The intersection graph of a finite simple group

Saul D. Freedman

University of St Andrews

Young Group Theorists Workshop, Les Diablerets September 52022

The intersection graph of a finite group

Definition (Csákány \& Pollák, 1969)

The intersection graph Δ_{G} of G has vertices the proper nontrivial subgroups of G, with vertices H and K joined if and only if $H \cap K \neq 1$.

The intersection graph of a finite group

Definition (Csákány \& Pollák, 1969)

The intersection graph Δ_{G} of G has vertices the proper nontrivial subgroups of G, with vertices H and K joined if and only if $H \cap K \neq 1$.

$\Delta_{A_{4}}$

The intersection graph of a finite group

Definition (Csákány \& Pollák, 1969)

The intersection graph Δ_{G} of G has vertices the proper nontrivial subgroups of G, with vertices H and K joined if and only if $H \cap K \neq 1$.

The intersection graph of a finite group

Definition (Csákány \& Pollák, 1969)

The intersection graph Δ_{G} of G has vertices the proper nontrivial subgroups of G, with vertices H and K joined if and only if $H \cap K \neq 1$.

Theorem (Csákány \& Pollák, 1969)

Let G be a nontrivial, non-simple finite group.
(i) Δ_{G} is disconnected if and only if $G \cong C_{p} \times C_{q}$ for primes p and q; or $Z(G)=1$ and each proper subgroup of G is abelian.

The intersection graph of a finite group

Definition (Csákány \& Pollák, 1969)

The intersection graph Δ_{G} of G has vertices the proper nontrivial subgroups of G, with vertices H and K joined if and only if $H \cap K \neq 1$.

Theorem (Csákány \& Pollák, 1969)

Let G be a nontrivial, non-simple finite group.
(i) Δ_{G} is disconnected if and only if $G \cong C_{p} \times C_{q}$ for primes p and q; or $Z(G)=1$ and each proper subgroup of G is abelian.
(ii) If Δ_{G} is connected, then $\operatorname{diam}\left(\Delta_{G}\right) \leqslant 4$.

The intersection graph of a finite group

Definition (Csákány \& Pollák, 1969)

The intersection graph Δ_{G} of G has vertices the proper nontrivial subgroups of G, with vertices H and K joined if and only if $H \cap K \neq 1$.

Theorem (Csákány \& Pollák, 1969)

Let G be a nontrivial, non-simple finite group.
(i) Δ_{G} is disconnected if and only if $G \cong C_{p} \times C_{q}$ for primes p and q; or $Z(G)=1$ and each proper subgroup of G is abelian.
(ii) If Δ_{G} is connected, then $\operatorname{diam}\left(\Delta_{G}\right) \leqslant 4$.

The groups of the second type in (i) were classified by Miller and Moreno in 1903.

The intersection graph of a finite group

Definition (Csákány \& Pollák, 1969)

The intersection graph Δ_{G} of G has vertices the proper nontrivial subgroups of G, with vertices H and K joined if and only if $H \cap K \neq 1$.

Theorem (Csákány \& Pollák, 1969)

Let G be a nontrivial, non-simple finite group.
(i) Δ_{G} is disconnected if and only if $G \cong C_{p} \times C_{q}$ for primes p and q; or $Z(G)=1$ and each proper subgroup of G is abelian.
(ii) If Δ_{G} is connected, then $\operatorname{diam}\left(\Delta_{G}\right) \leqslant 4$.

The groups of the second type in (i) were classified by Miller and Moreno in 1903.

Open question: Is there a finite non-simple group G with $\operatorname{diam}\left(\Delta_{G}\right)=4$? If yes, then $G=S \rtimes C_{p}$ for a non-abelian simple group S and an odd prime p (Csákány \& Pollák, 1969).

The intersection graph of a finite simple group

Assume from now on that G is a non-abelian finite simple group.

The intersection graph of a finite simple group

Assume from now on that G is a non-abelian finite simple group.
In 2010, Shen proved that Δ_{G} is connected, and asked:
Does $\operatorname{diam}\left(\Delta_{G}\right)$ have an upper bound? If yes, does the upper bound of 4 from the non-simple case apply?

