

Advanced Instrumentation Lectures: PCB Design with KiCad Dan Weatherill

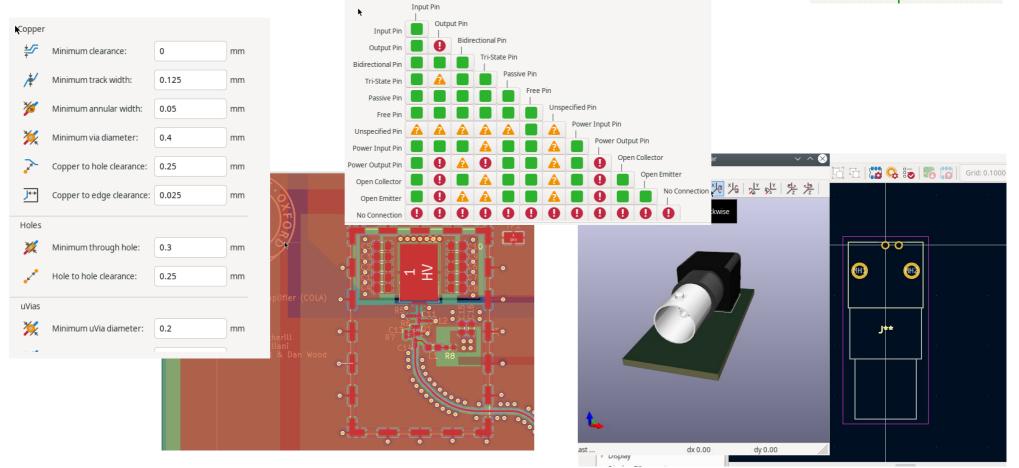
Outline

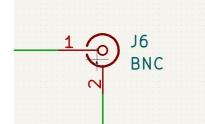
Session 1 (Tuesday)

- Recap on PCB basics (see Sneha's lecture)
- Intro to KiCad
- Comparison of KiCad to other programs
- Quirks / drawbacks to be aware of in KiCad
- KiCad workflow options symbols, footprints etc
- Component suppliers & BOM considerations
 - RS, Farnell, Mouser, Digikey
 - Octopart
- PCB Manufacturing Houses
 - Newbury/PCBTrain (UK)
 - The "boutique" shops (UK)
 - China: example Seeedstudio Fusion
- KiCad install & Schematic Editor demo

Session 2 (Friday)

- KiCad Schematic Editor demo (continued, with SPICE)
- KiCad PCB Editor demo (routing, netclasses)
- Exporting for Manufacture (gerbers, BOM)
- Exporting for mechanical CAD


PCB Basics recap


Talk by Sneha Naik earlier in this series:

https://indico.cern.ch/event/1129266/contributions/4821483/

Make sure you know the basics of the following words (ask if any are unclear):

Schematic, Board artwork, Symbol, Footprint, Layer, ERC, DRC, BOM

Intro to KiCad

Get kiCAD here (we're
using version 6)
https://www.kicad.org/
Good place to get help
on KiCAD usage:
https://forum.kicad.info/

KiCad (pronounced "key-CAD" by original authors) began development in 1992 (!!) by Jean-Pierre Charras. Since ~2015 managed by Wayne Stambaugh + a team of developers (including at CERN). It is open source and you can contribute fixes & code.

Probably the best known, supported and widely used free, open source PCB design software.

Please try and download and install now if you Haven't already

CERN contribution: https://ohwr.org/project/cern-kicad/wikis/home

Other Programs vs KiCad

Very popular, free version available. Similar in features to KiCad (more advanced in some ways). Widely supported

See also: diptrace, designspark

But: every new version since Autodesk takeover gets more "locked down". Free version limited in layer count & board size. Kicad can (quite well) import Eagle projects

Much more advanced "professional level" features that Kicad lacks (controlled impedance, stackup management, integrated parts database etc etc). Very good interface but with some learning curve.

