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Basic kinds of permutation groups – building blocks

New tools: how to use them and the FSGC

Answering some old questions – using different 
building blocks

Big questions dictate – need for new theory
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Big questions of permutation groups 
– some answered, others open



Basic permutation groups

• Set  Ω = { 1,… , 𝑛} (or infinite)

• Permutation group on Ω is a subgroup G ≤ 𝑆𝑦𝑚(Ω)

• Usually assume G transitive: ∀ 𝛼, 𝛽 ∈ Ω ∃ 𝑔 ∈ 𝐺 𝑠. 𝑡. 𝛼𝑔 = 𝛽

• Important question: does G preserve a nontrivial partition P
of Ω ?

• If yes then 𝐆 ≤ 𝑲𝟏 ≀ 𝑲𝟐 < 𝑺𝒚𝒎 𝛀 ,where K1 ≤ 𝑆𝑦𝑚 B , K2 ≤
𝑆𝑦𝑚 P are smaller transtive groups induced on a part B and set 

of parts P

Else G is subgroup 

of direct product 

of transitive 

groups induced 

on the G-orbits in Ω



Basic permutation groups

• If  Ω = { 1,… , 𝑛} repeat a finite number of times with the 

smaller transitive groups 𝑲𝟏, 𝑲𝟐, … until the process stops

• Obtain iterated wreath product embedding 

G ≤ 𝐾1 ≀ 𝐾2 ≀ ⋯ ≀ 𝐾𝑟 ≤ 𝑆𝑦𝑚 Ω

• and each 𝐾𝑖 preserves only trivial point partitions; such  𝐾𝑖
are primitive

• Primitive permutation groups are traditionally the basic 

kinds of permutation groups

Works for some 

families of infinite 

transitive groups –

need some kind 

of finiteness 

condition



Basic permutation groups

• Not the only possible “story”: could change the “important 

question” for transitive permutation groups 

• Alternative important question: does G have a nontrivial 

normal subgroup N that is intransitive on Ω ?

• If yes then the set P of N − orbits is a G − invariant partition
and 𝐆 ≤ 𝑲𝟏 ≀ 𝑲𝟐 < 𝑺𝒚𝒎 𝛀 ,where K1 ≤ 𝑆𝑦𝑚 B , K2 ≤ 𝑆𝑦𝑚 P

where B is an N-orbit

• Get G ≤ 𝐾1 ≀ 𝐾2 ≀ ⋯ ≀ 𝐾𝑟 ≤ 𝑆𝑦𝑚 Ω and each 𝐾𝑖 is 

quasiprimitive - all nontrivial normal subgroups transitive

Primitive and 

quasiprimitive

groups equally 

valid as basic 

groups:  choice 

depends on 

“context”and

“tools”



Tools for working with basic 
permutation groups

• Take  Ω = { 1,… , 𝑛} and (quasi)primitive permutation group

G ≤ 𝑆𝑦𝑚(Ω)

• Structure theorems: identify different types of 

(quasi)primitive groups 

• partition the set of finite (quasi)primitive groups

• Broad-brush description: affine, almost simple, diagonal 

and a product construction applied to each of these 

types  [Peter Cameron’s approach]



1985/88
Michael Aschbacher and Leonard Scott 

1985 and L. G. Kovacs 1986 both 

independently corrected (TW type)

Liebeck-Praeger-Saxl 1988 self-contained 

proof – more information on TW

1960s
Peter Neumann: diagonal 

groups appear in his Dphil

thesis 1964 

Rheinhold Baer origins of this 

case subdivision

1979
Michael O’Nan and Leonard 

Scott each brought 

manuscripts containing the 

“O’Nan-scott Theorem” to the 

1979 Santa Cruz Conference 

on Finite Groups

1992
Praeger Similar structure 

theorem for finite 

quasiprimitive permutation 

groups

Praeger Schneider 

2017: analysis and comparison of 

Aschbacher/Scott/Kovacs 

contributions

(book) 2018: summary of 

different statements, subdivisions 

of the O’Nan-Scott Theorem

2022
Bailey, Cameron, Praeger, 

Schneider Diagonal Geometry 

to explain diagonal groups

O’Nan-Scott Thm
Timeline

1870 Jordan 
thought about 
various kinds of 
primitive groups



Tools: O’Nan—Scott 
Theorem and its “relatives”