The intersection graph of a finite simple group

Assume from now on that G is a non-abelian finite simple group.
In 2010, Shen proved that Δ_{G} is connected, and asked:
Does $\operatorname{diam}\left(\Delta_{G}\right)$ have an upper bound? If yes, does the upper bound of 4 from the non-simple case apply?
$\operatorname{diam}\left(\Delta_{G}\right) \geqslant 3$ (Shahsavari \& Khosravi, 2017).

The intersection graph of a finite simple group

Assume from now on that G is a non-abelian finite simple group.
In 2010, Shen proved that Δ_{G} is connected, and asked:
Does $\operatorname{diam}\left(\Delta_{G}\right)$ have an upper bound? If yes, does the upper bound of 4 from the non-simple case apply?
$\operatorname{diam}\left(\Delta_{G}\right) \geqslant 3$ (Shahsavari \& Khosravi, 2017).
$\operatorname{diam}\left(\Delta_{G}\right) \leqslant 64$ (Herzog, Longobardi \& Maj, 2010). Here, the subgraph of Δ_{G} induced by the maximal subgroups of G was investigated.

The intersection graph of a finite simple group

Assume from now on that G is a non-abelian finite simple group.
In 2010, Shen proved that Δ_{G} is connected, and asked:
Does $\operatorname{diam}\left(\Delta_{G}\right)$ have an upper bound? If yes, does the upper bound of 4 from the non-simple case apply?
$\operatorname{diam}\left(\Delta_{G}\right) \geqslant 3$ (Shahsavari \& Khosravi, 2017).
$\operatorname{diam}\left(\Delta_{G}\right) \leqslant 64$ (Herzog, Longobardi \& Maj, 2010). Here, the subgraph of Δ_{G} induced by the maximal subgroups of G was investigated.
$\operatorname{diam}\left(\Delta_{G}\right) \leqslant 28(\mathrm{Ma}, 2016)$.

The intersection graph of a finite simple group

Assume from now on that G is a non-abelian finite simple group.
In 2010, Shen proved that Δ_{G} is connected, and asked:
Does $\operatorname{diam}\left(\Delta_{G}\right)$ have an upper bound? If yes, does the upper bound of 4 from the non-simple case apply?
$\operatorname{diam}\left(\Delta_{G}\right) \geqslant 3$ (Shahsavari \& Khosravi, 2017).
$\operatorname{diam}\left(\Delta_{G}\right) \leqslant 64$ (Herzog, Longobardi \& Maj, 2010). Here, the subgraph of Δ_{G} induced by the maximal subgroups of G was investigated.
$\operatorname{diam}\left(\Delta_{G}\right) \leqslant 28(\mathrm{Ma}, 2016)$.
The proofs of Shen, Herzog et al. and Ma all involved the prime graph or Gruenberg-Kegel graph of G. The vertices of this graph are the prime divisors of $|G|$, with $p_{1} \sim p_{2} \Longleftrightarrow G$ has an element of order $p_{1} p_{2}$.

A tight upper bound

Theorem (F., 2021)

Let G be a non-abelian finite simple group.
(i) $\operatorname{diam}\left(\Delta_{G}\right) \leqslant 5$.

A tight upper bound

Theorem (F., 2021)

Let G be a non-abelian finite simple group.
(i) $\operatorname{diam}\left(\Delta_{G}\right) \leqslant 5$.
(ii) If G is the sporadic baby monster group \mathbb{B}, then $\operatorname{diam}\left(\Delta_{G}\right)=5$.

A tight upper bound

Theorem (F., 2021)

Let G be a non-abelian finite simple group.
(i) $\operatorname{diam}\left(\Delta_{G}\right) \leqslant 5$.
(ii) If G is the sporadic baby monster group \mathbb{B}, then $\operatorname{diam}\left(\Delta_{G}\right)=5$.
(iii) If $\operatorname{diam}\left(\Delta_{G}\right)=5$ and $G \not \approx \mathbb{B}$, then $G \cong \operatorname{PSU}(n, q)$, with n an odd prime and q a prime power.