Recommend starting with a simpler tool (like KiCad) to design some simple boards and perhaps pick up something like Altium later. Kicad can import Altium projects though it is still quite an experimental feature **Altium**. Designer

See also: OrCAD / Cadence Allegro, Mentor Graphics (PADS)

Interoperability

From mechanical CAD, you may be familiar with STEP / IGES, which allow (reasonable) interchange of designs between programs & for manufacturers. You need to be (vaguely) aware of some of this as it may affect exchanging designs with colleagues & fabrication houses.

For PCB design, the story is not quite as good. There is no good "schematic + PCB" export but there are some options:

- Gerber "RS-274X/X2" the standard format that you will send to most board houses. Exports PCB artwork so it can be manufactured, but doesn't really know anything about the circuit connectivity (no schematic information).
- ODB++ many "pro" level CAD programs support this and can exchange designs between them. KiCad does not (yet) support it, it is planned for version 7
- IPC-2511b "GenCAD/GenCAM" similar format to ODB++ but less widely adopted, though it is an open standard. KiCad can export an old version of GenCAD, but it is not very widely used. If you use GenCAD export in KiCad you should check the output it generates carefully with an external tool! (for example https://www.circuitcam.com/download)
- IPC-2581 "next generation" export format, which (may) eventually replace Gerber. Planned for KiCad to support it, but it doesn't yet! This is a problem for some (very few!) manufacturers, who now demand IPC-2581 rather than Gerber (see later)
- IPC-D-356A this is a netlist (rather than PCB artwork) format. Some board houses that do electrical test want it, KiCad can export this
- Gerber "X3" the latest Gerber spec includes information similar to IPC-2581. Kicad fully supports Gerber X3. Sadly, most other programs do not, as it has not gained as much popularity as IPC-2581.
- Some board fabrication houses (e.g. in China) now accept KiCad project files directly! However, most of them don't yet accept version 6.0 (only version 5.0), so ideally **stear clear of this!**

Things to beware of in KiCad

• Not much physical layer stackup Awareness

Actually, KiCad 6 does have layer stackup now! And it can be included in basic constraints. BUT, not very good support yet for automatic controlled impedance traces (they can be done manually with some effort though!)

Have to choose a library workflow

Disagreements in community about whether to use "atomic" or "default" type parts (see later). Have to be careful with either choice (can mix & match to some extent)

• Lack of IPC-2581 export

Some board houses want this now. It isn't there yet in KiCad

Backward/Forward Compatibility Issues Old versions of KiCad cannot open newer file versions. But new versions can import and migrate old projects very well

• Some functionality needs plug-ins Many of the really useful and advanced stuff is in community plugins. Over time more has moved into core (e.g. curved traces are now built in, but things like RF via stitching are still done through a plugin)

• Included "standard" libraries are often not very good

The built in standard part library only includes a weird and narrow selection and KiCAd is not as good as Eagle or Altium when it comes to getting new parts. They have to be manually downloaded, rather than a nice "Wizard" dialog that you get in Altium

• Grid system in Schematic entry is errr.... Well actually it's much better in 6.x than 5.x, but still annoying at times

...And the Good News!

- Huge community of users lots of people on the forums, IRC, around and about use this software
- Open Source, no limits on "free" version no limits on board size, layers etc etc
- Usable on "real" designs and in industry though it is a bit more limited than e.g. Altium, make no mistake KiCad is a professional grade tool
- Text based file formats compatible with git version control! (And visual diff tools available, so merging is possible!)
- Scriptable you can write plugins and processing tools in the python language to do custom features in KiCad.
- pretty good (manual) routing experienceadvanced push'n'shove and other modern routing techniques are very well implemented and very usable. Better IMO than Eagle or Diptrace
- No built-in autorouter autorouters almost ALWAYS get everything wrong anyway. An external autorouter (FreeRouting) is available if you really want it

(right) – CIAA-ACC 12 layer board with Xilinx 7000 Series SOC and kintex-7 FPGA. Running at GHz speed, A "very serious" design" done in KiCad!

