMIMT preserves the (in)finity of F ’s support.

• Thus, we can proceed by case analysis:
• If supp(F) is finite,

supp(FSIMT
FMIMT

) = { ab | a ∈ supp(FSIMT), b ∈ supp(FMIMT), b ̸= 0} ∈ Q.
• If supp(F) is infinite, the same still works theoretically but it becomes a real pain in the
behind, so we find truncated distributions F ′

SIMT with supp(F ′
SIMT) = {0, . . . ,m} s.t.

CDF(m) ≥ 0.999 or some other threshold. Then proceed as above.

16

Overhead

• Elephant in the room: numerator and denominator are obviously not independent.
• Introduces error, and allows impossible scenarios (e.g. h < 1).
• Solutions:

• Quantify error and accept if sufficiently small.
• Rewrite equation for overhead to eliminate dependence, i.e. using distributivity of
maximum over division.

max{X0, X1, . . . , Xn}∑n
i=0 Xi

= max

{
X0∑n
i=0 Xi

,
X1∑n
i=0 Xi

, . . . ,
Xn∑n
i=0 Xi

}
= max

{
X0

X0 +
∑

({X0, X1, . . . , Xn} \ {X0})
, . . .

}
• Work in progress, help welcome!

17

Validation

• Validation strategy: try this model for a simple mini-app that calculates matrix
powers2.

• Note that this fits our requirements exactly: p : M→ M = · and p ∈ O(1).
• Reduce, as much as possible, overhead from memory and external factors.
• We use 8× 8 matrices because:

1. If p is too computationally inexpensive, we suffer from far more noise.
2. Seems pretty common in what we’re doing.

• Powers distributed binomially, geometrically, and Poissonially (?).

2Because square matrices under multiplication form a monoid, An can be computed in O(log2 n) time, but that
defeats the purpose of the exercise, so we use a O(n) implementation.

18

Validation

• Launch threads in blocks of 32.
• Reduce measurement error due to context switching by artificially reducing
occupancy:

• Kernel comes with shared memory “hogging” parameter which limits SM capacity.

• Optionally configurable seed for some degree of determinism.
• Mini-app executed on my own GTX 1660 Ti (not noiseless, preliminary measurement).
• Tested for 1, 2, 4, 8, 16, and 32 threads (more than that is meaningless on an NVIDIA
GPU).

• 131072 samples gathered for each configuration (combination of distribution and
thread count).

19

Validation

Validation step Affected by Purpose

Statistical Quality of our sta-
tistical model.

Allow a concise, preferably closed form ex-
pression for the expected overhead of an ar-
bitrary application.

Sampled Underlying proba-
bility distribution.

Provides an empirical estimate of the over-
head distribution through repeated sampling,
but is not found analytically.

Measured Additional sources
of overhead on the
GPU.

End-goal of modelling process, achieving
agreement with this is the holy grail.

20

“All models are wrong, but some are useful”
– George Box

20

Management of Expectations

• Complete agreement between all three sources of data is – right now – out of scope.
• Shape of estimated distributions is not correct due to previously noted issues.

• However, mean values (which are really what we’re looking for here) should be more
robust.

• Overhead on the GPU that we do not understand yet.
• Also: estimated distributions will look rough because we’re histogramming the
rational numbers.

21

Results

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.000

0.025

0.050

0.075

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

5000

10000

15000

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

5000

10000 1 threads
2 threads
4 threads
8 threads
16 threads
32 threads

Binomial (n = 20, p = 0.5)

22

Results

0.8 1.0 1.2 1.4 1.6 1.8
0.000

0.025

0.050

0.075

0.8 1.0 1.2 1.4 1.6 1.8
0

10000

20000

0.8 1.0 1.2 1.4 1.6 1.8
0

5000

10000
1 threads
2 threads
4 threads
8 threads
16 threads
32 threads

Binomial (n = 40, p = 0.5)

23

Results

1 2 3 4 5 6 7
0.00

0.05

0.10

1 2 3 4 5 6 7
0

5000

10000

15000

1 2 3 4 5 6 7
0

20000

40000 1 threads
2 threads
4 threads
8 threads
16 threads
32 threads

Geometric (p = 0.05)

24

Results

0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.05

0.10

0.5 1.0 1.5 2.0 2.5 3.0
0

5000
10000
15000

0.5 1.0 1.5 2.0 2.5 3.0
0

5000

10000 1 threads
2 threads
4 threads
8 threads
16 threads
32 threads

Poisson (\lambda = 4)

25

Results

0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.00

0.02

0.04

0.06

0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

5000

10000

0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

5000

10000

15000 1 threads
2 threads
4 threads
8 threads
16 threads
32 threads

Poisson (\lambda = 20)

26

Bonus plot

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

5000

10000

15000

20000

25000
Binomial (n = 20, p = 0.5)
Binomial (n = 40, p = 0.5)
Geometric (p = 0.05)
Poisson (\lambda = 4)
Poisson (\lambda = 20)

Overhead for 32 threads

27

Conclusions

• Performance models can give powerful insight into non-functional properties of
programs.

• Including those that do not exist yet.

• Presented today: a performance model for the predicted overhead of running a
parallel computation in a lock-stepped SIMT machine.

• Computed distributions are not quite right, but promising results for some
distributions, and somewhat decent correspondence between intermediate
validation step and true measurements.

28