A tight upper bound

Theorem (F., 2021)

Let G be a non-abelian finite simple group.
(i) $\operatorname{diam}\left(\Delta_{G}\right) \leqslant 5$.
(ii) If G is the sporadic baby monster group \mathbb{B}, then $\operatorname{diam}\left(\Delta_{G}\right)=5$.
(iii) If $\operatorname{diam}\left(\Delta_{G}\right)=5$ and $G \not \approx \mathbb{B}$, then $G \cong \operatorname{PSU}(n, q)$, with n an odd prime and q a prime power.

Open question: Which unitary groups have an intersection graph of diameter 5? Currently, only $\operatorname{PSU}(7,2)$ is known.

A tight upper bound

Theorem (F., 2021)

Let G be a non-abelian finite simple group.
(i) $\operatorname{diam}\left(\Delta_{G}\right) \leqslant 5$.
(ii) If G is the sporadic baby monster group \mathbb{B}, then $\operatorname{diam}\left(\Delta_{G}\right)=5$.
(iii) If $\operatorname{diam}\left(\Delta_{G}\right)=5$ and $G \not \approx \mathbb{B}$, then $G \cong \operatorname{PSU}(n, q)$, with n an odd prime and q a prime power.

Open question: Which unitary groups have an intersection graph of diameter 5? Currently, only $\operatorname{PSU}(7,2)$ is known.

Let $M_{1}, M_{2} \underset{\max }{<} G$, with $\left|M_{1}\right|$ and $\left|M_{2}\right|$ even.

A tight upper bound

Theorem (F., 2021)

Let G be a non-abelian finite simple group.
(i) $\operatorname{diam}\left(\Delta_{G}\right) \leqslant 5$.
(ii) If G is the sporadic baby monster group \mathbb{B}, then $\operatorname{diam}\left(\Delta_{G}\right)=5$.
(iii) If $\operatorname{diam}\left(\Delta_{G}\right)=5$ and $G \not \approx \mathbb{B}$, then $G \cong \operatorname{PSU}(n, q)$, with n an odd prime and q a prime power.

Open question: Which unitary groups have an intersection graph of diameter 5? Currently, only $\operatorname{PSU}(7,2)$ is known.

Let $M_{1}, M_{2} \underset{\max }{<} G$, with $\left|M_{1}\right|$ and $\left|M_{2}\right|$ even.
Let $a_{1} \in M_{1}$ and $a_{2} \in M_{2}$ be involutions. Then $D:=\left\langle a_{1}, a_{2}\right\rangle$ is a (proper) dihedral subgroup of G.

A tight upper bound

Theorem (F., 2021)

Let G be a non-abelian finite simple group.
(i) $\operatorname{diam}\left(\Delta_{G}\right) \leqslant 5$.
(ii) If G is the sporadic baby monster group \mathbb{B}, then $\operatorname{diam}\left(\Delta_{G}\right)=5$.
(iii) If $\operatorname{diam}\left(\Delta_{G}\right)=5$ and $G \not \approx \mathbb{B}$, then $G \cong \operatorname{PSU}(n, q)$, with n an odd prime and q a prime power.

Open question: Which unitary groups have an intersection graph of diameter 5? Currently, only $\operatorname{PSU}(7,2)$ is known.

Let $M_{1}, M_{2} \underset{\max }{<} G$, with $\left|M_{1}\right|$ and $\left|M_{2}\right|$ even.
Let $a_{1} \in M_{1}$ and $a_{2} \in M_{2}$ be involutions. Then $D:=\left\langle a_{1}, a_{2}\right\rangle$ is a (proper) dihedral subgroup of G.

If $S \leqslant M_{1}$ and $J \leqslant M_{2}$, then $S \sim M_{1} \sim D \sim M_{2} \sim J$. Hence $d(S, J) \leqslant 4$.

Simple groups with maximal subgroups of odd order

Suppose that G has a maximal subgroup of odd order. Then G is one of the following (Liebeck \& Saxl, 1991).

Simple groups with maximal subgroups of odd order

Suppose that G has a maximal subgroup of odd order. Then G is one of the following (Liebeck \& Saxl, 1991).
A_{n}, n prime: $\operatorname{diam}\left(\Delta_{G}\right) \leqslant 4$ (Csákány \& Pollák, 1969).