Dan Weatherill – AITL PCB Design 2022

8

KiCad Part workflow options

UNIVERSITY OF

Kicad has no "built in" concept of a **part** (i.e. **footprint + symbol**). You can associate any schematic symbol with any footprint! This can be useful for quick designs and parts available in alternate footprints but **it is easy to make very bad errors which ERC will not save you from!**

Many serious people refuse to use KiCad for this exact reason (same applies to Eagle and, especially, DipTrace). Personally I don't mind it but have fallen prey to a pinout error a couple of times over the years!

Luckily, if you want to use **atomic parts**, KiCad can support this! Tools such as componentsearchengine (see later) let you download parts in kind of atomic format

Atomic parts

Every different part (including different footprints of the same part), has a separate symbol & footprint in your KiCad library. Each symbol is associated to one (and ONLY one) footprint.

Pro: it's very hard to make a very silly pinout mismatch error

Con: maintaining this parts library is a HUGE amount of work

KiCad default

Each symbol in the schematic must be manually associated with a footprint when you design the board (but usually they have a default)

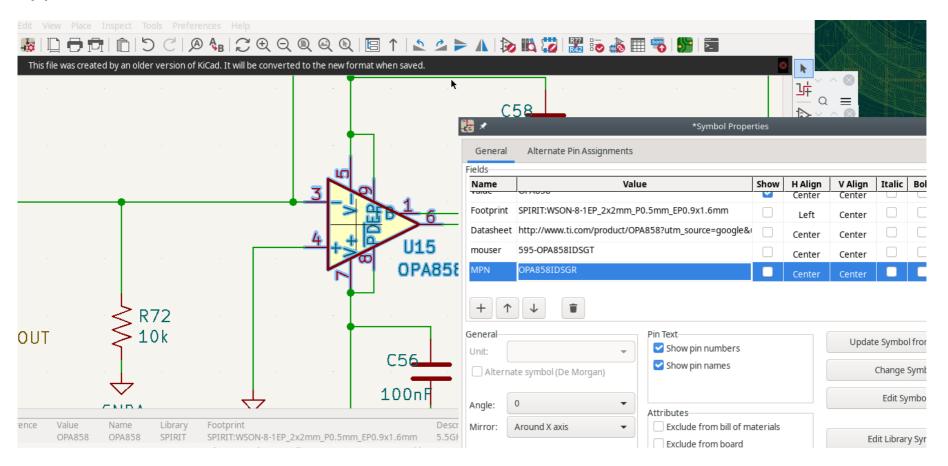
Pro: much quicker to get up and running, easier and more flexible to alter designs later **Con:** you MUST DOUBLE CHECK FOOTPRINT ASSOCIATION VERY VERY CAREFULLY

Buying Components - UK

Sorting out the BOM is (usually) actually the most tedious part of a PCB Design project!

My personal recommendation – start with Farnell! (https://uk.farnell.com/) Good search interface, wide selection, reasonable price.

EN -											Reduc	ea prices	Unters	Contact Us	; Heij
	AI	I▼ ti0	081							(2				n Regis ccount
\equiv All Products $/$ Manufacturers $/$ Resource	es Comm	nunities	• /									🗢 Fav	ourites	🛆 Buyi	ng Tool
tome > Semiconductors - ICs > Amplifiers & Compar 21 Product Results Found				mps > Results										ı	Filter La
Search Within	Q		Compare Selecte	d (0)											
0 Filter(s) Selected		F	Manufacturer Part No	Order Code	Description / Manufacturer	Availability	Price For	Price (ex VAT)	Quantity	No. of Amplifiers	Bandwidth	Slew Rate	Supply Voltage Range	Amplifier Case Style	No. of Pins
				•	A V	A V						. .	A -	A V	
Show Results			TL081ID	3005131	Operational Amplifier, 1 Amplifier, 3 MHz, 13 V/µs, 7V to 36V, SOIC, 8 Pins	179	Each	1+ £1.08 10+ £0.933	1 Add	1			7V to		
- Availability	ember 0		100		TEXAS INSTRUMENTS	In stock		50+ £0.757 100+ £0.733	Min: 1	Amplifier	3MHz	13V/µs	36V	SOIC	8Pin
In Stock (1)								250+ £0.708	Mult: 1						
No Delivery Surcharges			TL081CP	3117808	Operational Amplifier, 1 Amplifier,	A	Each	1+ £0.563	1						
Suitable For New Designs (18)				C RoHS	4 MHz, 13 V/µs, 7V to 36V, DIP, 8 Pins	Available for back order.		10+ £0.496		10			1000000		
New - 180 Days (0)			100	~	TEXAS INSTRUMENTS	More stock available week commencing		100+ £0.352 500+ £0.299	Add Min: 1	1 Amplifier	4MHz	13V/µs	7V to 36V	DIP	8Pin
- Compliance			11.			29/05/23		1000+ £0.24	Mult: 1						
Date/Lot Code (12)		-	TIONOD												
RoHS Compliant (20)			TL081CD	3117806	Operational Amplifier, Single, 1	A	Each	1+ £1.45	1						

