Saul D. Freedman

University of St Andrews

Young Group Theorists Workshop, Les Diablerets September 5 2022

Definition (Csákány & Pollák, 1969)

The intersection graph Δ_G of G has vertices the proper nontrivial subgroups of G, with vertices H and K joined if and only if $H \cap K \neq 1$.

Definition (Csákány & Pollák, 1969)

The intersection graph Δ_G of G has vertices the proper nontrivial subgroups of G, with vertices H and K joined if and only if $H \cap K \neq 1$.

Definition (Csákány & Pollák, 1969)

The intersection graph Δ_G of G has vertices the proper nontrivial subgroups of G, with vertices H and K joined if and only if $H \cap K \neq 1$.

Definition (Csákány & Pollák, 1969)

The intersection graph Δ_G of G has vertices the proper nontrivial subgroups of G, with vertices H and K joined if and only if $H \cap K \neq 1$.

Theorem (Csákány & Pollák, 1969)

Let G be a nontrivial, non-simple finite group.

(i) Δ_G is disconnected if and only if $G \cong C_p \times C_q$ for primes p and q; or Z(G) = 1 and each proper subgroup of G is abelian.

Definition (Csákány & Pollák, 1969)

The intersection graph Δ_G of G has vertices the proper nontrivial subgroups of G, with vertices H and K joined if and only if $H \cap K \neq 1$.

Theorem (Csákány & Pollák, 1969)

Let G be a nontrivial, non-simple finite group.

- (i) Δ_G is disconnected if and only if $G \cong C_p \times C_q$ for primes p and q; or Z(G) = 1 and each proper subgroup of G is abelian.
- (ii) If Δ_G is connected, then diam $(\Delta_G) \leq 4$.

Definition (Csákány & Pollák, 1969)

The intersection graph Δ_G of G has vertices the proper nontrivial subgroups of G, with vertices H and K joined if and only if $H \cap K \neq 1$.

Theorem (Csákány & Pollák, 1969)

Let G be a nontrivial, non-simple finite group.

- (i) Δ_G is disconnected if and only if $G \cong C_p \times C_q$ for primes p and q; or Z(G) = 1 and each proper subgroup of G is abelian.
- (ii) If Δ_G is connected, then $\operatorname{diam}(\Delta_G) \leq 4$.

The groups of the second type in (i) were classified by Miller and Moreno in 1903.

Definition (Csákány & Pollák, 1969)

The intersection graph Δ_G of G has vertices the proper nontrivial subgroups of G, with vertices H and K joined if and only if $H \cap K \neq 1$.

Theorem (Csákány & Pollák, 1969)

Let G be a nontrivial, non-simple finite group.

- (i) Δ_G is disconnected if and only if $G \cong C_p \times C_q$ for primes p and q; or Z(G) = 1 and each proper subgroup of G is abelian.
- (ii) If Δ_G is connected, then $\operatorname{diam}(\Delta_G) \leq 4$.

The groups of the second type in (i) were classified by Miller and Moreno in 1903.

Open question: Is there a finite non-simple group *G* with $\operatorname{diam}(\Delta_G) = 4$? If yes, then $G = S \rtimes C_p$ for a non-abelian simple group *S* and an odd prime *p* (Csákány & Pollák, 1969).

Assume from now on that G is a non-abelian finite simple group.

Assume from now on that G is a non-abelian finite simple group.

In 2010, Shen proved that Δ_G is connected, and asked: Does diam (Δ_G) have an upper bound? If yes, does the upper bound of 4 from the non-simple case apply?

Assume from now on that G is a non-abelian finite simple group.

In 2010, Shen proved that Δ_G is connected, and asked: Does diam (Δ_G) have an upper bound? If yes, does the upper bound of 4 from the non-simple case apply?

diam(Δ_G) \geq 3 (Shahsavari & Khosravi, 2017).

Assume from now on that G is a non-abelian finite simple group.