Simple groups with maximal subgroups of odd order

Suppose that G has a maximal subgroup of odd order. Then G is one of the following (Liebeck \& Saxl, 1991).
A_{n}, n prime: $\operatorname{diam}\left(\Delta_{G}\right) \leqslant 4$ (Csákány \& Pollák, 1969).
Alternative proof by Shen (2010): $|M|\left|A_{n-1}\right|>|G|$ for all $M \underset{\max }{<} G$.

Simple groups with maximal subgroups of odd order

Suppose that G has a maximal subgroup of odd order. Then G is one of the following (Liebeck \& Saxl, 1991).
A_{n}, n prime: $\operatorname{diam}\left(\Delta_{G}\right) \leqslant 4$ (Csákány \& Pollák, 1969).
Alternative proof by Shen (2010): $|M|\left|A_{n-1}\right|>|G|$ for all $M \underset{\max }{<} G$.
M_{23} : Arguing similarly to Shen, $\operatorname{diam}\left(\Delta_{G}\right)=4$.

Simple groups with maximal subgroups of odd order

Suppose that G has a maximal subgroup of odd order. Then G is one of the following (Liebeck \& Saxl, 1991).
A_{n}, n prime: $\operatorname{diam}\left(\Delta_{G}\right) \leqslant 4$ (Csákány \& Pollák, 1969).
Alternative proof by Shen (2010): $|M|\left|A_{n-1}\right|>|G|$ for all $M \underset{\max }{<} G$.
M_{23} : Arguing similarly to Shen, $\operatorname{diam}\left(\Delta_{G}\right)=4$.
Th: Each prime order subgroup lies in a maximal subgroup of even order.

Simple groups with maximal subgroups of odd order

Suppose that G has a maximal subgroup of odd order. Then G is one of the following (Liebeck \& Saxl, 1991).
A_{n}, n prime: $\operatorname{diam}\left(\Delta_{G}\right) \leqslant 4$ (Csákány \& Pollák, 1969).
Alternative proof by Shen (2010): $|M|\left|A_{n-1}\right|>|G|$ for all $M \underset{\max }{<} G$.
M_{23} : Arguing similarly to Shen, $\operatorname{diam}\left(\Delta_{G}\right)=4$.
Th: Each prime order subgroup lies in a maximal subgroup of even order.
$\mathbb{B}: \operatorname{diam}\left(\Delta_{G}\right)=5$, by a counting argument involving maximal subgroups.

Simple groups with maximal subgroups of odd order

Suppose that G has a maximal subgroup of odd order. Then G is one of the following (Liebeck \& Saxl, 1991).
A_{n}, n prime: $\operatorname{diam}\left(\Delta_{G}\right) \leqslant 4$ (Csákány \& Pollák, 1969). Alternative proof by Shen (2010): $|M|\left|A_{n-1}\right|>|G|$ for all $M \underset{\max }{<} G$.
M_{23} : Arguing similarly to Shen, $\operatorname{diam}\left(\Delta_{G}\right)=4$.
Th: Each prime order subgroup lies in a maximal subgroup of even order.
$\mathbb{B}: \operatorname{diam}\left(\Delta_{G}\right)=5$, by a counting argument involving maximal subgroups.
\mathbb{M} ?

Simple groups with maximal subgroups of odd order

Suppose that G has a maximal subgroup of odd order. Then G is one of the following (Liebeck \& Saxl, 1991).
A_{n}, n prime: $\operatorname{diam}\left(\Delta_{G}\right) \leqslant 4$ (Csákány \& Pollák, 1969).
Alternative proof by Shen (2010): $|M|\left|A_{n-1}\right|>|G|$ for all $M \underset{\max }{<} G$.
M_{23} : Arguing similarly to Shen, $\operatorname{diam}\left(\Delta_{G}\right)=4$.
Th: Each prime order subgroup lies in a maximal subgroup of even order.
$\mathbb{B}: \operatorname{diam}\left(\Delta_{G}\right)=5$, by a counting argument involving maximal subgroups.
\mathbb{M} ? No maximal subgroups of odd order (Holmes \& Wilson, 2004, 2008).