• Purpose: to highlight how to apply the finite simple group 

classification (FSGC):

• Most types give structure for Ω or G helpful for applications 

• Affine type: Ω = V, G = NG0 ≤ 𝐴𝐺𝐿 V , N trans, G0 irred  

• [all affine quasiprimitive groups are primitive]

• Almost simple: N = Soc(G) nonabelian simple group 𝑇

• Diagonal: N = Soc G = 𝑇𝑘 with T nonabelian simple, 

• k ≥ 2, and N_𝛼 a diagonal subgroup of Tk

• Product type: G ≤ 𝑆𝑦𝑚 Γ ≀ 𝑆𝑘 preserving a Cartesian 

decomposition on Γk where Ω = Γk (primitive) or Γk

labels a canonical invariant partition (quasiprimitive)

So what’s 

new?



Tools: O’Nan—Scott Theorem 
Diagonal geometry

• Diagonal: N = Soc G = 𝑇𝑘 with T nonabelian simple, 

• k ≥ 2, and N_𝛼 a diagonal subgroup of Tk and Ω = 𝑇k−1

• If k = 2 then G ≤ 𝐻𝑜𝑙 𝑇 = 𝑇. 𝐴𝑢𝑡 𝑇 [well known]

• If k = 3 then G ≤ 𝐴𝑢𝑡 𝐿 for L Latin square (Cayley table for T)
• If k ≥ 4 then G ≤ 𝐴𝑢𝑡 𝐷 for D a diagonal semilattice of 

partitions of Ω = 𝑇k−1

• Diagonal geometries defined by axioms (like a projective 

plane); if k ≥ 4 always come from a special group construction

• 2022 Trans AMS: Bailey, Cameron, P, Schneider, The geometry 

of diagonal groups



Big questions answered ??

• 1980 (FSGC announced): Some questions answered 

almost immediately – primitive groups.

• Classification of 2-transitive groups [Cameron, Hering]

• Classification of primitive rank 3 groups [Liebeck, Saxl] 

• Classn primitive groups, |Ω| odd [Liebeck, Saxl, Kantor]

• Some very surprising results – primitive groups

• For almost all n, only primitive subgroups of Sn are Sn
and An [Cameron, Neumann, Teague, 1982]

• What about quasiprimitive groups?

• Quasiprimitive rank 3 [Devillers et al 2011]

• For almost all n, only quasiprimitive subgroups of Sn are 

Sn and An [Heath-Brown, Praeger, Shalev, 2005]

Open 
problem: 
Classify the 
quasiprimitive
groups of odd 
degree



Applications: many 
questions arise

• Applications may be in algebra, or number theory, or 

geometry, or combinatorics, or …

• How to reduce these problems to “basic” cases:

• how to decide whether primitive or quasiprimitive

reduction is appropriate/possible?

• What if neither possible? maybe need different 

fundamental theory to apply FSGC?

• How to finish: what if a reduction is possible but we don’t 

know enough about FSG’s to complete a solution?



Applications: a case study
How quasiprimitive groups became important

• 2-arc-transitive graphs Γ : Aut(Γ) transitive on 2-arcs

(𝛼, 𝛽, 𝛾) with { 𝛼, 𝛽}, { 𝛽, 𝛾} both edges 

• Babai 1985: each regular graph has a 2-arc-transitive cover

Regular: vertices have same valency

Fact: most regular graphs have trivial automorphism 

group while 2-arc-transitive graphs have lots of 

symmetry

Babai’s deduction: 2-arc-transitive graphs are `wild’