In 2010, Shen proved that Δ_G is connected, and asked: Does diam (Δ_G) have an upper bound? If yes, does the upper bound of 4 from the non-simple case apply?

diam(Δ_G) \geq 3 (Shahsavari & Khosravi, 2017).

diam(Δ_G) ≤ 64 (Herzog, Longobardi & Maj, 2010). Here, the subgraph of Δ_G induced by the maximal subgroups of G was investigated.

Assume from now on that G is a non-abelian finite simple group.

In 2010, Shen proved that Δ_G is connected, and asked: Does diam (Δ_G) have an upper bound? If yes, does the upper bound of 4 from the non-simple case apply?

diam(Δ_G) \geq 3 (Shahsavari & Khosravi, 2017).

diam(Δ_G) ≤ 64 (Herzog, Longobardi & Maj, 2010). Here, the subgraph of Δ_G induced by the maximal subgroups of G was investigated.

 $\operatorname{diam}(\Delta_{\mathcal{G}}) \leq 28$ (Ma, 2016).

Assume from now on that G is a non-abelian finite simple group.

In 2010, Shen proved that Δ_G is connected, and asked: Does diam (Δ_G) have an upper bound? If yes, does the upper bound of 4 from the non-simple case apply?

 $\operatorname{diam}(\Delta_G) \ge 3$ (Shahsavari & Khosravi, 2017).

diam(Δ_G) ≤ 64 (Herzog, Longobardi & Maj, 2010). Here, the subgraph of Δ_G induced by the maximal subgroups of G was investigated.

diam $(\Delta_G) \leq 28$ (Ma, 2016).

The proofs of Shen, Herzog et al. and Ma all involved the prime graph or Gruenberg-Kegel graph of G. The vertices of this graph are the prime divisors of |G|, with $p_1 \sim p_2 \iff G$ has an element of order p_1p_2 .

Theorem (F., 2021)

Let G be a non-abelian finite simple group. (i) $\operatorname{diam}(\Delta_G) \leqslant 5$.

Theorem (F., 2021)

Let G be a non-abelian finite simple group.

- (i) diam $(\Delta_G) \leq 5$.
- (ii) If G is the sporadic baby monster group \mathbb{B} , then $\operatorname{diam}(\Delta_G) = 5$.

Theorem (F., 2021)

Let G be a non-abelian finite simple group.

(i) diam $(\Delta_G) \leq 5$.

(ii) If G is the sporadic baby monster group \mathbb{B} , then diam $(\Delta_G) = 5$.

(iii) If diam(Δ_G) = 5 and $G \not\cong \mathbb{B}$, then $G \cong PSU(n, q)$, with *n* an odd prime and *q* a prime power.

Theorem (F., 2021)

Let G be a non-abelian finite simple group.

- (i) diam $(\Delta_G) \leq 5$.
- (ii) If G is the sporadic baby monster group \mathbb{B} , then diam $(\Delta_G) = 5$.
- (iii) If diam(Δ_G) = 5 and $G \not\cong \mathbb{B}$, then $G \cong PSU(n, q)$, with *n* an odd prime and *q* a prime power.

Open question: Which unitary groups have an intersection graph of diameter 5? Currently, only PSU(7,2) is known.

Theorem (F., 2021)

Let G be a non-abelian finite simple group.

- (i) diam $(\Delta_G) \leq 5$.
- (ii) If G is the sporadic baby monster group \mathbb{B} , then diam $(\Delta_G) = 5$.
- (iii) If diam(Δ_G) = 5 and $G \not\cong \mathbb{B}$, then $G \cong PSU(n, q)$, with *n* an odd prime and *q* a prime power.

Open question: Which unitary groups have an intersection graph of diameter 5? Currently, only PSU(7,2) is known.

Let $M_1, M_2 \underset{\max}{<} G$, with $|M_1|$ and $|M_2|$ even.

Theorem (F., 2021)

Let G be a non-abelian finite simple group.

