Finite Subgroups of Transformation Groups

SwissMAP Young Group theorists workshop: exploring new connections

Dávid R. Szabó szabo.david#renyi,hu

Alfréd Rényi Institute of Mathematics, Budapest, Hungary

Les Diablerets, Switzerland September 6, 2022

Outline

Geometric motivation

2 Structure results of class 2 nilpotent groups

Outline

Geometric motivation

2 Structure results of class 2 nilpotent groups

Question (Old for warm-up)

What are the (isomorphism classes of) *finite* subgroups of $GL_2(\mathbb{C})$?

- family 1: cyclic groups, C_n $(n \in \mathbb{N}_+)$ or
- family 2: dihedral groups, D_{2n} $(n \in \mathbb{N}_+)$ or
- 3 other groups: A_4 , A_5 , S_5

Question (Old for warm-up)

What are the (isomorphism classes of) *finite* subgroups of $GL_2(\mathbb{C})$?

Answer (F. Klein): Cyclic central extensions of

- family 1: cyclic groups, C_n $(n \in \mathbb{N}_+)$ or
- family 2: dihedral groups, D_{2n} $(n \in \mathbb{N}_+)$ or
- 3 other groups: A_4 , A_5 , S_5

Question (Old for warm-up)

What are the (isomorphism classes of) *finite* subgroups of $GL_2(\mathbb{C})$?

Answer (F. Klein): Cyclic central extensions of

- family 1: cyclic groups, C_n $(n \in \mathbb{N}_+)$ or
- family 2: dihedral groups, D_{2n} $(n \in \mathbb{N}_+)$ or
- 3 other groups: A_4 , A_5 , S_5

Full list is not easy. Note: these are 'almost' abelian: ∃ normal abelian subgroup, index < 5!.

Question (Old for warm-up)

What are the (isomorphism classes of) *finite* subgroups of $GL_2(\mathbb{C})$?

Answer (F. Klein): Cyclic central extensions of

- family 1: cyclic groups, C_n $(n \in \mathbb{N}_+)$ or
- family 2: dihedral groups, D_{2n} $(n \in \mathbb{N}_+)$ or
- 3 other groups: A_4 , A_5 , S_5

[index 1] [index 2]

[index < 5!]

Full list is not easy. Note: these are 'almost' abelian: ∃ normal abelian subgroup, index < 5!.

Question (Old for warm-up)

What are the (isomorphism classes of) *finite* subgroups of $GL_2(\mathbb{C})$?

Answer (F. Klein): Cyclic central extensions of

- family 1: cyclic groups, C_n $(n \in \mathbb{N}_+)$ or
- family 2: dihedral groups, D_{2n} $(n \in \mathbb{N}_+)$ or
- 3 other groups: A_4 , A_5 , S_5

[index 1]

[index 2]

[index < 5!]

Full list is not easy. Note: these are 'almost' abelian: \exists normal abelian subgroup, index $\leq 5!$. What about $GL_n(\mathbb{C})$? Full classification is hard, but...

What about $GL_n(C)$! Full classification is hard, b

Theorem (C. Jordan, 1877)

 $\forall n \in \mathbb{N}_+ \quad \forall \text{ finite } F \leq \operatorname{GL}_n(\mathbb{C}) \text{ is 'almost abelian', i.e. } \operatorname{GL}_n(\mathbb{C}) \text{ is Jordan, i.e.}$ $\exists J_n \in \mathbb{N}_+ \quad \forall F \quad \exists \text{ abelian } A \lhd F \text{ with } |F:A| \leq J_n.$

So $F = \text{extension of [an abelian group] by [some other one from a$ *finite*list].

Question (Old for warm-up)

What are the (isomorphism classes of) *finite* subgroups of $GL_2(\mathbb{C})$?

Answer (F. Klein): Cyclic central extensions of

- family 1: cyclic groups, C_n $(n \in \mathbb{N}_+)$ or
- family 2: dihedral groups, D_{2n} $(n \in \mathbb{N}_+)$ or
- 3 other groups: A_4 , A_5 , S_5

[index 1] [index 2]

[index 2]

 $[index \leq 5!]$

Full list is not easy. Note: these are 'almost' abelian: \exists normal abelian subgroup, index $\leq 5!$.

What about $GL_n(\mathbb{C})$? Full classification is hard, but...