But hey: I didn’t about Babi’s construction until 1993

Γ

Cover
of Γ



1993 Studying 2-arc-transitive 
graphs – seeking a reduction

• Finite graph Γ : G ≤ Aut(Γ) transitive on 2-arcs – Γ not bipartite

• Intransitive normal subgroup : 1 ≠ 𝑁 < 𝐺 so at least 3 N-orbits

• Normal quotient graph ΓN :  vertices are N-orbits; join two if at 

least one edge between  

• Theorem: Γ cover of ΓN and 𝐺/𝑁 transitive

On 2-arcs of ΓN

Reduction to basic case: choose N maximal 

intransitive, then G/N is both quasiprimitive on ΓN

Problem: nothing was known about quasiprimitive

permutation groups so I had to develop the theory

Γ

Cover
of Γ



What was the outcome?

1. My O’Nan-Scott style theorem for finite quasiprimitive

permutation groups – and very useful

2. If G ≤ Aut(Γ) transitive on 2-arcs, quasiprimitive on vertices then 

only half of the “quasiprimitive types” possible for G

3. Approach useful: could classify all affine examples, and 

construct many new families

4. Normal quotient method + theory of quasiprimitive groups:  

very appropriate for studying many families of edge-transitive 

graphs



Further applications: what 
kinds of group problems arise?

• Group factorisation problems:

• Graph Γ=(V, E)  A = Aut Γ , say  A transitive on arcs

• “Regular embedding” Γ into a surface: Subgroup G < 𝐴
preserving the surface is transitive (in fact regular) on flags  

(incident vertex-edge-face triples)

• Factorisation  A = G Av with G ∩ 𝐴𝑣 = 𝐺𝑣 dihedral.

• Decide if  Γ is a “Cayley graph” :  

• ∃ 𝐺 < 𝐴 with G regular on V

• Factorisation  A = G Av with G ∩ 𝐴𝑣 = 1

• Work on Factorisation 
problems in progress [Liebeck,
Praeger. Li, Xia]

• Many applications where 
factorisations arise, e.g. in
algebra



Applications in algebraic 
number theory

• Galois groups of field extensions – many deep results –

(look for Bob Guralnick’s name)

• Derangements: 

• 1981 Fein, Kantor, Schacher: 

• Each transitive G ≤ 𝑆𝑦𝑚(Ω) contains a derangement of 

prime power order  

• Proof needs FSGC

• Fulman and Guralnick (sequence of papers):  

• ∃ absolute constant c such that, if G finite simple group

And G ≤ 𝑆𝑦𝑚(Ω) transitive, then proportion of 

derangements in G is at least 𝑐

If time: discuss two 
threads

• Derangements 
(fixed point free 
permutations)

• Group coverings



Applications in algebraic 
number theory

• Group Coverings: sample problem

• 2011+ Bubboloni, Praeger, Spiga: 

• Let f x ∈ 𝑍[𝑥] with k distinct irreducible factors, all of 

degree >1 and let G = 𝐺𝑎𝑙_𝑄(f)
• Then G = set theoretic union of proper subgroups from 

k conjugacy classes of G [stabilisers of roots of f] 

• Most Galois groups are symmetric groups Sn
• Q: how small can k be relative to n  [linear in n]

• Bubboloni, Spiga :  almost simple Galois groups G

If time: discuss two 
threads

• Derangements 
(fixed point free 
permutations)

• Group coverings



Last comments: problems suggested 

by combinatorial evidence

• One example only: 

• Question: when do all g elements of a primitive G ≤ Sym(Ω)
have at least one regular cycle? [cycle of length |g|] 

• Pablo Spiga asked this: with a lot of experimental evidence

• 2016, 2017 Spiga (with Guest, Giudici, Praeger); always unless 

Ω = Γ𝑟 and Am
r ≤ 𝐺 ≤ 𝑆𝑚 ≀ 𝑆𝑟 where Sm action on Γ is on k −

subsets of { 1,… ,𝑚}



Enjoy 

Wish you all the best

• For this week! 

• Have a fantastic time
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