Simple groups with maximal subgroups of odd order

Suppose that G has a maximal subgroup of odd order. Then G is one of the following (Liebeck \& Saxl, 1991).
A_{n}, n prime: $\operatorname{diam}\left(\Delta_{G}\right) \leqslant 4$ (Csákány \& Pollák, 1969).
Alternative proof by Shen (2010): $|M|\left|A_{n-1}\right|>|G|$ for all $M \underset{\max }{<} G$.
M_{23} : Arguing similarly to Shen, $\operatorname{diam}\left(\Delta_{G}\right)=4$.
Th: Each prime order subgroup lies in a maximal subgroup of even order.
$\mathbb{B}: \operatorname{diam}\left(\Delta_{G}\right)=5$, by a counting argument involving maximal subgroups.
\mathbb{M} ? No maximal subgroups of odd order (Holmes \& Wilson, 2004, 2008).
$\operatorname{PSL}(n, q), n$ prime: $\operatorname{diam}\left(\Delta_{G}\right) \leqslant 4$, using arguments from Peter Cameron, involving the group's action on one-dimensional subspaces of \mathbb{F}_{q}^{n}.

Simple groups with maximal subgroups of odd order

Suppose that G has a maximal subgroup of odd order. Then G is one of the following (Liebeck \& Saxl, 1991).
A_{n}, n prime: $\operatorname{diam}\left(\Delta_{G}\right) \leqslant 4$ (Csákány \& Pollák, 1969).
Alternative proof by Shen (2010): $|M|\left|A_{n-1}\right|>|G|$ for all $M \underset{\max }{<} G$.
M_{23} : Arguing similarly to Shen, $\operatorname{diam}\left(\Delta_{G}\right)=4$.
Th: Each prime order subgroup lies in a maximal subgroup of even order.
$\mathbb{B}: \operatorname{diam}\left(\Delta_{G}\right)=5$, by a counting argument involving maximal subgroups.
\mathbb{M} ? No maximal subgroups of odd order (Holmes \& Wilson, 2004, 2008).
$\operatorname{PSL}(n, q), n$ prime: $\operatorname{diam}\left(\Delta_{G}\right) \leqslant 4$, using arguments from Peter Cameron, involving the group's action on one-dimensional subspaces of \mathbb{F}_{q}^{n}.
$\operatorname{PSU}(n, q), n$ odd prime: $\operatorname{diam}\left(\Delta_{G}\right) \leqslant 5$, via similar arguments to the linear case.

A hierarchy of graphs

Peter Cameron (2022) defined a hierarchy of graphs whose vertices are the non-identity elements of a fixed (non-abelian) group G.

A hierarchy of graphs

Peter Cameron (2022) defined a hierarchy of graphs whose vertices are the non-identity elements of a fixed (non-abelian) group G.

Example: $G=D_{12}=\left\langle a, b \mid a^{6}=b^{2}=1, b a b=a^{-1}\right\rangle$.

A hierarchy of graphs

Peter Cameron (2022) defined a hierarchy of graphs whose vertices are the non-identity elements of a fixed (non-abelian) group G.

Example: $G=D_{12}=\left\langle a, b \mid a^{6}=b^{2}=1, b a b=a^{-1}\right\rangle$.

- The complete graph

A hierarchy of graphs

Peter Cameron (2022) defined a hierarchy of graphs whose vertices are the non-identity elements of a fixed (non-abelian) group G.

Example: $G=D_{12}=\left\langle a, b \mid a^{6}=b^{2}=1, b a b=a^{-1}\right\rangle$.

- The complete graph
- The non-generating graph $\Sigma(G)$

A hierarchy of graphs

Peter Cameron (2022) defined a hierarchy of graphs whose vertices are the non-identity elements of a fixed (non-abelian) group G.

Example: $G=D_{12}=\left\langle a, b \mid a^{6}=b^{2}=1, b a b=a^{-1}\right\rangle$.

- The complete graph
- The non-generating graph $\Sigma(G)$
- The commuting graph

A hierarchy of graphs

Peter Cameron (2022) defined a hierarchy of graphs whose vertices are the non-identity elements of a fixed (non-abelian) group G.

Example: $G=D_{12}=\left\langle a, b \mid a^{6}=b^{2}=1, b a b=a^{-1}\right\rangle$.

- The complete graph
- The non-generating graph $\Sigma(G)$
- The commuting graph
- ...