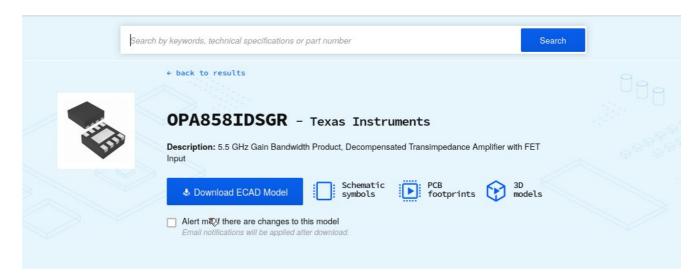

If a part is not on Farnell, it is likely on Mouser (www.mouser.co.uk) or digikey (www.digikey.co.uk). In some circumstances, it might be on RS (https://uk.rs-online.com/web/)

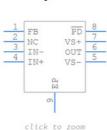
STRONG RECOMMENDATION: include both MPN ("manufacturer part number") and the order code for a particular supplier in your schematic. Then, stock issues can be more easily sorted out via OctoPart or by the board assembly house

Octopart

Always put a manufacturer part number (MPN) in your schematic data! You can use the tool www.octopart.com to find this part on many different suppliers, and sometimes to obtain CAD data downloads.

Octopart

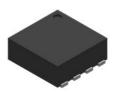

)ct ¢ p	oart 🕞	tegories ~ OF	A858		Q							API BOM Tool
ll Parts (6)												
Amplifiers - O 6	op Amps, Buffer,	Instrumentation										
Distributor	Manufacture	r Lifecycle Statu	cAD Models	Number of Pins	Input Offset Vo	oltage (Vos) Min	Supply Voltage	Max Supply Voltage	+ Add More Filters	5		
Prices 🌐	Specs Curr	ency: GBP ~ Sor	t: Relevance ~	Availability: All ~							6 results Distributor	r links are sponsored
OPA85 ti.com	58IDSGT - Purch	ase at the lowest onl	ne price* on TI.com									
T	Texas Instrume	ents 🛛	ne price* on TI.com						GB	P 2.848 + Add	l to BOM 🛛 😽 Datasl	heet at Tl.com 3
	Texas Instrume OPA858 IDS0	ents 🛛							GB	P 2.848 + Add	i to BOM 🛛 😽 Datasi	heet at TI.com 3 CAD Model
	Texas Instrume DPA858 IDSC /olt Feedback Amp	nts © GR	5.25V 8-Pin WSON T/R	Stock	моq	Pkg		1	GB 10	100 P 2.848	i to BOM 👋 Datasi 1,000	
Distributor	Texas Instrume OPA858IDSC /olt Feedback Amp	nts ⊘ GR Single 2000V/us 3.3V to SKI	5.25V 8-Pin WSON T/R	Stock 1,096	-	Pkg Cut Tape		1 5.670				CAD Model
Distributor	Texas Instrume OPA858IDS(/olt Feedback Amp	nts ♥ GR Single 2000V/us 3.3V to SK(OP	5.25V 8-Pin WSON T/R		1		GBP *		10	100	1,000	CAD Model
Distributor	Texas Instrume OPA858IDS(/olt Feedback Amp	Ints © GR Single 2000V/us 3.3V to SKI	5.25V 8-Pin WSON T/R J A858IDSGR	1,096	1	Cut Tape	GBP * GBP *	5.670	10 5.053	100 3.998	1,000 2.865	10,000 Updat 2.865 <1m
Distributor Arrow Electr Texas Instrum Mouser	Texas Instrume OPA858IDS(/olt Feedback Amp	ents © GR Single 2000V/us 3.3V to SKI OP OP 591	5.25V 8-Pin WSON T/R J A858IDSGR A858IDSGR	1,096 3,000 3,755	1	Cut Tape Cut Tape	GBP * GBP * GBP	5.670 3.380	10 5.053 3.380	100 3.998 2.755	1,000 2.865 1.837	10,000 Updat 2.865 <1m
Distributor Arrow Electri Texas Instrum	Texas Instrume OPA858IDSC /olt Feedback Amp ronics ments	Ints S SR Single 2000V/us 3.3V to SKI OP 595 297	5.25V 8-Pin WSON T/R J A858IDSGR A858IDSGR G-OPA858IDSGR	1,096 3,000 3,755	1 1 1 1	Cut Tape Cut Tape Tape & Reel	GBP * GBP * GBP	5.670 3.380 5.180	10 5.053 3.380 4.650	100 3.998 2.755 3.810	1,000 2.865 1.837 2.840	CAD Model 10,000 Update 2.865 <1m