Theorem (C. Jordan, 1877)

 $\forall n \in \mathbb{N}_+ \quad \forall \text{ finite } F \leq \operatorname{GL}_n(\mathbb{C}) \text{ is 'almost abelian', i.e. } \operatorname{GL}_n(\mathbb{C}) \text{ is Jordan, i.e.}$ $\exists J_n \in \mathbb{N}_+ \quad \forall F \quad \exists \text{ abelian } A \lhd F \text{ with } |F:A| \leq J_n.$

So $F = \text{extension of [an abelian group] by [some other one from a$ *finite* $list]}$

Question (Old for warm-up)

What are the (isomorphism classes of) *finite* subgroups of $GL_2(\mathbb{C})$?

Answer (F. Klein): Cyclic central extensions of

- family 1: cyclic groups, C_n $(n \in \mathbb{N}_+)$ or
- family 2: dihedral groups, D_{2n} $(n \in \mathbb{N}_+)$ or
- 3 other groups: A_4 , A_5 , S_5

[index 1]

[index 2]

[index < 5]

[index $\leq 5!$]

Full list is not easy. Note: these are 'almost' abelian: \exists normal abelian subgroup, index $\leq 5!$. What about CL (C)2 Full classification is bord but

What about $GL_n(\mathbb{C})$? Full classification is hard, but...

Theorem (C. Jordan, 1877)

 $\forall n \in \mathbb{N}_+ \quad \forall \text{ finite } F \leq \operatorname{GL}_n(\mathbb{C}) \text{ is 'almost abelian', i.e. } \operatorname{GL}_n(\mathbb{C}) \text{ is Jordan, i.e.}$ $\exists J_n \in \mathbb{N}_+ \quad \forall F \quad \exists \text{ abelian } A \lhd F \text{ with } |F:A| \leq J_n.$

So $F = \text{extension of [an abelian group] by [some other one from a$ *finite*list].

 $\mathsf{GL}_n(\mathbb{C}) \leadsto$ "transformation group" G:

- $\Omega \in \{\text{compact manifolds, algebraic varieties}\}$
- faithful action via homeomorphisms/diffeomorphisms, resp. birational automorphisms

Question (Q1)

Are all finite subgroups of every transformation group are 'almost' abelian?

- Past two decades: positive answer for many Ω 's (Mundet, Zimmermann, Serre, Popov, Prokhorov, Shramov etc).
- But negative for some Ω's (from 2014 Csikós Pyber E. Szabó, Zarhin, Sz)
 Idea: action of infinite family of finite Heisenberg, special p-groups (nilpotent of class Ω

Therefore *G* is *not* Jordan.

Dávid R. Szabó

 $\mathsf{GL}_n(\mathbb{C}) \leadsto$ "transformation group" G:

- $\Omega \in \{\text{compact manifolds, algebraic varieties}\}$
- faithful action via homeomorphisms/diffeomorphisms, resp. birational automorphisms

Question (Q1)

Are all finite subgroups of every transformation group are 'almost' abelian?

- Past two decades: positive answer for many Ω 's (Mundet, Zimmermann, Serre, Popov, Prokhorov, Shramov etc).
- But negative for some Ω's (from 2014 Csikós Pyber E. Szabó, Zarhin, Sz)
 Idea: action of infinite family of finite Heisenberg, special p-groups (nilpotent of class 2)

Therefore *G* is *not* Jordan.

 $\mathsf{GL}_n(\mathbb{C}) \leadsto$ "transformation group" G:

- $\Omega \in \{\text{compact manifolds, algebraic varieties}\}$
- faithful action via homeomorphisms/diffeomorphisms, resp. birational automorphisms

Question (Q1)

Are all finite subgroups of every transformation group are 'almost' abelian?

- Past two decades: positive answer for many Ω 's (Mundet, Zimmermann, Serre, Popov, Prokhorov, Shramov etc).
- But negative for some Ω's (from 2014 Csikós Pyber E. Szabó, Zarhin, Sz)
 Idea: action of infinite family of finite Heisenberg, special p-groups (nilpotent of class 2)

Therefore G is not Jordan.

 $GL_n(\mathbb{C}) \leadsto$ "transformation group" G:

- $\Omega \in \{\text{compact manifolds, algebraic varieties}\}$
- faithful action via homeomorphisms/diffeomorphisms, resp. birational automorphisms

Question (Q1)

Are all finite subgroups of every transformation group are 'almost' abelian?

- Past two decades: positive answer for many Ω 's (Mundet, Zimmermann, Serre, Popov, Prokhorov, Shramov etc).
- But negative for some Ω 's (from 2014 Csikós Pyber E. Szabó, Zarhin, Sz) Idea: action of infinite family of finite Heisenberg, special p-groups (nilpotent of class 2)

Therefore G is not Jordan.

 $GL_n(\mathbb{C}) \leadsto$ "transformation group" G:

- $\Omega \in \{\text{compact manifolds, algebraic varieties}\}$
- faithful action via homeomorphisms/diffeomorphisms, resp. birational automorphisms

Question (Q1)

Are all finite subgroups of every transformation group are 'almost' abelian?

