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What are the (isomorphism classes of) finite subgroups of GL,(C)?

Answer (F. Klein): Cyclic central extensions of

o family 1: cyclic groups, G, (n € Ny) or [index 1]
e family 2: dihedral groups, D>, (n € N;) or [index 2]
@ 3 other groups: As, As, Ss [index < 5!]

Full list is not easy. Note: these are ‘almost’ abelian: 3 normal abelian subgroup, index < 5!.
What about GL,(C)? Full classification is hard, but. ..

Theorem (C. Jordan, 1877)
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A classical theorem

Question (Old for warm-up)
What are the (isomorphism classes of) finite subgroups of GL,(C)?

Answer (F. Klein): Cyclic central extensions of

o family 1: cyclic groups, G, (n € Ny) or [index 1]
e family 2: dihedral groups, D>, (n € N;) or [index 2]
@ 3 other groups: As, As, Ss [index < 5!]

Full list is not easy. Note: these are ‘almost’ abelian: 3 normal abelian subgroup, index < 5!.
What about GL,(C)? Full classification is hard, but. ..

Theorem (C. Jordan, 1877)

Vn e N, V finite F < GL,(C) is ‘almost abelian’, i.e. GL,(C) is Jordan, i.e.
3J, e N VF 3 abelian A< F with |F : Al < J,.

So F = extension of [an abelian group] by [some other one from a finite list].
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Analogous problem for transformation groups

GL,(C) ~~ "transformation group” G:
e Q € {compact manifolds, algebraic varieties}

@ faithful action via homeomorphisms/diffeomorphisms, resp. birational automorphisms

Question (Q1)

Are all finite subgroups of every transformation group are ‘almost’ abelian?

o Past two decades: positive answer for many Q's (Mundet, Zimmermann, Serre, Popov,
Prokhorov, Shramov etc).

o But negative for some Q's (from 2014 Csikds — Pyber — E. Szab6, Zarhin, Sz)
Idea: action of infinite family of finite Heisenberg, special p-groups (nilpotent of class 2)
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How close(=pres) is G to being Jordan?
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Recent development
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Recent development

Are finite subgroups of every transformation group G ‘almost’ [family of groups to be found]?
Yes!

@ birational automorphisms: nilpotent of class < 2 [Guld, '20]

e homeomorphisms: nilpotent [Csikés — Pyber — E. Szabd, '22]

True for some smaller family of groups?

Theorem (Sz's thesis, 2022)

@ birational automorphisms: the theorem is optimal

@ homeomorphisms: lower bound: nilpotent of class < 2 (conjecture: sharp)

Idea: action of all class 2 groups in both cases.
Tools: common group theory core for both cases (4+ cohomologies, sheaves, number theory)
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Central product decomposition

Let G be a finite(ly generated) nilpotent group of class < 2 (i.e. G’ C Z(G)).
Previous counterexamples to Q1

e work for G’ C Z(G) cyclic

@ can be extended to all finite 2-generated class < 2 groups

@ can be naturally combined using central products (on external tensor product of bundles)
This and the structural description of special p-groups lead to an independent rediscovery of

Theorem (= Cheng, '82)

© 3 subdirect product G < H?S(G)) H; where H! cyclic. (Done by induction.)
@ I central product H;, = Z; v YooY HzHy) - Zi LZ(H;), 2-gen'd, class 2.

(Recall central product: H= Ky v...v K, if H=Ki...K, and [Ki,Kj] =1 for i # j.)
@ I classification of these building blocks , cf. [Ahmad-Magidin—Morse, '12] finite p case.
o log, #(groups of order p” of class 2) = Zn® — £n? [Higman '60]
log,, #(groups of order p” ) = 22—7n3 + O(n®/3) [Sims, '65]
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Our proof (of 3H = Z v E; v ... ¥ E;): works for all orders (prime or not, odd or even, finite or
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Our proof (of 3H = Z v E; v ... v E.): works for all orders (prime or not, odd or even, finite or
infinite) and gives bounds to the ranks (needed for the Motivation)

o Consider the commutator map [—,—] : H x H — H'.

Q [H h=[hH]=1 [descends]
Q [hh=1 [alternating]
Q [Mha, k] = [h1, K]™[h2, k] = [h1, K][h2, K] (class 2) [linear in 1st argument]
@ Similarly [—, —] is a homomorphism in the other argument too [linear in 2nd argument]
e Define Z-modules: M = H/H' and C = H' C Z(H).

[—, —] descends to an alternating Z-bilinear w : M x M — C, cf. symplectic vector spaces
@ Done by an alternating version of Smith normal form (C is cyclic): 3d; | ---| dr #0in C

. 0 d 0 d

— _ _wT nxn _, 1 t

[w=W=-W'eC d|ag<0,..‘,0,(_d1 0),...,(_dt O>>
z
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Corollary of Theorem: one can construct a certain action of G on invertible sheaves.
Mumford ('66) classified finite subgroups of these automorphisms using matrix groups giving
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3 ‘multiplication’ g : A x B — C between (bounded rank) abelian groups: G — (é
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. . . 1AC
@ J natural geometric space associated to h on which G C [ ¢ B) acts
001
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Structure results of class 2 nilpotent groups
000

Summary

Finite class < 2 nilpotent groups
@ is basically the largest family that can act simultaneously on a variety birationally.
@ admit a structural decomposition using 2-generated groups via central/subdirect products.

@ embed to concrete unitriangular matrix groups (facilitating computations, applications).

Thank you for your attention!
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