- (i) diam $(\Delta_G) \leq 5$.
- (ii) If G is the sporadic baby monster group \mathbb{B} , then $\operatorname{diam}(\Delta_G) = 5$.
- (iii) If diam(Δ_G) = 5 and $G \not\cong \mathbb{B}$, then $G \cong PSU(n, q)$, with *n* an odd prime and *q* a prime power.

Open question: Which unitary groups have an intersection graph of diameter 5? Currently, only PSU(7,2) is known.

Let $M_1, M_2 \underset{\max}{<} G$, with $|M_1|$ and $|M_2|$ even.

Let $a_1 \in M_1$ and $a_2 \in M_2$ be involutions. Then $D := \langle a_1, a_2 \rangle$ is a (proper) dihedral subgroup of G.

Theorem (F., 2021)

Let G be a non-abelian finite simple group.

- (i) diam $(\Delta_G) \leq 5$.
- (ii) If G is the sporadic baby monster group \mathbb{B} , then $\operatorname{diam}(\Delta_G) = 5$.
- (iii) If diam(Δ_G) = 5 and $G \not\cong \mathbb{B}$, then $G \cong PSU(n, q)$, with *n* an odd prime and *q* a prime power.

Open question: Which unitary groups have an intersection graph of diameter 5? Currently, only PSU(7,2) is known.

Let $M_1, M_2 \underset{\max}{<} G$, with $|M_1|$ and $|M_2|$ even.

Let $a_1 \in M_1$ and $a_2 \in M_2$ be involutions. Then $D := \langle a_1, a_2 \rangle$ is a (proper) dihedral subgroup of G.

If $S \leqslant M_1$ and $J \leqslant M_2$, then $S \sim M_1 \sim D \sim M_2 \sim J$. Hence $d(S,J) \leqslant 4$.

Suppose that G has a maximal subgroup of odd order. Then G is one of the following (Liebeck & Saxl, 1991).

Suppose that G has a maximal subgroup of odd order. Then G is one of the following (Liebeck & Saxl, 1991).

 A_n , *n* prime: diam $(\Delta_G) \leq 4$ (Csákány & Pollák, 1969).

Suppose that G has a maximal subgroup of odd order. Then G is one of the following (Liebeck & Saxl, 1991).

 A_n , *n* prime: diam $(\Delta_G) \leq 4$ (Csákány & Pollák, 1969). Alternative proof by Shen (2010): $|M| |A_{n-1}| > |G|$ for all $M \underset{max}{\leq} G$.

Suppose that G has a maximal subgroup of odd order. Then G is one of the following (Liebeck & SaxI, 1991).

 A_n , *n* prime: diam $(\Delta_G) \leq 4$ (Csákány & Pollák, 1969). Alternative proof by Shen (2010): $|M| |A_{n-1}| > |G|$ for all $M \underset{max}{\leq} G$.

M₂₃: Arguing similarly to Shen, $diam(\Delta_G) = 4$.

Suppose that G has a maximal subgroup of odd order. Then G is one of the following (Liebeck & SaxI, 1991).

 A_n , *n* prime: diam $(\Delta_G) \leq 4$ (Csákány & Pollák, 1969). Alternative proof by Shen (2010): $|M| |A_{n-1}| > |G|$ for all $M \underset{max}{\leq} G$.

M₂₃: Arguing similarly to Shen, $diam(\Delta_G) = 4$.

Th: Each prime order subgroup lies in a maximal subgroup of even order.

Suppose that G has a maximal subgroup of odd order. Then G is one of the following (Liebeck & SaxI, 1991).

 A_n , *n* prime: diam $(\Delta_G) \leq 4$ (Csákány & Pollák, 1969). Alternative proof by Shen (2010): $|M| |A_{n-1}| > |G|$ for all $M \underset{max}{<} G$.

M₂₃: Arguing similarly to Shen, $diam(\Delta_G) = 4$.

Th: Each prime order subgroup lies in a maximal subgroup of even order.

B: diam(Δ_G) = 5, by a counting argument involving maximal subgroups.

Suppose that G has a maximal subgroup of odd order. Then G is one of the following (Liebeck & SaxI, 1991).

