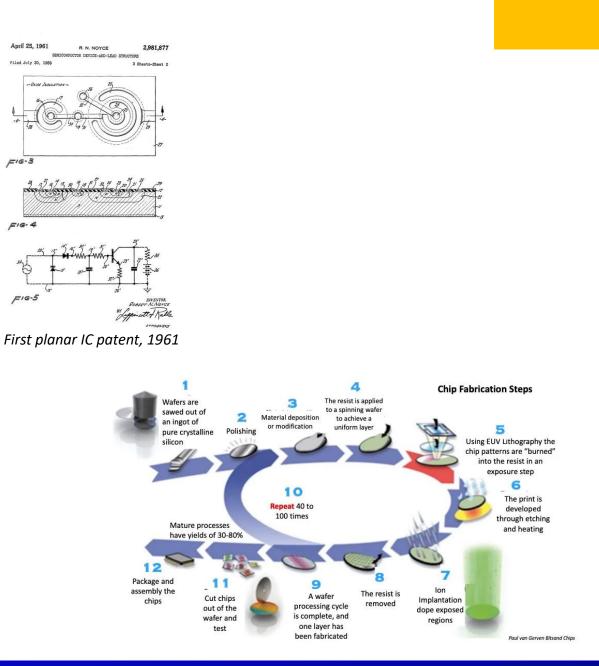
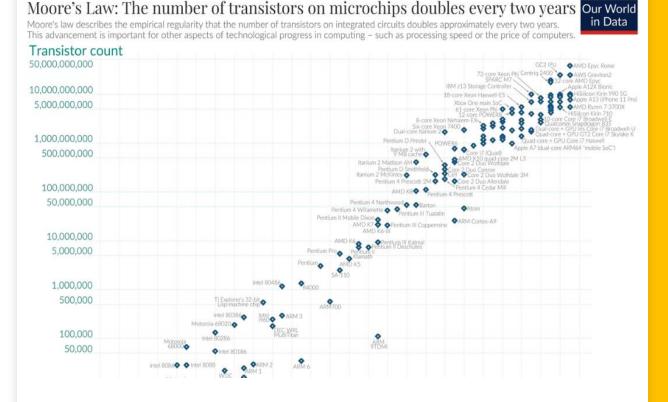
Circuits and Layouts



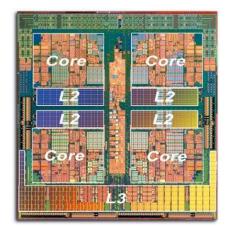
- Introduction, definitions
- Layout and interconnects in IC technology
- Transistor MOS layouts
- Passive components layouts

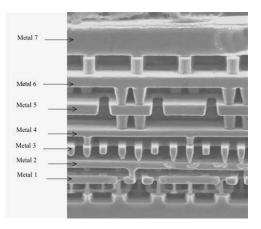

Introduction

- IC (integrated circuits) single silicon chip that includes active and passive interconnected devices to implement complex operations (analogue, digital)
- Planar technology: the processing steps are implemented in a thin layer of the surface of the chip
- Fabrication of chip is an extremely complex process, requiring several steps of atomic precision

- Device scaling implies cost reduction and increased speed per transistor
- Due to the high number of transistors on chip, layout optimization at chip level has become as important as transistors fabrication
- Interconnecting the devices has become the bottleneck for IC performances

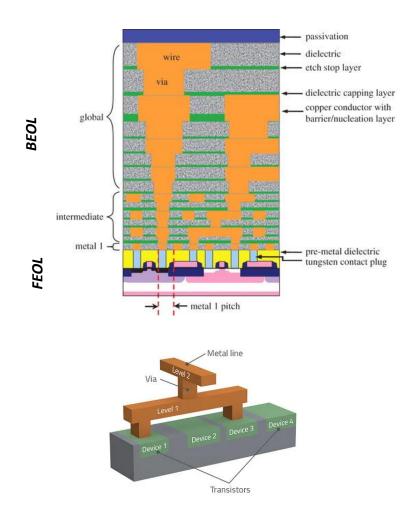
- The processing steps involved in fabricating transistors and their immediate interconnect is called front-end-of-line (FEOL)
- That includes implantation, oxide growth, diffusion and first metal
- Interconnecting all the devices together with higher metals is the back-end-of-line (BEOL)
- As the number of transistors on chips grew, it became impossible to make all connections in a single layer ٠
- Added additional vertical levels of interconnects ٠
- Simpler IC might have a few metal layers, complex ICs can exceed 10 layers ٠