There are various BOM tools and plugins available for KiCAD that can find supplier part numbers and price a BOM from the MPNs in your schematic.

Component Search Engine

https://componentsearchengine.com

Very useful tool to obtain (mostly basic but usable) Footprints, symbols and 3D models of parts that are not in KiCad's built in libraries (which is very often!)



Symbol

PCB Footprints

click to zoom

3D Models

click to zoom



Manufacturing a PCB in the UK

Reasonably priced, fast turnaround available, online quotes that are pretty good: https://www.pcbtrain.co.uk (a.k.a Newbury Electronics). Can do fabrication and assembly, upload your design and BOM details and get a quote in your inbox in a couple of minutes

Price in GBP, exclusive of carriage

W/Days	1 Qty	2 Qty	3 Qty	4 Qty
4	£ 425.55	£ 476.88	£ 528.21	£ 579.52
5	£ 312.71	£ 357.28	£ 401.85	£ 446.44
7	£ 278.44	£ 317.62	£ 356.79	£ 395.96
10	£ 227.04	£ 258.10	£ 289.17	£ 320.24
15	£ 184.21	£ 208.52	£ 232.83	£ 257.16

Dan Weatherill – AITL PCB Design 2022

Product Name : 4 layer FR4 (150 deg C) middle Tg 1.6mm ENIG Blue White

Supply in panels :	Νο		
Product Family:	4 layer	Copper Weight:	35
Material:	FR4 (150 deg C)	Thickness:	1.6 mm
	middle Tg	Circuit Size Y:	100 mm
Circuit Size X :	100 mm	Solder Resist:	Blue
Legend:	White	Finish:	ENIG
Service:	Standard		
Quantity:	1		

Manufacturing a PCB in the UK

A range of more expensive & boutique manufacturers who can do more custom things and guarantee to verified IPC quality levels, including electrical test etc.

Careful, these get very expensive very fast.

Word of warning: **express circuits**, whilst a very good manufacturer (in my experience), now REQUIRES your data in non-gerber format, and as such right now it is **hard**, **though not impossible** to directly send them designs from KiCad.

This will improve within a few months hopefully.

Recommendation for "boutique" manufacturer: Cambridge Circuit Company.

Cost typically ~2-3x as much as Newbury

Manufacturing from China

Chinese "prototype" level manufacturers, including e.g. JLPCB and OSHPark should **not be discounted.** The manufacturing quality is typically very high, and cost much lower than UK manufacturers. Shipping is generally not that bad either. **However**, be prepared for them to manufacture **exactly** what you send them, mistakes and all!

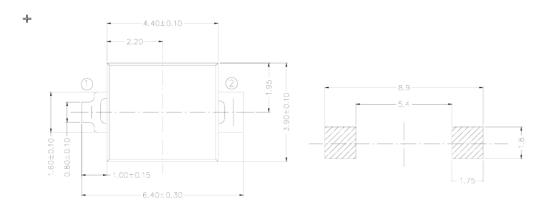
You will not get an email saying "are you really sure you want this"?