- Past two decades: positive answer for many Ω 's (Mundet, Zimmermann, Serre, Popov, Prokhorov, Shramov etc).
- But negative for some Ω 's (from 2014 Csikós Pyber E. Szabó, Zarhin, Sz) Idea: action of infinite family of finite Heisenberg, special p-groups (nilpotent of class 2)

Therefore G is not Jordan.

Dávid R Szabó

Break – a natural local question ;)

Figure: Landscape at Le Lechere this afternoon

Break – a natural local question ;)

Figure: Landscape at Le Lechere this afternoon

How close(=près) is G to being Jordan?

Dávid R. Szabó

Are finite subgroups of *every* transformation group G 'almost' [family of groups to be found]? Yes!

I heorem

- birational automorphisms: nilpotent of class ≤ 2 [Guld, '20]
- homeomorphisms: nilpotent [Csikós Pyber E. Szabó, '22]

True for some smaller family of groups?

Theorem (Sz's thesis, 2022)

- birational automorphisms: the theorem is optimal
- ullet homeomorphisms: lower bound: nilpotent of class ≤ 2 (conjecture: sharp)

ldea: action of *all* class 2 groups in both cases.

Are finite subgroups of *every* transformation group G 'almost' [family of groups to be found]? Yes!

Theorem

- birational automorphisms: nilpotent of class ≤ 2 [Guld, '20]
- homeomorphisms: nilpotent [Csikós Pyber E. Szabó, '22]

True for some smaller family of groups?

Theorem (Sz's thesis, 2022

- birational automorphisms: the theorem is optimal
- homeomorphisms: lower bound: nilpotent of class ≤ 2 (conjecture: sharp)

ldea: action of *all* class 2 groups in both cases.

Are finite subgroups of *every* transformation group G 'almost' [family of groups to be found]? Yes!

Theorem

- birational automorphisms: nilpotent of class ≤ 2 [Guld, '20]
- homeomorphisms: nilpotent [Csikós Pyber E. Szabó, '22]

True for some smaller family of groups?

Theorem (Sz's thesis, 2022)

- birational automorphisms: the theorem is optimal
- homeomorphisms: lower bound: nilpotent of class ≤ 2 (conjecture: sharp)

Idea: action of all class 2 groups in both cases.

Are finite subgroups of *every* transformation group G 'almost' [family of groups to be found]? Yes!

Theorem

- birational automorphisms: nilpotent of class ≤ 2 [Guld, '20]
- homeomorphisms: nilpotent [Csikós Pyber E. Szabó, '22]

True for some smaller family of groups?

Theorem (Sz's thesis, 2022)

- birational automorphisms: the theorem is optimal
- homeomorphisms: lower bound: nilpotent of class ≤ 2 (conjecture: sharp)

Idea: action of all class 2 groups in both cases.

Are finite subgroups of *every* transformation group G 'almost' [family of groups to be found]? Yes!

Theorem

- birational automorphisms: nilpotent of class ≤ 2 [Guld, '20]
- homeomorphisms: nilpotent [Csikós Pyber E. Szabó, '22]

True for some smaller family of groups?

Theorem (Sz's thesis, 2022)

- birational automorphisms: the theorem is optimal
- homeomorphisms: lower bound: nilpotent of class ≤ 2 (conjecture: sharp)

Idea: action of all class 2 groups in both cases.

Outline

Geometric motivation

2 Structure results of class 2 nilpotent groups

Let G be a finite(ly generated) nilpotent group of class ≤ 2 (i.e. $G' \subseteq Z(G)$).

Previous counterexamples to Q1

- work for $G' \subseteq Z(G)$ cyclic
- ullet can be extended to *all* finite 2-generated class \leq 2 groups
- can be naturally combined using central products (on external tensor product of bundles)

This and the structural description of special p-groups lead to an independent rediscovery of

Theorem (pprox Cheng, '82)

- \exists subdirect product $G \leq \prod_{i=1}^{d(Z(G))} H_i$ where H'_i cyclic. (Done by induction.)
- lacktriangle \exists central product $H_i = Z_i \vee E_{i,1} \vee \ldots \vee E_{i,\frac{1}{2}d(H_i/\mathbb{Z}(H_i))}: Z_i \leq \mathbb{Z}(H_i), E_{i,j} \text{ 2-gen'd, class 2}$

(Recall central product:
$$H = K_1 \vee ... \vee K_n$$
 if $H = K_1 ... K_n$ and $[K_i, K_j] = 1$ for $i \neq j$.)