 A_n , *n* prime: diam $(\Delta_G) \leq 4$ (Csákány & Pollák, 1969). Alternative proof by Shen (2010): $|M| |A_{n-1}| > |G|$ for all $M \underset{max}{<} G$.

M₂₃: Arguing similarly to Shen, $diam(\Delta_G) = 4$.

Th: Each prime order subgroup lies in a maximal subgroup of even order.

B: diam(Δ_G) = 5, by a counting argument involving maximal subgroups. **M**?

Suppose that G has a maximal subgroup of odd order. Then G is one of the following (Liebeck & SaxI, 1991).

 A_n , *n* prime: diam $(\Delta_G) \leq 4$ (Csákány & Pollák, 1969). Alternative proof by Shen (2010): $|M| |A_{n-1}| > |G|$ for all $M \underset{\max}{\leq} G$.

M₂₃: Arguing similarly to Shen, $diam(\Delta_G) = 4$.

Th: Each prime order subgroup lies in a maximal subgroup of even order.

B: diam(Δ_G) = 5, by a counting argument involving maximal subgroups.

M? No maximal subgroups of odd order (Holmes & Wilson, 2004, 2008).

Suppose that G has a maximal subgroup of odd order. Then G is one of the following (Liebeck & SaxI, 1991).

 A_n , *n* prime: diam $(\Delta_G) \leq 4$ (Csákány & Pollák, 1969). Alternative proof by Shen (2010): $|M| |A_{n-1}| > |G|$ for all $M \underset{max}{<} G$.

M₂₃: Arguing similarly to Shen, $diam(\Delta_G) = 4$.

Th: Each prime order subgroup lies in a maximal subgroup of even order.

B: diam(Δ_G) = 5, by a counting argument involving maximal subgroups.

M? No maximal subgroups of odd order (Holmes & Wilson, 2004, 2008).

 $\operatorname{PSL}(n,q)$, *n* prime: diam $(\Delta_G) \leq 4$, using arguments from Peter Cameron, involving the group's action on one-dimensional subspaces of \mathbb{F}_q^n .

Suppose that G has a maximal subgroup of odd order. Then G is one of the following (Liebeck & SaxI, 1991).

 A_n , *n* prime: diam $(\Delta_G) \leq 4$ (Csákány & Pollák, 1969). Alternative proof by Shen (2010): $|M| |A_{n-1}| > |G|$ for all $M \underset{max}{<} G$.

M₂₃: Arguing similarly to Shen, $diam(\Delta_G) = 4$.

Th: Each prime order subgroup lies in a maximal subgroup of even order.

B: diam(Δ_G) = 5, by a counting argument involving maximal subgroups.

M? No maximal subgroups of odd order (Holmes & Wilson, 2004, 2008).

 $\operatorname{PSL}(n,q)$, *n* prime: diam $(\Delta_G) \leq 4$, using arguments from Peter Cameron, involving the group's action on one-dimensional subspaces of \mathbb{F}_q^n .

 $\mathrm{PSU}(n,q)$, *n* odd prime: $\mathrm{diam}(\Delta_G) \leq 5$, via similar arguments to the linear case.

Peter Cameron (2022) defined a hierarchy of graphs whose vertices are the non-identity elements of a fixed (non-abelian) group G.

Peter Cameron (2022) defined a hierarchy of graphs whose vertices are the non-identity elements of a fixed (non-abelian) group G.

Example: $G = D_{12} = \langle a, b \mid a^6 = b^2 = 1, bab = a^{-1} \rangle$.

Peter Cameron (2022) defined a hierarchy of graphs whose vertices are the non-identity elements of a fixed (non-abelian) group G.

Example: $G = D_{12} = \langle a, b \mid a^6 = b^2 = 1, bab = a^{-1} \rangle$.

• The complete graph

Peter Cameron (2022) defined a hierarchy of graphs whose vertices are the non-identity elements of a fixed (non-abelian) group G.

Example:
$$G = D_{12} = \langle a, b \mid a^6 = b^2 = 1, bab = a^{-1} \rangle$$
.