Example: my personal favourite based on experience, SeeedStudio fusion (http://www.seeedstudio.com/pcb-assembly.html)

(Right: ~same spec as Newbury/PCBTrain)

Newbury: 10 off in 10 w/days £506.60

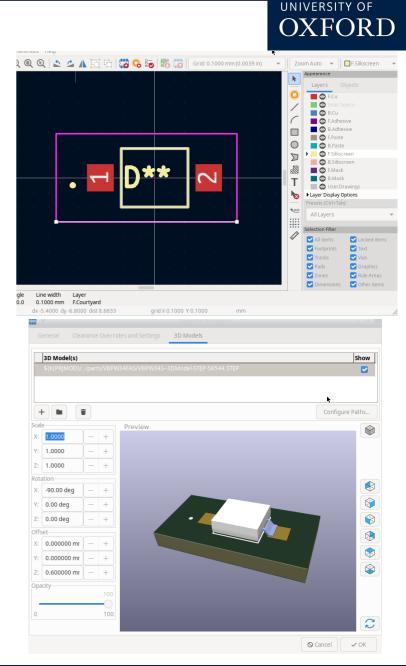
Seeedstudio: 10 off in 7 w/days (then shipping): \$130 ~ £103 (+ shipping)


- PCB Cost	USD\$129.90
Base Material	FR-4 TG130
No. of Layers	4 layers
PCB Dimensions	100mm * 100mm
PCB Quantity	10
No. of Different Designs	1
PCB Thickness	1.60mm
PCB Color	Blue
Surface Finish	ENIG
Minimum Solder Mask Dam	0.1mm†
Copper Weight	1oz
Inner Copper	0.5oz
Minimum Drill Hole Size	0.3mm
Trace Width / Spacing	6/6 mi
Plated Half-holes / Castellated Holes	No
Impedance Control	No
Sub-Total	USD\$129.90
Production Time 🟮	5 ~ 7 Working Days
Weight	0.32kg
Shipping	Calculated at Checkout

Add to Cart

KiCad part creation example

Drawing & Land pattern from datasheet (VBPW34FAS)


Below:

Use "generic" symbol, And associate MPN, Footprint and BOM data in schematic

		Name	Value	Show
		Reference	D1	
		Value	VBPW34FAS	~
		Footprint	cosmic_ray_detector_lib:VBPW34FAS	
N CN		Datasheet	https://componentsearchengine.com/Datashee	
k		Description	PIN Photodiode 780-1050nm SMD2 GW Vishay	
- D1		Height	1.4	
VBPW	34FAS	Manufacturer_Name	Vishay	
	VBPW34FAS	MPN	VBPW34FAS	
/02-	VDF WJHIAJ	Farnell	1779701	
		Mouser	782-VBPW34FAS	~
		+ 1	Ŧ	

Above right: Draw (or download) footprint and CHECK against datasheet

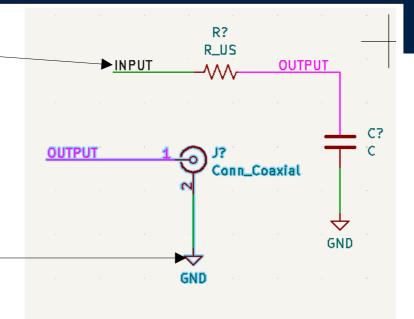
Below Right: Download (or draw!!!) 3D model for MCAD integration