- ullet a classification of these building blocks $E_{i,j}$, cf. [Ahmad–Magidin–Morse, '12] finite ho case
- $\log_p \#(\text{groups of order } p^n \text{ of class } 2) = \frac{1}{27} n^3 \frac{17}{27} n^2$ [Higman '60]
- $\log_p \#(\text{groups of order } p^n) = \frac{2}{27}n^3 + \mathcal{O}(n^{8/3})$ [Sims, '65]

Let G be a finite(ly generated) nilpotent group of class ≤ 2 (i.e. $G' \subseteq Z(G)$). Previous counterexamples to $\mathbf{Q1}$

- work for $G' \subseteq Z(G)$ cyclic
- ullet can be extended to *all* finite 2-generated class \leq 2 groups
- can be naturally combined using central products (on external tensor product of bundles)

This and the structural description of special p-groups lead to an independent rediscovery of

```
Theorem (pprox Cheng, '82)
```

- **a** \exists **subdirect product** $G \leq \prod_{i=1}^{d(Z(G))} H_i$ where H'_i cyclic. (Done by induction.)
- \blacksquare \exists central product $H_i = Z_i \vee E_{i,1} \vee \ldots \vee E_{i,\frac{1}{2}d(H_i/Z(H_i))} : Z_i \leq Z(H_i), E_{i,j} \text{ 2-gen'd, class } Z_i \in Z_i \cup Z_i$

```
(Recall central product: H=K_1 \vee \ldots \vee K_n if H=K_1 \ldots K_n and [K_i,K_j]=1 for i \neq j.)
```

- ∃ classification of these building blocks $E_{i,j}$, cf. [Ahmad–Magidin–Morse, '12] finite p case $\log_p \#(\text{groups of order } p^n \text{ of class } 2) = \frac{2}{27} n^3 \frac{12}{27} n^2$ [Higman '60]
- $\log_n \#(\text{groups of order } p^n) = \frac{2}{27}n^3 + \mathcal{O}(n^{8/3})$ [Sims, '65]

Let G be a finite(ly generated) nilpotent group of class ≤ 2 (i.e. $G' \subseteq Z(G)$).

- Previous counterexamples to **Q1**
 - work for $G' \subseteq Z(G)$ cyclic
 - ullet can be extended to *all* finite 2-generated class \leq 2 groups
 - can be naturally combined using central products (on external tensor product of bundles)

This and the structural description of special p-groups lead to an independent rediscovery of

```
Theorem (pprox Cheng, '82)
```

- **9** \exists subdirect product $G \leq \prod_{i=1}^{d(Z(G))} H_i$ where H'_i cyclic. (Done by induction.)
- ∃ central product $H_i = Z_i \vee E_{i,1} \vee \ldots \vee E_{i,\frac{1}{2}d(H_i/Z(H_i))}$: $Z_i \leq Z(H_i)$, $E_{i,j}$ 2-gen'd, class 2.

```
(Recall central product: H = K_1 \vee ... \vee K_n if H = K_1 ... K_n and [K_i, K_j] = 1 for i \neq j.)
```

• \exists classification of these building blocks $E_{i,j}$, cf. [Ahmad–Magidin–Morse, '12] finite p case • $\log_p \#(\text{groups of order } p^n \text{ of class } 2) = \frac{2}{27}n^3 - \frac{12}{27}n^2$ [Higman '60]

Let G be a finite(ly generated) nilpotent group of class ≤ 2 (i.e. $G' \subseteq Z(G)$).

Previous counterexamples to Q1

- work for $G' \subseteq Z(G)$ cyclic
- ullet can be extended to *all* finite 2-generated class \leq 2 groups
- can be naturally combined using central products (on external tensor product of bundles)

This and the structural description of special p-groups lead to an independent rediscovery of

Theorem (pprox Cheng, '82)

- **3** subdirect product $G \leq \prod_{i=1}^{d(Z(G))} H_i$ where H'_i cyclic. (Done by induction.)

```
(Recall central product: H = K_1 \vee ... \vee K_n if H = K_1 ... K_n and [K_i, K_j] = 1 for i \neq j.)
```

■ ∃ classification of these building blocks $E_{i,j}$, cf. [Ahmad–Magidin–Morse, '12] finite p case.