First commercial IC, Fairchild Semiconductor, 1961. Flip-Flop

Output 1

- 1. N-Si substrate polishing $(80 \ \mu m \pm 5 \ \mu m)$
- 2. Oxidation (wet oxide 8000 Å)
- 3. MASK 1 (Isolation)
- Wet etch oxide
- Boron Deposition and Drive-in 6. MASK 2 (Base and P-Resistor)
- 7. Boron diffusion (~ 6000 Å oxide, ~ 150 Ω/sq
- 8. MASK 3 (Emitter and Collector Contacts)
- 9. Phosphorus Deposition and Drive-in (~ 2 Ω/sq and $X_i \sim 1.4-1.6 \mu m$)
- 10. Resist (front side)
- 11. Wet etch oxide (back side only)
- 12. Vacuum Evaporation of Gold on the back side (~ 400 Å)
- 13. Gold Diffusion (~ $1050^{\circ}C/\sim 15$ min with fast cool)
- 14. MASK 4 (Contacts)
- 15. Evaporate Aluminum (front side, 0.01 Ω/sq) 16. MASK 5 (Metal)
- 17. Wet etch metal (25% solution of sodium hydroxide)
- 18. Metal alloying ($\sim 600^{\circ}$ C/ Argon)


Original Planar process flow (from Fairchild Semiconductor)

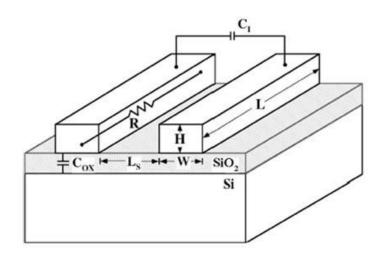
- Various levels of interconnects are present in modern ICs:
 - Metal 1, for short local interconnects
 - Intermediate, to connect devices within blocks
 - Global interconnects, for long, low resistivity connections, including power, grounds
- Various levels are connected by vias and separated by dielectrics

- Interconnects and their layouts are of increasing importance as the feature size of circuit elements become smaller
- Delay times of interconnect transmission line

$$= \rho \frac{L}{WU}$$

$$R = \rho \frac{L}{WH}$$

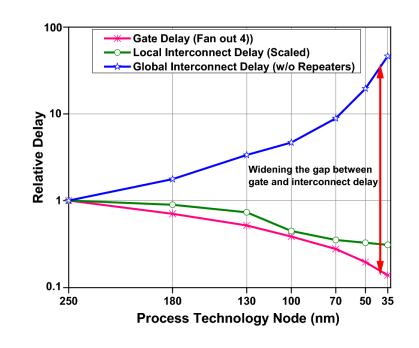
$$C_{ox} = \varepsilon_{ox} \varepsilon_o \frac{WL}{t_{ox}}$$


$$\tau_I \cong \varepsilon_{ox} \varepsilon_o \rho \frac{L^2}{WH} \left(\frac{W}{t_{ox}} + \frac{H}{L_s}\right)$$

$$C_I = \varepsilon_{ox} \varepsilon_o \frac{HL}{L_s}$$

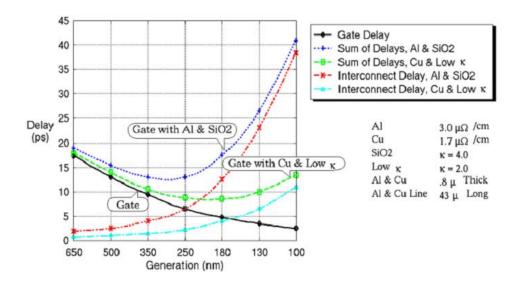
$$C_{tot} \cong C_I + C_{ox}$$

- As the technology size decreases:
 - W, L_s and H decrease
 - t_{ox} decrease at \sim the same rate as W and H i.e. scaling factor λ
 - The distance L for local interconnect decreases as the sized of devices gets smaller (~ λ)
 - Time delay for local interconnect remains ~ constant