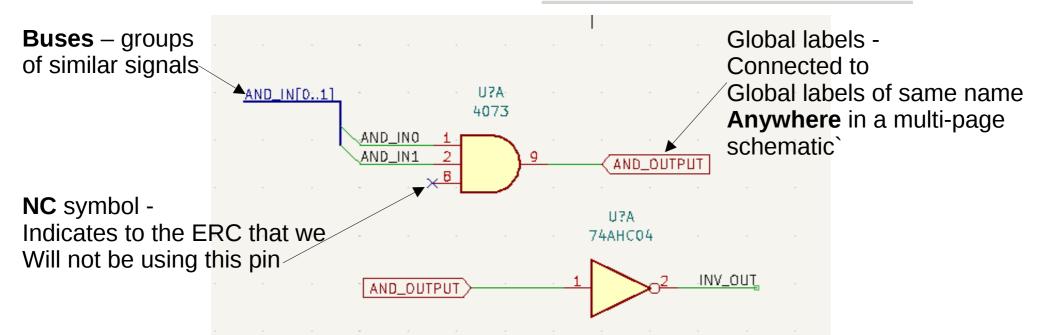
Kicad Schematic Tips

This applies not just to KiCad but schematic drawing for "real" PCBs in general.

- A schematic for an actual, real PCB that will be built is quite different from the "conceptual" schematic you jot down on paper or see in a textbook. The "little details" are important
- Any reasonably sized schematic doesn't nicely fit on one page, and though it's personal preference I like my schematic pages to not be too crowded.
- KiCad supports multi sheet design in two ways: **flat** multi-page designs with global labels, and **hierarchical** designs with hierarchical labels. I prefer this latter and again that's personal preference but for the purposes of today this is how we will look at it.
- Associate as much data with the schematic before layout as possible, this includes: footprints, BOM data, datasheets and netclasses.
- Just like writing a computer program, put **text** comments on your schematic to indicate intent.
- Make sure to **label** important nets with useful names so you can easily see them whilst in layout

Schematic Labels

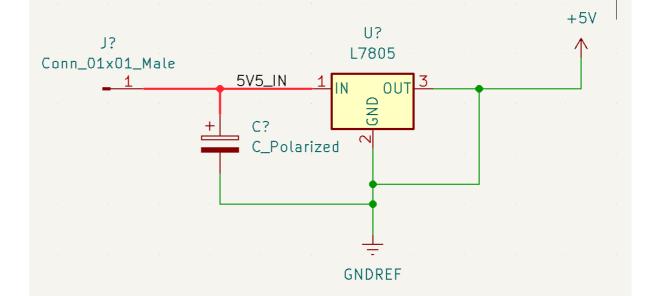

OXFORD


Normal labels: the two nets labelled "OUTPUT" are **electrically connected**

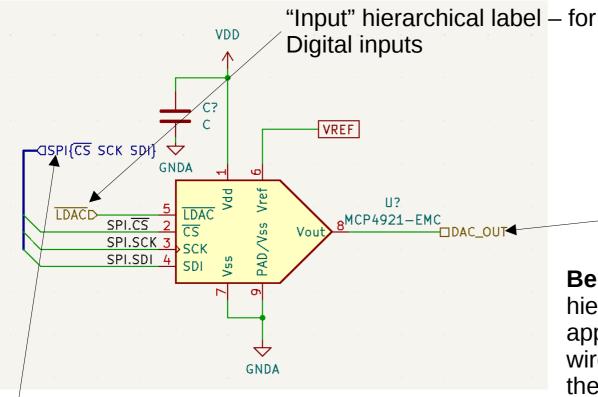
(this is common in most modern PCB Software, simplifies schematic spaghetti).

But, ONLY if they are on the same sheet!

ALL power symbols (e.g. "GND") with The same name are connected **globally** Throughout the schematic.


Netclasses

UNIVERSITY OF
OXFORD


*		Schematio	Setup			~ ^			
General	Net Class		Wire Thickness	Bus Thickness	Line Style				
Formatting	Default		0.1524 mm	0.3048 mm	•	Solid			
Field Name Templates Electrical Rules	POWER		0.25mm	0.3048 mm	•	Solid			
Violation Severity									
Pin Conflicts Map									
Project	+ Set color to transparent to use KiCad default color.								
Net Classes	Filter Nets		N	Net		Net Class			
Text Variables	Net class filter:		• //	AND_IN0	Default				
	Net name filter:			AND_IN1		Default			
			Л	INPUT	•	Default			
	Show All Nets	Apply F	ilters //	INV_OUT		Default			
			/0	OUTPUT		Default			
			/	PWR_IN		Default			
	Assign Net Class		A	ND_OUTPUT	Default				
	New net class:		• 6	GND	Default				
	Assign To All Listed	Nets Assign To Sel	ected Nets	SNDREF		Default			