 $\log_p \#(\text{groups of order } p \text{ or class } 2) = \frac{27}{27} n \text{ [rings]}$

Let G be a finite(ly generated) nilpotent group of class ≤ 2 (i.e. $G' \subseteq Z(G)$). Previous counterexamples to $\mathbf{O1}$

- work for $G' \subseteq Z(G)$ cyclic
- ullet can be extended to *all* finite 2-generated class \leq 2 groups
- can be naturally combined using central products (on external tensor product of bundles)

This and the structural description of special p-groups lead to an independent rediscovery of

Theorem (pprox Cheng, '82)

- **3** subdirect product $G
 leq \prod_{i=1}^{d(Z(G))} H_i$ where H'_i cyclic. (Done by induction.)
- ② ∃ central product $H_i = Z_i \vee E_{i,1} \vee ... \vee E_{i,\frac{1}{2}d(H_i/\mathbb{Z}(H_i))}$: $Z_i \leq \mathbb{Z}(H_i)$, $E_{i,j}$ 2-gen'd, class 2.

```
(Recall central product: H = K_1 \vee ... \vee K_n if H = K_1 ... K_n and [K_i, K_j] = 1 for i \neq j.)
```

- \exists classification of these building blocks $E_{i,j}$, cf. [Ahmad–Magidin–Morse, '12] finite p case
- $\log_p \#(\text{groups of order } p^n \text{ of class } 2) = \frac{2}{27} n^3 \frac{12}{27} n^2$ [Higman '60]

Let G be a finite(ly generated) nilpotent group of class ≤ 2 (i.e. $G' \subset Z(G)$).

- Previous counterexamples to Q1
 - work for $G' \subset Z(G)$ cyclic
 - can be extended to all finite 2-generated class < 2 groups
 - can be naturally combined using central products (on external tensor product of bundles)

This and the structural description of special p-groups lead to an independent rediscovery of

Theorem (pprox Cheng, '82)

- \exists subdirect product $G \subseteq \prod_{i=1}^{d(Z(G))} H_i$ where H'_i cyclic. (Done by induction.)
- **2** \exists **central product** $H_i = Z_i \vee E_{i,1} \vee \ldots \vee E_{i,\frac{1}{2}d(H_i/Z(H_i))} : Z_i \leq Z(H_i), E_{i,j} \text{ 2--gen'd, class 2.}$

(Recall central product:
$$H = K_1 \vee ... \vee K_n$$
 if $H = K_1 ... K_n$ and $[K_i, K_j] = 1$ for $i \neq j$.)

- \exists classification of these building blocks $E_{i,i}$, cf. [Ahmad–Magidin–Morse, '12] finite p case.

Let G be a finite(ly generated) nilpotent group of class ≤ 2 (i.e. $G' \subseteq Z(G)$). Previous counterexamples to $\mathbf{O1}$

- work for $G' \subseteq Z(G)$ cyclic
- ullet can be extended to *all* finite 2-generated class \leq 2 groups
- can be naturally combined using central products (on external tensor product of bundles)

This and the structural description of special p-groups lead to an independent rediscovery of

Theorem (pprox Cheng, '82)

- **9** \exists subdirect product $G \leq \prod_{i=1}^{d(Z(G))} H_i$ where H'_i cyclic. (Done by induction.)
- ② ∃ central product $H_i = Z_i \vee E_{i,1} \vee ... \vee E_{i,\frac{1}{2}d(H_i/Z(H_i))}$: $Z_i \leq Z(H_i)$, $E_{i,j}$ 2-gen'd, class 2.

(Recall central product: $H = K_1 \vee ... \vee K_n$ if $H = K_1 ... K_n$ and $[K_i, K_j] = 1$ for $i \neq j$.)

- \exists classification of these building blocks $E_{i,j}$, cf. [Ahmad–Magidin–Morse, '12] finite p case.
- $\log_p \#(\text{groups of order } p^n \text{ of class } 2) = \frac{2^7}{27} n^3 \frac{12}{27} n^2 \text{ [Higman '60]}$ $\log_p \#(\text{groups of order } p^n) = \frac{2}{27} n^3 + \mathcal{O}(n^{8/3}) \text{ [Sims, '65]}$

Let G be a finite(ly generated) nilpotent group of class ≤ 2 (i.e. $G' \subseteq Z(G)$).

- Previous counterexamples to **Q1**
 - work for $G' \subseteq Z(G)$ cyclic
 - ullet can be extended to *all* finite 2-generated class \leq 2 groups
 - can be naturally combined using central products (on external tensor product of bundles)

This and the structural description of special p-groups lead to an independent rediscovery of

Theorem (pprox Cheng, '82)

- **3 subdirect product** $G \leq \prod_{i=1}^{d(Z(G))} H_i$ where H'_i cyclic. (Done by induction.)
- ② ∃ central product $H_i = Z_i \vee E_{i,1} \vee ... \vee E_{i,\frac{1}{2}d(H_i/\mathbb{Z}(H_i))}$: $Z_i \leq \mathbb{Z}(H_i)$, $E_{i,j}$ 2-gen'd, class 2.