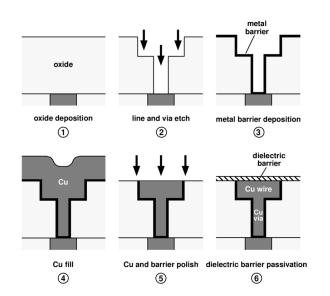
$$\tau_I \cong \varepsilon_{ox} \varepsilon_o \rho \frac{L^2}{WH} \left(\frac{W}{t_{ox}} + \frac{H}{L_s} \right)$$

$$\tau_{Ioc} \cong \varepsilon_{ox} \varepsilon_o \rho \frac{L^2}{\lambda^2}$$


- As the technology size decreases:
 - Area of the die tends to increase
 - Length of global interconnect increases √S
 - Time delay for global interconnect tends to increase

 $\tau_{gIo} \cong \varepsilon_{ox} \varepsilon_o \rho \frac{S}{\lambda^2}$

- Time delay for global interconnect tends to increase as the technology size decreases
- Different materials can be used for the interconnect to reduce ρ and ϵ

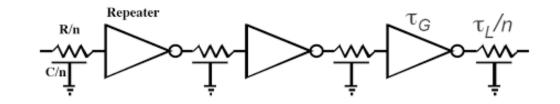


The global interconnect delay vs. technology node for standard and advanced materials

$$\tau_{gIo} \cong \varepsilon_{ox} \varepsilon_o \rho \frac{S}{\lambda^2}$$

- Reducing ρ has been achieved by using Cu instead of Al (Damascene process)
- Reduce ε is more challenging: low-K dielectrics can be obtained using F and other dopants but resulting dielectric show poorer quality
- Air gaps used in some locations in <10 nm nodes

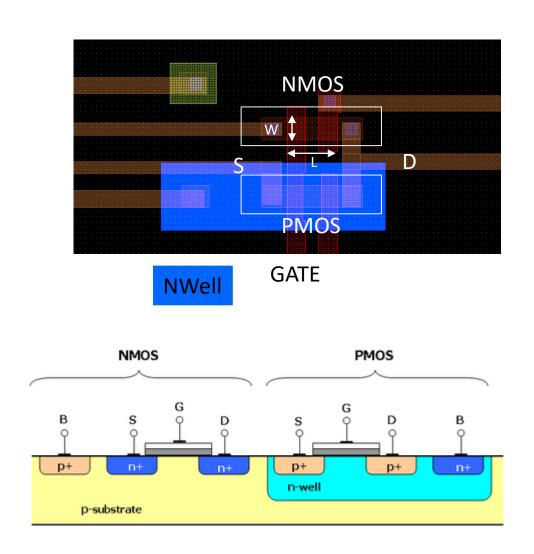
Dual Damascene* process. An additional metal barrier (W) is deposited first to avoid Cu contamination of Si. Cu deposited by electroplating. CMP is needed as Cu does not plasma etch.


Properties	SiO ₂	FSG	Dense low-k (OSG)	Porous low-
Density (g/cm ³)	2.2	2.2	1.8~1.2	1.2~1.0
Dielectric constant (k)	4	3.5~3.8	2.8~3.2	1.9~2.7
Modulus (Gpa)	55~70	~50	10~20	3~10
Hardness (GPa)	3.5	3.36	2.5~1.2	0.3~1.0
CTE (ppm/K)	0.6	~0.6	1~5	10~18
Thermal Conductivity (W/mK)	1.0	1.0	~0.8	0.26
Porosity (%)	NA	NA	<10	25~50
Average Pore Size (nm)	NA	NA	<1.0	2.0~10
Breakdown Filed (MV/cm)	>10	>10	8~10	<8

Low- dielectrics have been used for < 100 nm nodes. Reliability issues with very low k-dielectrics

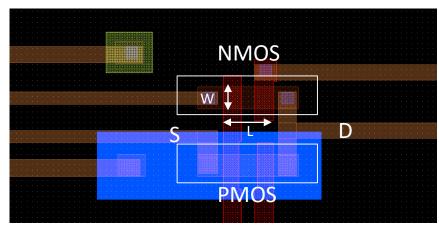
*from ancient sword making technique in Damascus, Syria

- Another way to reduce interconnect delay is to use pass transistors (or repeaters)
- A long interconnect is broken into n shorter lines, with the delay of each section reduced quadratically
- A small repeaters' delay leads to a reduced global delay but at the expenses of increased occupied area and additional power consumption