A hierarchy of graphs

Peter Cameron (2022) defined a hierarchy of graphs whose vertices are the non-identity elements of a fixed (non-abelian) group G.

Example: $G=D_{12}=\left\langle a, b \mid a^{6}=b^{2}=1, b a b=a^{-1}\right\rangle$.

- The complete graph
- The non-generating graph $\Sigma(G)$
- The commuting graph
- . .

There is significant interest in the study of these graphs, as well as the differences between them, e.g., the generating graph and the non-commuting, non-generating graph $\bar{\equiv}(G)$.

A hierarchy of graphs

Peter Cameron (2022) defined a hierarchy of graphs whose vertices are the non-identity elements of a fixed (non-abelian) group G.

Example: $G=D_{12}=\left\langle a, b \mid a^{6}=b^{2}=1, b a b=a^{-1}\right\rangle$.

- The complete graph
- The non-generating graph $\Sigma(G)$
- The commuting graph

There is significant interest in the study of these graphs, as well as the differences between them, e.g., the generating graph and the non-commuting, non-generating graph $\equiv(G)$.

Graphs defined on the non-identity elements of $G=\mathbb{B}$

Δ_{G} and the non-generating graph $\Sigma(G)$ form a dual pair: adjacent subgroups in Δ_{G} contain a common element in $V(\Sigma(G))$, and adjacent elements in $\Sigma(G)$ lie in a common subgroup in $V\left(\Delta_{G}\right)$.

Graphs defined on the non-identity elements of $G=\mathbb{B}$

Δ_{G} and the non-generating graph $\Sigma(G)$ form a dual pair: adjacent subgroups in Δ_{G} contain a common element in $V(\Sigma(G))$, and adjacent elements in $\Sigma(G)$ lie in a common subgroup in $V\left(\Delta_{G}\right)$.

Proposition (Cameron, 2022)

If graphs Γ_{1} and Γ_{2} form a dual pair and $\operatorname{diam}\left(\Gamma_{1}\right)=k$, then $k-1 \leqslant \operatorname{diam}\left(\Gamma_{2}\right) \leqslant k+1$.

Graphs defined on the non-identity elements of $G=\mathbb{B}$

Δ_{G} and the non-generating graph $\Sigma(G)$ form a dual pair: adjacent subgroups in Δ_{G} contain a common element in $V(\Sigma(G))$, and adjacent elements in $\Sigma(G)$ lie in a common subgroup in $V\left(\Delta_{G}\right)$.

Proposition (Cameron, 2022)

If graphs Γ_{1} and Γ_{2} form a dual pair and $\operatorname{diam}\left(\Gamma_{1}\right)=k$, then $k-1 \leqslant \operatorname{diam}\left(\Gamma_{2}\right) \leqslant k+1$.
$\operatorname{diam}\left(\Delta_{G}\right)=5$, so $4 \leqslant \operatorname{diam}(\Sigma(G)) \leqslant 6$. In fact, $\operatorname{diam}(\Sigma(G))=4$.

Graphs defined on the non-identity elements of $G=\mathbb{B}$

Δ_{G} and the non-generating graph $\Sigma(G)$ form a dual pair: adjacent subgroups in Δ_{G} contain a common element in $V(\Sigma(G))$, and adjacent elements in $\Sigma(G)$ lie in a common subgroup in $V\left(\Delta_{G}\right)$.

Proposition (Cameron, 2022)

If graphs Γ_{1} and Γ_{2} form a dual pair and $\operatorname{diam}\left(\Gamma_{1}\right)=k$, then $k-1 \leqslant \operatorname{diam}\left(\Gamma_{2}\right) \leqslant k+1$.
$\operatorname{diam}\left(\Delta_{G}\right)=5$, so $4 \leqslant \operatorname{diam}(\Sigma(G)) \leqslant 6$. In fact, $\operatorname{diam}(\Sigma(G))=4$. Similarly, $4 \leqslant \operatorname{diam}(\equiv(G))$. In fact, $\operatorname{diam}(\equiv(G))=4$.

Graphs defined on the non-identity elements of $G=\mathbb{B}$

Δ_{G} and the non-generating graph $\Sigma(G)$ form a dual pair: adjacent subgroups in Δ_{G} contain a common element in $V(\Sigma(G))$, and adjacent elements in $\Sigma(G)$ lie in a common subgroup in $V\left(\Delta_{G}\right)$.