- The complete graph
- The non-generating graph $\Sigma(G)$

Peter Cameron (2022) defined a hierarchy of graphs whose vertices are the non-identity elements of a fixed (non-abelian) group G.

Example:
$$G = D_{12} = \langle a, b \mid a^6 = b^2 = 1, bab = a^{-1} \rangle$$
.

- The complete graph
- The non-generating graph $\Sigma(G)$
- The commuting graph

Peter Cameron (2022) defined a hierarchy of graphs whose vertices are the non-identity elements of a fixed (non-abelian) group G.

Example:
$$G = D_{12} = \langle a, b \mid a^6 = b^2 = 1, bab = a^{-1} \rangle$$
.

- The complete graph
- The non-generating graph $\Sigma(G)$
- The commuting graph

• . . .

Peter Cameron (2022) defined a hierarchy of graphs whose vertices are the non-identity elements of a fixed (non-abelian) group G.

Example:
$$G = D_{12} = \langle a, b \mid a^6 = b^2 = 1, bab = a^{-1} \rangle$$
.

- The complete graph
- The non-generating graph $\Sigma(G)$
- The commuting graph

There is significant interest in the study of these graphs, as well as the differences between them, e.g., the generating graph and the non-commuting, non-generating graph $\Xi(G)$.

Peter Cameron (2022) defined a hierarchy of graphs whose vertices are the non-identity elements of a fixed (non-abelian) group G.

Example:
$$G = D_{12} = \langle a, b \mid a^6 = b^2 = 1, bab = a^{-1} \rangle$$
.

- The complete graph
- The non-generating graph $\Sigma(G)$
- The commuting graph

There is significant interest in the study of these graphs, as well as the differences between them, e.g., the generating graph and the non-commuting, non-generating graph $\Xi(G)$.

• . . .

 Δ_G and the non-generating graph $\Sigma(G)$ form a dual pair: adjacent subgroups in Δ_G contain a common element in $V(\Sigma(G))$, and adjacent elements in $\Sigma(G)$ lie in a common subgroup in $V(\Delta_G)$.

 Δ_G and the non-generating graph $\Sigma(G)$ form a dual pair: adjacent subgroups in Δ_G contain a common element in $V(\Sigma(G))$, and adjacent elements in $\Sigma(G)$ lie in a common subgroup in $V(\Delta_G)$.

Proposition (Cameron, 2022)

If graphs Γ_1 and Γ_2 form a dual pair and $\operatorname{diam}(\Gamma_1) = k$, then $k - 1 \leq \operatorname{diam}(\Gamma_2) \leq k + 1$.

 Δ_G and the non-generating graph $\Sigma(G)$ form a dual pair: adjacent subgroups in Δ_G contain a common element in $V(\Sigma(G))$, and adjacent elements in $\Sigma(G)$ lie in a common subgroup in $V(\Delta_G)$.

Proposition (Cameron, 2022)

If graphs Γ_1 and Γ_2 form a dual pair and $\operatorname{diam}(\Gamma_1) = k$, then $k - 1 \leq \operatorname{diam}(\Gamma_2) \leq k + 1$.

 $\operatorname{diam}(\Delta_G) = 5$, so $4 \leq \operatorname{diam}(\Sigma(G)) \leq 6$. In fact, $\operatorname{diam}(\Sigma(G)) = 4$.

 Δ_G and the non-generating graph $\Sigma(G)$ form a dual pair: adjacent subgroups in Δ_G contain a common element in $V(\Sigma(G))$, and adjacent elements in $\Sigma(G)$ lie in a common subgroup in $V(\Delta_G)$.

Proposition (Cameron, 2022)

If graphs Γ_1 and Γ_2 form a dual pair and $\operatorname{diam}(\Gamma_1) = k$, then $k - 1 \leq \operatorname{diam}(\Gamma_2) \leq k + 1$.

diam(Δ_G) = 5, so 4 \leq diam($\Sigma(G)$) \leq 6. In fact, diam($\Sigma(G)$) = 4. Similarly, 4 \leq diam($\Xi(G)$). In fact, diam($\Xi(G)$) = 4.