A long interconnect line L is broken into n segments

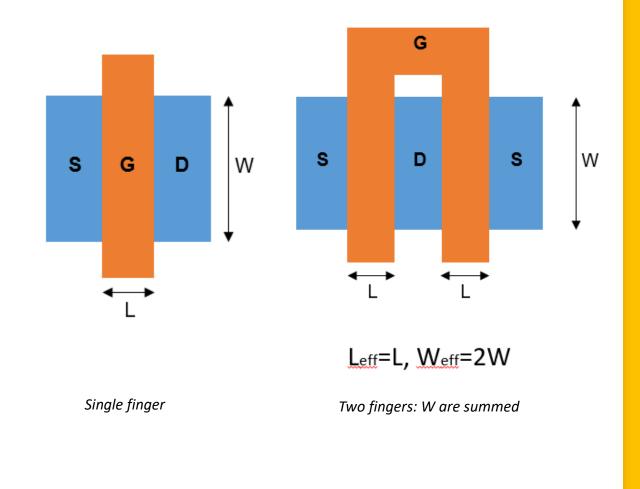
$$\tau_{glo} \cong \varepsilon_{ox} \varepsilon_o \rho \frac{L^2}{\lambda^2} \quad \tau_{glo} \cong \varepsilon_{ox} \varepsilon_o \rho \frac{1}{\lambda^2} \left(\frac{L^2}{n^2}\right) n + (n-1)\tau_g$$
$$n\tau_g < \varepsilon_{ox} \varepsilon_o \rho \frac{1}{\lambda^2} L^2$$



- Very often standard silicon wafers are P type and devices, including MOS transistors, are implemented in them
- This stems from the fact that NMOS are faster than PMOS (e⁻ mobility higher than h⁺)
- Fastest NMOS is obtained from high resistivity (low doping) P substrate rather than lower resistivity (higher doping) P well

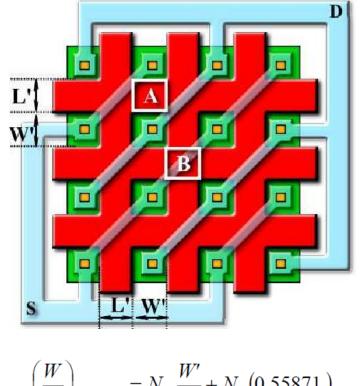
- In digital circuits transistors are normally designed with minimum size, to increase density of functions/storage /area
- In analog circuits a large form factor
 W/L is required, to increase g_m

NWell GATE


$$I_{D,sat} = \frac{\mu_p \cdot C_{ox}}{2} \cdot \frac{W}{L} \cdot (V_{GS} - V_T)^2$$

$$g_{m} = \frac{\partial I_{DS}}{\partial V_{GS}} = \mu C_{o} \frac{W}{L} \left(V_{GS} - V_{T} \right)$$

• In layout of analog transistors the aspect ratio is crucial as it determines g_m (straight structures preferable)


- High W might increase Gate resistance/capacitance
- Special layout issues in analog design:
 - multi-finger structure

• Multi finger structures decrease the Gate resistance but increase the parasitic effects (drain-gate coupling, gate to substrate)

• Special structure (Waffle structure) used for RF CMOS applications

$$\left(\frac{W}{L}\right)_{\text{WAFFLE}} = N_{\text{A}} \frac{W'}{L'} + N_{\text{B}} \left(0.55871\right)$$

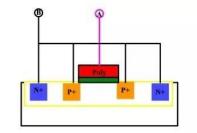
$$N_{\rm A} = N_{\rm R} \cdot (N_{\rm C} + 1) + N_{\rm C} \cdot (N_{\rm R} + 1)$$

$$\boldsymbol{N}_{\rm B} = \boldsymbol{N}_{\rm R} \cdot \boldsymbol{N}_{\rm C}$$

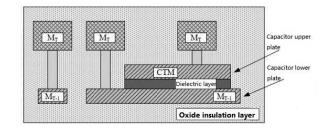
P. Vacula 1,2, M. Husák, M. 2013 Waffle MOS channel aspect ratio calculation with Schwarz-Christoffel Transformation

- Typical figures of CMOS process vs. size
- Scaling down does not imply better device characteristics per se

