Almost Elusive Groups

Emily Hall

University of Bristol

Young Group Theorists Workshop 2022

Emily Hall (UoB)

Almost Elusive Groups

September 5, 2022 1 / 1

• $G \leq \text{Sym}(\Omega)$ is a finite permutation group with $|\Omega| \ge 2$.

- $G \leq \text{Sym}(\Omega)$ is a finite permutation group with $|\Omega| \ge 2$.
- G is transitive.

- $G \leq \text{Sym}(\Omega)$ is a finite permutation group with $|\Omega| \ge 2$.
- G is transitive.
- *H* is a point stabiliser of *G*.

A B F A B F

I > <
I >
I

- $G \leq \text{Sym}(\Omega)$ is a finite permutation group with $|\Omega| \ge 2$.
- G is transitive.
- *H* is a point stabiliser of *G*.

Definition

An element *x* of *G* is said to be a derangement if *x* fixes no points of Ω . This is equivalent to $x^G \cap H = \emptyset$.

A B F A B F

- $G \leq \text{Sym}(\Omega)$ is a finite permutation group with $|\Omega| \ge 2$.
- G is transitive.
- *H* is a point stabiliser of *G*.
- $\Delta(G)$ is the set of derangements.

Definition

An element *x* of *G* is said to be a derangement if *x* fixes no points of Ω . This is equivalent to $x^G \cap H = \emptyset$.

イヨト イヨト

Derangements: What can we say about $\Delta(G)$?

$$\Delta(G) = x_1^G \cup \cdots \cup x_t^G.$$

Derangements: What can we say about $\Delta(G)$?

$$\Delta(G) = x_1^G \cup \cdots \cup x_t^G.$$

Theorem (Jordan, 1872)

 $\Delta(G) \neq \emptyset.$

Emily Hall (UoB)

Almost Elusive Groups

September 5, 2022 3/11

Derangements: What can we say about $\Delta(G)$?

$$\Delta(G) = x_1^G \cup \cdots \cup x_t^G.$$

Theorem (Jordan, 1872) $\Delta(G) \neq \emptyset.$

Theorem (Fein, Kantor and Schacher, 1981)

There always exists an element of prime power order in $\Delta(G)$.

We say *G* is elusive if it contains no derangements of prime order.

Ð

We say *G* is elusive if it contains no derangements of prime order.

Example

Take $G = M_{11}$ and $H = PSL_2(11)$. Then G is elusive.

3

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

We say G is elusive if it contains no derangements of prime order.

Example

Take $G = M_{11}$ and $H = PSL_2(11)$. Then G is elusive.

Theorem (Giudici,2003)

Let $G \leq Sym(\Omega)$ be an elusive primitive permutation group. Then $(G, H) = (M_{11}, PSL_2(11)).$

3

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Almost Elusive Groups

Definition

We say a group G is almost elusive if it contains a unique conjugacy class of derangements of prime order.

A B < A B <</p>

We say a group G is almost elusive if it contains a unique conjugacy class of derangements of prime order.

Example

Take $n = p^a$ to be a prime-power. Then S_n with its natural action on *n*-points is almost elusive.

・ロト ・四ト ・ヨト・

We say a group G is almost elusive if it contains a unique conjugacy class of derangements of prime order.

Example

Take $n = p^a$ to be a prime-power. Then S_n with its natural action on *n*-points is almost elusive.

Notation

Now assume G is primitive. That is H is a maximal subgroup of G.

イロト 不得 ト イヨト イヨト

Theorem (Burness & H, 2020)

Let G be a primitive almost elusive permutation group. Then G is either almost simple or a 2-transitive affine group.

∃ ► < ∃ ►</p>

Theorem (Burness & H, 2020)

Let G be a primitive almost elusive permutation group. Then G is either almost simple or a 2-transitive affine group.

Almost simple: $G_0 \leq G \leq \text{Aut}(G_0)$ with G_0 a non-abelian simple group.

→ Ξ > < Ξ</p>

Theorem (Burness & H, 2020)

Let G be a primitive almost elusive permutation group. Then G is either almost simple or a 2-transitive affine group.

Almost simple: $G_0 \leq G \leq \text{Aut}(G_0)$ with G_0 a non-abelian simple group.

Affine: Let $V = (\mathbb{F}_p)^d$ with *p*-prime. Here G = V:H with $H \leq GL_d(p)$ and *G* acts on *V* via affine transformations.

A B F A B F

Primitive Classification

Theorem (H,2021)

"The primitive almost elusive groups are known up to isomorphism."

Theorem (H,2021)

"The primitive almost elusive groups are known up to isomorphism."

Examples

• $G = S_n$ with $\Omega = \{\{i, j\} \mid 1 \le i < j \le n\}$ and $n = 2^m + 1$ a Fermat prime or $n - 1 = 2^m - 1$ is a Mersenne prime.

э

Theorem (H,2021)

"The primitive almost elusive groups are known up to isomorphism."

Examples

- $G = S_n$ with $\Omega = \{\{i, j\} \mid 1 \le i < j \le n\}$ and $n = 2^m + 1$ a Fermat prime or $n 1 = 2^m 1$ is a Mersenne prime.
- $G = PGL_2(q)$, *H* is of type P_1 (the stabiliser of a 1-dimensional subspace of $V = (\mathbb{F}_q)^2$) with $q = p = 2^m 1$ a Mersenne prime.