 Δ_G and the non-generating graph $\Sigma(G)$ form a dual pair: adjacent subgroups in Δ_G contain a common element in $V(\Sigma(G))$, and adjacent elements in $\Sigma(G)$ lie in a common subgroup in $V(\Delta_G)$.

Proposition (Cameron, 2022)

If graphs Γ_1 and Γ_2 form a dual pair and $\operatorname{diam}(\Gamma_1) = k$, then $k - 1 \leq \operatorname{diam}(\Gamma_2) \leq k + 1$.

 $\operatorname{diam}(\Delta_G) = 5$, so $4 \leq \operatorname{diam}(\Sigma(G)) \leq 6$. In fact, $\operatorname{diam}(\Sigma(G)) = 4$.

Similarly, $4 \leq \operatorname{diam}(\Xi(G))$. In fact, $\operatorname{diam}(\Xi(G)) = 4$.

The subgraph Γ_G of Δ_G induced by soluble subgroups forms a dual pair with the soluble graph $\Pi(G)$, where $x \sim y \iff \langle x, y \rangle$ is soluble.

 Δ_G and the non-generating graph $\Sigma(G)$ form a dual pair: adjacent subgroups in Δ_G contain a common element in $V(\Sigma(G))$, and adjacent elements in $\Sigma(G)$ lie in a common subgroup in $V(\Delta_G)$.

Proposition (Cameron, 2022)

If graphs Γ_1 and Γ_2 form a dual pair and $\operatorname{diam}(\Gamma_1) = k$, then $k - 1 \leq \operatorname{diam}(\Gamma_2) \leq k + 1$.

 $\operatorname{diam}(\Delta_G)=5, \text{ so } 4\leqslant \operatorname{diam}(\Sigma(G))\leqslant 6. \text{ In fact, } \operatorname{diam}(\Sigma(G))=4.$

Similarly, $4 \leq \operatorname{diam}(\Xi(G))$. In fact, $\operatorname{diam}(\Xi(G)) = 4$.

The subgraph Γ_G of Δ_G induced by soluble subgroups forms a dual pair with the soluble graph $\Pi(G)$, where $x \sim y \iff \langle x, y \rangle$ is soluble.

 \exists prime order subgroups $S_1, S_2 \in G$ with $d_{\Delta_G}(S_1, S_2) = 5$.

 Δ_G and the non-generating graph $\Sigma(G)$ form a dual pair: adjacent subgroups in Δ_G contain a common element in $V(\Sigma(G))$, and adjacent elements in $\Sigma(G)$ lie in a common subgroup in $V(\Delta_G)$.

Proposition (Cameron, 2022)

If graphs Γ_1 and Γ_2 form a dual pair and $\operatorname{diam}(\Gamma_1) = k$, then $k - 1 \leq \operatorname{diam}(\Gamma_2) \leq k + 1$.

 $\operatorname{diam}(\Delta_G) = 5$, so $4 \leq \operatorname{diam}(\Sigma(G)) \leq 6$. In fact, $\operatorname{diam}(\Sigma(G)) = 4$.

Similarly, $4 \leq \operatorname{diam}(\Xi(G))$. In fact, $\operatorname{diam}(\Xi(G)) = 4$.

The subgraph Γ_G of Δ_G induced by soluble subgroups forms a dual pair with the soluble graph $\Pi(G)$, where $x \sim y \iff \langle x, y \rangle$ is soluble.

 \exists prime order subgroups $S_1, S_2 \in G$ with $d_{\Delta_G}(S_1, S_2) = 5$.

Hence $5 \leq \operatorname{diam}(\Gamma_G)$ and $4 \leq \operatorname{diam}(\Pi(G))$; in fact, $\operatorname{diam}(\Pi(G)) \in \{4, 5\}$ (Burness, Lucchini & Nemmi, 2021+).