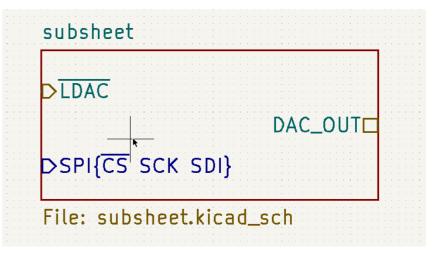
Netclasses are just "types" of net, that we might want later for PCB routing purposes (e.g. to make all power input nets have thicker and more separated traces). We set them up in the "Schematic Setup" dialog

Right: We have assigned the "5V5_IN" net to the POWER netclass, this gets transferred to the PCB routing

Hierarchical Schematics

Group Bus – groupings of named Nets inside a bus (but not numbered) – useful for well defined interfaces e.g. SPI, I2C, UART etc

Hierarchies can be as deep as needed. You can also use the same schematic File in multiple sheet symbols if you need "suplicated" subsystems in the design

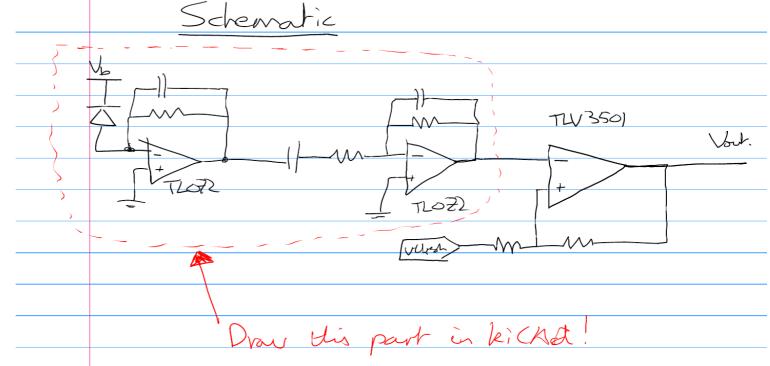

Dan Weatherill – AITL PCB Design 2022

Hierarchical Labels – connect Through sheet symbols. (left) – the contents of "subsheet.kicad_sch".

"Passive" hierarchical label - use for all analog signals

Below: the top level sheet. Each hierarchical label in the subsheet appears here. We can connect wires and buses to them as though the sheet were a component

Walkthrough KiCad Schematic


UNIVERSITY OF OXFORD

On the Indico page, you will find two .zip files:

1) a KiCAD project for a "PIN diode based gamma ray detector" which has a pretty complete schematic, including data for parts, MPNs, footprints etc "schem_proj_complete.zip"

2) the same project but with a crucial part of the schematic missing – the frontend for the detector! The challenge is to draw in the missing part of the schematic. "schem_proj_nofrontend.zip"

We will talk through how to do this together to learn some of the KiCad basics.

Schematic Steps Overview

1)Draw basic circuit – the symbols should all already be included in the project in the "cosmic_ray_symbols" library

2)Label & connect – add suitable net labels and connect the new sheet into the hierarchy properly

3)Annotate – annotate the schematic (assign specific designators to each part)

4)Pass ERC – run the ERC and tweak until there are no more errors!

5)Assign Footprints & add BOM data - associate each schematic symbol to a physical footprint and part to order

6)Assign netclasses – We will assign some netclasses for traces like "power" and "bias" to associate custom design rules with them at layout time

7)Set up sheet block and export drawings for review

Thanks!

To be continued on Friday where we get to the fun part – layout!

Questions, comments etc greatfully received:

Daniel.weatherill@physics.ox.ac.uk

This lecture is brand new for the first AITL series, all feedback is VERY USEFUL!

Very happy to be contacted about "stupid questions" re: KiCad or any PCB designs. I've done somewhere around 30 over the years now (in KiCad, altium, Eagle, DipTrace- urrrgh) so do know a little bit about what I'm doing