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Definition (Csakdny & Polldk, 1969)

The intersection graph Ag of G has vertices the proper nontrivial
subgroups of G, with vertices H and K joined if and only if HN K # 1.

Theorem (Csakany & Polldk, 1969)

Let G be a nontrivial, non-simple finite group.

(i) Ag is disconnected if and only if G = C, x C, for primes p and q; or
Z(G) =1 and each proper subgroup of G is abelian.

(i) If Ag is connected, then diam(Ag) < 4.

The groups of the second type in (i) were classified by Miller and Moreno
in 1903.

Open question: Is there a finite non-simple group G with
diam(Ag) = 47 If yes, then G = S x C, for a non-abelian simple group S
and an odd prime p (Csdkany & Polldk, 1969).
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The intersection graph of a finite simple group

Assume from now on that G is a non-abelian finite simple group.

In 2010, Shen proved that Ag is connected, and asked:
Does diam(Ag) have an upper bound? If yes, does the upper bound of 4
from the non-simple case apply?

diam(Ag) = 3 (Shahsavari & Khosravi, 2017).

diam(Ag) < 64 (Herzog, Longobardi & Maj, 2010). Here, the subgraph
of Ag induced by the maximal subgroups of G was investigated.

diam(Ag) < 28 (Ma, 2016).

The proofs of Shen, Herzog et al. and Ma all involved the prime graph or
Gruenberg-Kegel graph of G. The vertices of this graph are the prime
divisors of |G|, with p; ~ po <= G has an element of order p;ps.
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Theorem (F., 2021)
Let G be a non-abelian finite simple group.
(i) diam(Ag) < 5.
(ii) If G is the sporadic baby monster group B, then diam(Ag) = 5.

(iii) If diam(Ag) =5 and G 2 B, then G = PSU(n, q), with n an odd
prime and g a prime power.

Open question: Which unitary groups have an intersection graph of
diameter 57 Currently, only PSU(7,2) is known.

Let My, M, < G, with |[M;| and |M>| even.
maXx

Let a3 € M; and ap € M, be involutions. Then D := (a1, a2) is a (proper)
dihedral subgroup of G.

If S < M and J < My, then S~ My ~ D ~ My ~ J. Hence d(S,J) < 4.
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Suppose that G has a maximal subgroup of odd order. Then G is one of
the following (Liebeck & Saxl, 1991).
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Th: Each prime order subgroup lies in a maximal subgroup of even order.
B: diam(Ag) =5, by a counting argument involving maximal subgroups.
M? No maximal subgroups of odd order (Holmes & Wilson, 2004, 2008).

PSL(n, q), n prime: diam(Ag) < 4, using arguments from Peter
Cameron, involving the group’s action on one-dimensional subspaces of FFg.

PSU(n, q), n odd prime: diam(Ag) < 5, via similar arguments to the
linear case.
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A hierarchy of graphs
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non-identity elements of a fixed (non-abelian) group G.
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adjacent subgroups in Ag contain a common element in V(X(G)), and
adjacent elements in X(G) lie in a common subgroup in V(Ag).

Proposition (Cameron, 2022)

If graphs I'; and ' form a dual pair and diam(l';) = k, then
k —1< diam(lp) < k+ 1.

diam(Ag) = 5, so 4 < diam(X(G)) < 6. In fact, diam(>(G)) = 4.
Similarly, 4 < diam(=(G)). In fact, diam(=(G)) = 4.

The subgraph ' of A¢ induced by soluble subgroups forms a dual pair
with the soluble graph M(G), where x ~ y <= (x,y) is soluble.

3 prime order subgroups 51, 5> € G with da (51, 52) = 5.

Hence 5 < diam(I'g) and 4 < diam([M(G)); in fact, diam([1(G)) € {4,5}
(Burness, Lucchini & Nemmi, 2021+).
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