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The intersection graph of a finite group

Definition (Csákány & Pollák, 1969)

The intersection graph ∆G of G has vertices the proper nontrivial
subgroups of G , with vertices H and K joined if and only if H ∩ K ̸= 1.
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Theorem (Csákány & Pollák, 1969)

Let G be a nontrivial, non-simple finite group.

(i) ∆G is disconnected if and only if G ∼= Cp × Cq for primes p and q; or
Z (G ) = 1 and each proper subgroup of G is abelian.

(ii) If ∆G is connected, then diam(∆G ) ⩽ 4.
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Definition (Csákány & Pollák, 1969)

The intersection graph ∆G of G has vertices the proper nontrivial
subgroups of G , with vertices H and K joined if and only if H ∩ K ̸= 1.

2

4

2 2 3 3 3 3

∆A4

2b

4a 4b

4c

2c2c2a2a

∆D8
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(i) ∆G is disconnected if and only if G ∼= Cp × Cq for primes p and q; or
Z (G ) = 1 and each proper subgroup of G is abelian.

(ii) If ∆G is connected, then diam(∆G ) ⩽ 4.

The groups of the second type in (i) were classified by Miller and Moreno
in 1903.

Open question: Is there a finite non-simple group G with
diam(∆G ) = 4? If yes, then G = S ⋊ Cp for a non-abelian simple group S
and an odd prime p (Csákány & Pollák, 1969).
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The intersection graph of a finite simple group

Assume from now on that G is a non-abelian finite simple group.

In 2010, Shen proved that ∆G is connected, and asked:
Does diam(∆G ) have an upper bound? If yes, does the upper bound of 4
from the non-simple case apply?

diam(∆G ) ⩾ 3 (Shahsavari & Khosravi, 2017).

diam(∆G ) ⩽ 64 (Herzog, Longobardi & Maj, 2010). Here, the subgraph
of ∆G induced by the maximal subgroups of G was investigated.

diam(∆G ) ⩽ 28 (Ma, 2016).

The proofs of Shen, Herzog et al. and Ma all involved the prime graph or
Gruenberg-Kegel graph of G . The vertices of this graph are the prime
divisors of |G |, with p1 ∼ p2 ⇐⇒ G has an element of order p1p2.
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A tight upper bound

Theorem (F., 2021)

Let G be a non-abelian finite simple group.

(i) diam(∆G ) ⩽ 5.

(ii) If G is the sporadic baby monster group B, then diam(∆G ) = 5.

(iii) If diam(∆G ) = 5 and G ̸∼= B, then G ∼= PSU(n, q), with n an odd
prime and q a prime power.

Open question: Which unitary groups have an intersection graph of
diameter 5? Currently, only PSU(7, 2) is known.

Let M1,M2 <
max

G , with |M1| and |M2| even.

Let a1 ∈ M1 and a2 ∈ M2 be involutions. Then D := ⟨a1, a2⟩ is a (proper)
dihedral subgroup of G .

If S ⩽ M1 and J ⩽ M2, then S ∼ M1 ∼ D ∼ M2 ∼ J. Hence d(S , J) ⩽ 4.
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Simple groups with maximal subgroups of odd order

Suppose that G has a maximal subgroup of odd order. Then G is one of
the following (Liebeck & Saxl, 1991).

An, n prime: diam(∆G ) ⩽ 4 (Csákány & Pollák, 1969).
Alternative proof by Shen (2010): |M| |An−1| > |G | for all M <

max
G .

M23: Arguing similarly to Shen, diam(∆G ) = 4.

Th: Each prime order subgroup lies in a maximal subgroup of even order.

B: diam(∆G ) = 5, by a counting argument involving maximal subgroups.

M? No maximal subgroups of odd order (Holmes & Wilson, 2004, 2008).

PSL(n, q), n prime: diam(∆G ) ⩽ 4, using arguments from Peter
Cameron, involving the group’s action on one-dimensional subspaces of Fn

q.

PSU(n, q), n odd prime: diam(∆G ) ⩽ 5, via similar arguments to the
linear case.

5 / 7



Simple groups with maximal subgroups of odd order

Suppose that G has a maximal subgroup of odd order. Then G is one of
the following (Liebeck & Saxl, 1991).

An, n prime: diam(∆G ) ⩽ 4 (Csákány & Pollák, 1969).
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A hierarchy of graphs

Peter Cameron (2022) defined a hierarchy of graphs whose vertices are the
non-identity elements of a fixed (non-abelian) group G .

Example: G = D12 = ⟨a, b | a6 = b2 = 1, bab = a−1⟩.

a2 a a5

a3

b a2b

ab

a4b

a5ba3b

a4

The complete graph

The non-generating graph Σ(G )

The commuting graph

. . .

There is significant interest in the study of these graphs, as well as the
differences between them, e.g., the generating graph and the
non-commuting, non-generating graph Ξ(G ).
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Graphs defined on the non-identity elements of G = B
∆G and the non-generating graph Σ(G ) form a dual pair:
adjacent subgroups in ∆G contain a common element in V (Σ(G )), and
adjacent elements in Σ(G ) lie in a common subgroup in V (∆G ).

Proposition (Cameron, 2022)

If graphs Γ1 and Γ2 form a dual pair and diam(Γ1) = k , then
k − 1 ⩽ diam(Γ2) ⩽ k + 1.

diam(∆G ) = 5, so 4 ⩽ diam(Σ(G )) ⩽ 6. In fact, diam(Σ(G )) = 4.

Similarly, 4 ⩽ diam(Ξ(G )). In fact, diam(Ξ(G )) = 4.

The subgraph ΓG of ∆G induced by soluble subgroups forms a dual pair
with the soluble graph Π(G ), where x ∼ y ⇐⇒ ⟨x , y⟩ is soluble.

∃ prime order subgroups S1, S2 ∈ G with d∆G
(S1,S2) = 5.

Hence 5 ⩽ diam(ΓG ) and 4 ⩽ diam(Π(G )); in fact, diam(Π(G )) ∈ {4, 5}
(Burness, Lucchini & Nemmi, 2021+).
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