Proposition (Cameron, 2022)

If graphs Γ_{1} and Γ_{2} form a dual pair and $\operatorname{diam}\left(\Gamma_{1}\right)=k$, then $k-1 \leqslant \operatorname{diam}\left(\Gamma_{2}\right) \leqslant k+1$.
$\operatorname{diam}\left(\Delta_{G}\right)=5$, so $4 \leqslant \operatorname{diam}(\Sigma(G)) \leqslant 6$. In fact, $\operatorname{diam}(\Sigma(G))=4$.
Similarly, $4 \leqslant \operatorname{diam}(\equiv(G))$. In fact, $\operatorname{diam}(\equiv(G))=4$.
The subgraph Γ_{G} of Δ_{G} induced by soluble subgroups forms a dual pair with the soluble graph $\Pi(G)$, where $x \sim y \Longleftrightarrow\langle x, y\rangle$ is soluble.

Graphs defined on the non-identity elements of $G=\mathbb{B}$

Δ_{G} and the non-generating graph $\Sigma(G)$ form a dual pair: adjacent subgroups in Δ_{G} contain a common element in $V(\Sigma(G))$, and adjacent elements in $\Sigma(G)$ lie in a common subgroup in $V\left(\Delta_{G}\right)$.

Proposition (Cameron, 2022)

If graphs Γ_{1} and Γ_{2} form a dual pair and $\operatorname{diam}\left(\Gamma_{1}\right)=k$, then $k-1 \leqslant \operatorname{diam}\left(\Gamma_{2}\right) \leqslant k+1$.
$\operatorname{diam}\left(\Delta_{G}\right)=5$, so $4 \leqslant \operatorname{diam}(\Sigma(G)) \leqslant 6$. In fact, $\operatorname{diam}(\Sigma(G))=4$.
Similarly, $4 \leqslant \operatorname{diam}(\equiv(G))$. In fact, $\operatorname{diam}(\equiv(G))=4$.
The subgraph Γ_{G} of Δ_{G} induced by soluble subgroups forms a dual pair with the soluble graph $\Pi(G)$, where $x \sim y \Longleftrightarrow\langle x, y\rangle$ is soluble.
\exists prime order subgroups $S_{1}, S_{2} \in G$ with $d_{\Delta_{G}}\left(S_{1}, S_{2}\right)=5$.

Graphs defined on the non-identity elements of $G=\mathbb{B}$

Δ_{G} and the non-generating graph $\Sigma(G)$ form a dual pair: adjacent subgroups in Δ_{G} contain a common element in $V(\Sigma(G))$, and adjacent elements in $\Sigma(G)$ lie in a common subgroup in $V\left(\Delta_{G}\right)$.

Proposition (Cameron, 2022)

If graphs Γ_{1} and Γ_{2} form a dual pair and $\operatorname{diam}\left(\Gamma_{1}\right)=k$, then $k-1 \leqslant \operatorname{diam}\left(\Gamma_{2}\right) \leqslant k+1$.
$\operatorname{diam}\left(\Delta_{G}\right)=5$, so $4 \leqslant \operatorname{diam}(\Sigma(G)) \leqslant 6$. In fact, $\operatorname{diam}(\Sigma(G))=4$.
Similarly, $4 \leqslant \operatorname{diam}(\equiv(G))$. In fact, $\operatorname{diam}(\equiv(G))=4$.
The subgraph Γ_{G} of Δ_{G} induced by soluble subgroups forms a dual pair with the soluble graph $\Pi(G)$, where $x \sim y \Longleftrightarrow\langle x, y\rangle$ is soluble.
\exists prime order subgroups $S_{1}, S_{2} \in G$ with $d_{\Delta_{G}}\left(S_{1}, S_{2}\right)=5$.
Hence $5 \leqslant \operatorname{diam}\left(\Gamma_{G}\right)$ and $4 \leqslant \operatorname{diam}(\Pi(G)) ;$ in fact, $\operatorname{diam}(\Pi(G)) \in\{4,5\}$ (Burness, Lucchini \& Nemmi, 2021+).