(Recall central product: $H = K_1 \vee ... \vee K_n$ if $H = K_1 ... K_n$ and $[K_i, K_j] = 1$ for $i \neq j$.)

- \exists classification of these building blocks $E_{i,j}$, cf. [Ahmad–Magidin–Morse, '12] finite p case.
- $\log_p \#(\text{groups of order } p^n \text{ of class 2}) = \frac{2}{27}n^3 \frac{12}{27}n^2 \text{ [Higman '60]}$ $\log_p \#(\text{groups of order } p^n) = \frac{2}{27}n^3 + \mathcal{O}(n^{8/3}) \text{ [Sims, '65]}$

Our proof (of $\exists H = Z \lor E_1 \lor ... \lor E_t$): works for all orders (prime or not, odd or even, finite or infinite) and gives bounds to the ranks (needed for the Motivation)

- Consider the commutator map $[-,-]:H\times H\to H'$
 - ① [H', h] = [h, H'] = 1

 - ① $[h_1h_2, k] = [h_1, k]^{h_2}[h_2, k] = [h_1, k][h_2, k]$ (class 2)
 - Similarly [−, −] is a homomorphism in the other argument too
- Define \mathbb{Z} -modules: M = H/H' and $C = H' \subseteq Z(H)$. [-, -] descends to an alternating \mathbb{Z} -bilinear $\omega : M \times M \to C$, cf. symplectic vector space
- ullet Done by an alternating version of Smith normal form (C is cyclic): $\exists d_1 \mid \cdots \mid d_t
 eq 0$ in C

$$[\omega] = W = -W^{ op} \in \mathcal{C}^{n imes n} \sim \operatorname{diag}\left(\underbrace{0, \dots, 0}_{Z}, \underbrace{\begin{pmatrix} 0 & d_1 \ -d_1 & 0 \end{pmatrix}}_{E_1}, \dots, \underbrace{\begin{pmatrix} 0 & d_t \ -d_t & 0 \end{pmatrix}}_{E_1}
ight)$$

Our proof (of $\exists H = Z \lor E_1 \lor ... \lor E_t$): works for all orders (prime or not, odd or even, finite or infinite) and gives bounds to the ranks (needed for the Motivation)

- Consider the commutator map $[-,-]: H \times H \to H'$.
 - ① [H', h] = [h, H'] = 1

 - $[h_1h_2, k] = [h_1, k]^{h_2}[h_2, k] = [h_1, k][h_2, k]$ (class 2)
 - \bigcirc Similarly [-,-] is a homomorphism in the other argument too
- Define \mathbb{Z} -modules: M = H/H' and $C = H' \subseteq Z(H)$. [-,-] descends to an alternating \mathbb{Z} -bilinear $\omega: M \times M \to C$, cf. symplectic vector space
- ullet Done by an alternating version of Smith normal form (C is cyclic): $\exists d_1 \mid \dots \mid d_t
 eq 0$ in C

$$[\omega] = W = -W^{\top} \in C^{n \times n} \sim \operatorname{diag}\left(\underbrace{0, \dots, 0}_{Z}, \underbrace{\begin{pmatrix} 0 & d_1 \\ -d_1 & 0 \end{pmatrix}}_{E_1}, \dots, \underbrace{\begin{pmatrix} 0 & d_t \\ -d_t & 0 \end{pmatrix}}_{E_t}\right)$$

Our proof (of $\exists H = Z \lor E_1 \lor ... \lor E_t$): works for all orders (prime or not, odd or even, finite or infinite) and gives bounds to the ranks (needed for the Motivation)

- Consider the commutator map $[-,-]:H\times H\to H'.$
 - (H',h] = [h,H'] = 1

 - **3** $[h_1h_2, k] = [h_1, k]^{h_2}[h_2, k] = [h_1, k][h_2, k]$ (class 2)
 - lacktriangledown Similarly [-,-] is a homomorphism in the other argument too

[descends]
[alternating]

[linear in 1st argument

[linear in 2nd argument

- Define \mathbb{Z} -modules: M = H/H' and $C = H' \subseteq Z(H)$. [-,-] descends to an alternating \mathbb{Z} -bilinear $\omega : M \times M \to C$, cf. symplectic vector space
- Done by an alternating version of Smith normal form (C is cyclic): $\exists d_1 \mid \cdots \mid d_t \neq 0$ in (

$$[\omega] = W = -W^{\top} \in C^{n \times n} \sim \operatorname{diag}\left(\underbrace{0, \dots, 0}_{Z}, \underbrace{\begin{pmatrix} 0 & d_1 \\ -d_1 & 0 \end{pmatrix}}_{E_1}, \dots, \underbrace{\begin{pmatrix} 0 & d_t \\ -d_t & 0 \end{pmatrix}}_{E_t}\right)$$