э

Theorem (H,2021)

"The primitive almost elusive groups are known up to isomorphism."

Examples

- $G = S_n$ with $\Omega = \{\{i, j\} \mid 1 \le i < j \le n\}$ and $n = 2^m + 1$ a Fermat prime or $n 1 = 2^m 1$ is a Mersenne prime.
- $G = PGL_2(q)$, *H* is of type P_1 (the stabiliser of a 1-dimensional subspace of $V = (\mathbb{F}_q)^2$) with $q = p = 2^m 1$ a Mersenne prime.

•
$$G = p^d$$
:GL₁(p^d).

э

Let $G \leq \text{Sym}(\Omega)$ be a primitive almost simple group with socle G_0 and point stabiliser H.

Let $G \leq \text{Sym}(\Omega)$ be a primitive almost simple group with socle G_0 and point stabiliser H.

Recall

- We say $x \in G$ is a derangement if and only if $x^G \cap H = \emptyset$,
- $G_0 \trianglelefteq G$, so if $x \in G_0$ then $x^G \subseteq G_0$.

A B < A B <</p>

Let $G \leq \text{Sym}(\Omega)$ be a primitive almost simple group with socle G_0 and point stabiliser H.

Recall

- We say $x \in G$ is a derangement if and only if $x^G \cap H = \emptyset$,
- $G_0 \trianglelefteq G$, so if $x \in G_0$ then $x^G \subseteq G_0$.

Lemma

Let $H_0 = H \cap G_0$ and $\pi(X)$ denote the number of prime divisors of |X|.

イヨト イヨト

Let $G \leq \text{Sym}(\Omega)$ be a primitive almost simple group with socle G_0 and point stabiliser H.

Recall

- We say $x \in G$ is a derangement if and only if $x^G \cap H = \emptyset$,
- $G_0 \trianglelefteq G$, so if $x \in G_0$ then $x^G \subseteq G_0$.

Lemma

Let $H_0 = H \cap G_0$ and $\pi(X)$ denote the number of prime divisors of |X|. Then G is almost elusive only if $\pi(G_0) - \pi(H_0) \leq 1$.

Let $G \leq \text{Sym}(\Omega)$ be a primitive almost simple group with socle G_0 and point stabiliser H.

Recall

- We say $x \in G$ is a derangement if and only if $x^G \cap H = \emptyset$,
- $G_0 \trianglelefteq G$, so if $x \in G_0$ then $x^G \subseteq G_0$.

Lemma

Let $H_0 = H \cap G_0$ and $\pi(X)$ denote the number of prime divisors of |X|. Then G is almost elusive only if $\pi(G_0) - \pi(H_0) \leq 1$.

Theorem (H,2021)

Suppose G_0 is a group of Lie type and $\pi(G_0) - \pi(H_0) \leq 1$. Then (G_0, H) belongs to a know list of cases.

Emily Hall (UoB)

3

8/11

Main ideas: Affine

Let $G \leq \text{Sym}(\Omega)$ be a 2-transitive affine group with socle $V = (\mathbb{F}_p)^d$ and point stabiliser $H \leq \text{GL}_d(p)$. Recall that G = V:H.

Main ideas: Affine

Let $G \leq \text{Sym}(\Omega)$ be a 2-transitive affine group with socle $V = (\mathbb{F}_p)^d$ and point stabiliser $H \leq \text{GL}_d(p)$. Recall that G = V:H.

Lemma

An element $(v, h) \in G$ is a derangement of order p if and only if the following all hold:

- (i) $h \in H$ is either trivial or of order p;
- (ii) $v \in \ker(h^{p-1} + \dots + h + 1)$; and

(iii) $v \notin im(h-1)$.

* E > * E >

Main ideas: Affine

Let $G \leq \text{Sym}(\Omega)$ be a 2-transitive affine group with socle $V = (\mathbb{F}_p)^d$ and point stabiliser $H \leq \text{GL}_d(p)$. Recall that G = V:H.

Lemma

An element $(v, h) \in G$ is a derangement of order p if and only if the following all hold:

- (i) $h \in H$ is either trivial or of order p;
- (ii) $v \in \ker(h^{p-1} + \dots + h + 1)$; and

(iii) $v \notin im(h-1)$.

Note

The nonzero vectors in V form a unique conjuagcy class of derangements of prime order p.

э

• Hering's Theorem classifies the 2-transitive affine groups.

∃ ► 4 Ξ

I > <
I >
I

- Hering's Theorem classifies the 2-transitive affine groups.
- We use information about the Jordan normal form on *V* of elements of order *p* in *H*.

- Hering's Theorem classifies the 2-transitive affine groups.
- We use information about the Jordan normal form on *V* of elements of order *p* in *H*.

Lemma (H,2021)

Let $G \leq \text{Sym}(\Omega)$ be a 2-transitive affine permutation group of degree p^d . Then G is almost elusive if and only if one of the following holds

- (i) p does not divide |H|; or
- (ii) |*H*| and d are both divisible by p, and every h ∈ H of order p has Jordan form [J^{d/p}_p] on V.

Thank you for listening

Ð