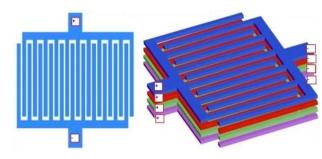
CMOS Tech. min. size L	180	130	90 nm	65 nm	n 45 nm
	nm	nm			
V _{DD} (V)	1.8	1.2	1.0	0.9	0.8
$g_m (mS/\mu m)$	0.55	0.85	1.01	1.45	1.65
$A_{v} = g_{m}/g_{ds} \left(V/V \right)$	19.5	13.1	8.5	7.8	7.1
C_{GS} (fF/ μ m)	1.37	1.06	0.82	0.55	0.45
C_{GD} (fF/ μ m)	0.45	0.42	0.39	0.34	0.31
f _T (GHz)	50	90	128	160	226
NF _{min} (dB)*	> 0.5	0.5	0.33	0.2	< 0.2


*Estimated at 2 GHz for the NMOS devices in [2].

PARAMETER	0.8µm		05µm		025µm		0.18µm	
	NMOS	PMOS	NMOS	PMOS	NMOS	PMOS	NMOS	PMOS
t _{ox} (nm)	15	15	9	9	6	6	4	4
$C_{OX}(fF \mid \mu m^2)$	2.3	2.3	3.8	3.8	5.8	5.8	8.6	8.6
$\mu(cm^2/V.S)$	550	250	500	180	460	160	450	100
$\mu C_{ox}(\mu A/V^2)$	127	58	190	68	267	93	387	86
$V_t(V)$.7	7	.7	8	.43	62	.48	45
$V_{DD}(V)$	5	5	3.3	3.3	2.5	2.5	1.8	1.8
$V'_{A}(V \mid \mu m)$	25	20	20	10	5	6	5	6
$C_{ov}(fF \mid \mu m)$.2	.2	.4	.4	.3	.3	.37	.33



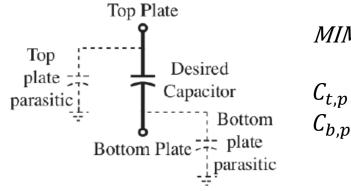
Passive components layout


- Integrated Capacitors are normally obtained by structures close to the silicon substrate
- Three type of capacitors:
 - MOS (Poly Oxide Well)
 - MiMs (Metal Insulator Metal)
 - Parasitic (MoM)

MOS capacitor changes with voltage but save area

MIM use different layers of metal and interposed dielectric to form a capacitor. Similar to plate capacitor, good stability but require additional masks

MOM use interdigitated capacitors formed by metal connections, placed in close proximity – preferred choice for advanced CMOS, also no additional mask required


Passive components layout

- Typical values of capacitance
- Typical dielectric layers are SiO₂ or Si₃N₄
- Use of high k materials is common in more advanced CMOS technologies

$$C = \frac{\varepsilon_0 \varepsilon_r}{t_{ox}} WL$$

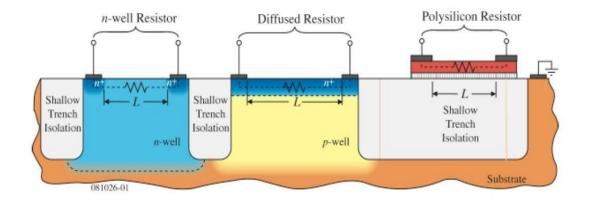
$$C = \frac{\delta_0 \varepsilon_r}{t_{ox}} WL$$

$$C = 8.6 \, fF/\mu m^2$$

MIM/MOMs parasitic

$$C_{t,p} = 0.1 \% C$$

 $C_{b,p} = 1 \% C$



Passive components layout

- Integrated Resistors are normally obtained by thin strips of resistive layers
- Insulation from surrounding achieved by oxide layers or reversed biased junctions

Resistors

- · Diffused and/or implanted resistors.
- Well resistors.
- Polysilicon resistors.
- Metal resistors.
- Thin film resistors

Nwell: $\rho_{\blacksquare} \sim 1 \ k\Omega / \blacksquare$

 $Poly: \, \rho_{\blacksquare} \sim 10 \; \Omega/\blacksquare$

Metallic:
$$\rho_{\blacksquare} \sim 0.1 \ \Omega/\blacksquare$$
 $R = \rho_{\blacksquare} \frac{L}{W}$

Circuits and layout II

Thank you

giulio.villani@stfc.ac.uk

- Layouts and interconnects in IC
 - FEOL and BEOL different characteristics
 - Interconnect delays and ways to mitigate them
- Transistors layouts intro
- Passive components layouts intro