Our proof (of $\exists H = Z \lor E_1 \lor ... \lor E_t$): works for all orders (prime or not, odd or even, finite or infinite) and gives bounds to the ranks (needed for the Motivation)

- Consider the commutator map $[-,-]:H\times H\to H'.$
 - (H', h] = [h, H'] = 1
 - [h, h] = 1
 - **3** $[h_1h_2, k] = [h_1, k]^{h_2}[h_2, k] = [h_1, k][h_2, k]$ (class 2)
 - lacktriangle Similarly [-,-] is a homomorphism in the other argument too

[descends]
[alternating]

[linear in 1st argument]

- [linear in 2nd argument]
- Define \mathbb{Z} -modules: M = H/H' and $C = H' \subseteq Z(H)$. [-,-] descends to an alternating \mathbb{Z} -bilinear $\omega : M \times M \to C$, cf. symplectic vector spaces
- ullet Done by an alternating version of Smith normal form (C is cyclic): $\exists d_1 \mid \cdots \mid d_t
 eq 0$ in C

$$[\omega] = W = -W^{\top} \in C^{n \times n} \sim \operatorname{diag}\left(\underbrace{0, \dots, 0}_{Z}, \underbrace{\begin{pmatrix} 0 & d_1 \\ -d_1 & 0 \end{pmatrix}}_{E_1}, \dots, \underbrace{\begin{pmatrix} 0 & d_t \\ -d_t & 0 \end{pmatrix}}_{E_2}\right)$$

[descends]

[alternating]

Idea for the Decomposition Theorem

Our proof (of $\exists H = Z \vee E_1 \vee ... \vee E_t$): works for all orders (prime or not, odd or even, finite or infinite) and gives bounds to the ranks (needed for the Motivation)

- Consider the commutator map $[-,-]: H \times H \to H'$.
 - (H', h] = [h, H'] = 1
 - (a) [h, h] = 1
 - **3** $[h_1h_2, k] = [h_1, k]^{h_2}[h_2, k] = [h_1, k][h_2, k]$ (class 2)
 - \bigcirc Similarly [-, -] is a homomorphism in the other argument too
- [linear in 1st argument]
 - [linear in 2nd argument]
- Define \mathbb{Z} -modules: M = H/H' and $C = H' \subset Z(H)$. [-,-] descends to an alternating \mathbb{Z} -bilinear $\omega:M\times M\to C$, cf. symplectic vector spaces
- Done by an alternating version of Smith normal form (C is cyclic): $\exists d_1 \mid \cdots \mid d_t \neq 0$ in C

$$[\omega] = W = -W^{\top} \in C^{n \times n} \sim \operatorname{diag}\left(\underbrace{0, \dots, 0}_{Z}, \underbrace{\begin{pmatrix} 0 & d_1 \\ -d_1 & 0 \end{pmatrix}}_{E_1}, \dots, \underbrace{\begin{pmatrix} 0 & d_t \\ -d_t & 0 \end{pmatrix}}_{E_1}\right)$$

Corollary of Theorem: one can construct a certain action of G on invertible sheaves. Mumford ('66) classified finite subgroups of these automorphisms using matrix groups giving

Corollary (cf. Magidin (98) for more general, less concrete statement)

 \exists 'multiplication' $\mu_G:A imes B o \hat{\mathcal{C}}$ between (bounded rank) abelian groups: $m{G}\hookrightarrow \left(egin{smallmatrix}1&A&C\0&1&B\\0&0&1\end{smallmatrix}
ight).$

Algebraic geometry and Mumford's classification can be avoided from proof above:

- Theorem part 1: may assume G' is cyclic.
- ullet Theorem part 2: $M=G/\mathbb{Z}(G)$ has (a complex) $\mathbb{Z}[i]$ -module structure, ω non-degenerate
- $\exists decomposition \ \hat{M} = A + iA$. Set B = iA, $\mu_G = \omega|_{A \times B}$ (for some suitable $\hat{C} \supseteq G'$).
- How to get the realising actions of G from Motivation?
 - M also has C[i]-module structure
 - ullet Thermitian form' h (over a commutative ring) on M with $\Im h = \omega$
 - ullet anatural geometric space associated to h on which $G\subseteq \left(egin{array}{cc} 1 & 1 & B \end{array}
 ight)$ acts

Corollary of Theorem: one can construct a certain action of G on invertible sheaves. Mumford ('66) classified finite subgroups of these automorphisms using matrix groups giving

Corollary (cf. Magidin (98) for more general, less concrete statement)

 \exists 'multiplication' $\mu_G: A \times B \to \hat{C}$ between (bounded rank) abelian groups: $G \hookrightarrow \begin{pmatrix} 1 & A & C \\ 0 & 1 & B \\ 0 & 0 & 1 \end{pmatrix}$.

Algebraic geometry and Mumford's classification can be avoided from proof above:

- ullet Theorem part 1: may assume G' is cyclic.
- Theorem part 2: M = G/Z(G) has (a complex) $\mathbb{Z}[i]$ -module structure, ω non-degenerate
- $\exists decomposition \ M = A + iA$. Set B = iA, $\mu_G = \omega|_{A \times B}$ (for some suitable $C \supseteq G'$).
- How to get the realising actions of G from Motivation?
 - IVI also has C[I]-module structure
 - ullet Hermitian form' h (over a commutative ring) on M with $\Im h = \omega$
 - ullet anatural geometric space associated to h on which $G\subseteq \left(ullet _0 ullet _B ullet$) acts

Corollary of Theorem: one can construct a certain action of G on invertible sheaves. Mumford ('66) classified finite subgroups of these automorphisms using matrix groups giving

Corollary (cf. Magidin (98) for more general, less concrete statement)

 \exists 'multiplication' $\mu_G: A \times B \to \hat{C}$ between (bounded rank) abelian groups: $G \hookrightarrow \begin{pmatrix} 1 & A & C \\ 0 & 1 & B \\ 0 & 0 & 1 \end{pmatrix}$.

Algebraic geometry and Mumford's classification can be avoided from proof above:

- Theorem part 1: may assume G' is cyclic.
- Theorem part 2: M = G/Z(G) has (a complex) $\mathbb{Z}[i]$ -module structure, ω non-degenerate
- $\exists decomposition \ M = A + iA$. Set B = iA, $\mu_G = \omega|_{A \times B}$ (for some suitable $C \supseteq G$
- How to get the realising actions of 6 from injuitivation?
 - IVI also has C[I]-module structure
 - ullet ullet Hermitian form' h (over a commutative ring) on M with $\Im h = \omega$
 - ullet \exists natural geometric space associated to h on which $G\subseteq \left(ullet 0 \ ullet B \
 ight)$ acts

Corollary of Theorem: one can construct a certain action of G on invertible sheaves. Mumford ('66) classified finite subgroups of these automorphisms using matrix groups giving

Corollary (cf. Magidin (98) for more general, less concrete statement)

 \exists 'multiplication' $\mu_G: A \times B \to \hat{C}$ between (bounded rank) abelian groups: $G \hookrightarrow \begin{pmatrix} 1 & A & C \\ 0 & 1 & B \\ 0 & 0 & 1 \end{pmatrix}$.

Algebraic geometry and Mumford's classification can be avoided from proof above:

- Theorem part 1: may assume G' is cyclic.
- Theorem part 2: $\hat{M} = G/Z(G)$ has (a complex) $\mathbb{Z}[i]$ -module structure, ω non-degenerate
- $\exists decomposition \ M = A + iA$. Set B = iA, $\mu_G = \omega|_{A \times B}$ (for some suitable $C \supseteq G'$).

How to get the realising actions of G from Motivation?

- M also has C[i]-module structure
- ullet Hermitian form' h (over a commutative ring) on M with $\Im h = \omega$
- ullet natural geometric space associated to h on which $G\subseteq \left(\begin{smallmatrix}1&1&B\\0&1&B\end{smallmatrix}\right)$ acts

Corollary of Theorem: one can construct a certain action of G on invertible sheaves. Mumford ('66) classified finite subgroups of these automorphisms using matrix groups giving

Corollary (cf. Magidin (98) for more general, less concrete statement)

 \exists 'multiplication' $\mu_G: A \times B \to \hat{C}$ between (bounded rank) abelian groups: $G \hookrightarrow \begin{pmatrix} 1 & A & C \\ 0 & 1 & B \\ 0 & 0 & 1 \end{pmatrix}$.

Algebraic geometry and Mumford's classification can be avoided from proof above:

- Theorem part 1: may assume G' is cyclic.
- Theorem part 2: $\hat{M} = G/Z(G)$ has (a complex) $\mathbb{Z}[i]$ -module structure, ω non-degenerate
- $\exists decomposition \ \hat{M} = A + iA$. Set B = iA, $\mu_G = \omega|_{A \times B}$ (for some suitable $\hat{C} \supseteq G'$).

How to get the realising actions of *G* from Motivation?

- M also has C[i]-module structure
- ullet \exists 'Hermitian form' h (over a commutative ring) on M with $\Im h = \omega$
- ullet \exists natural geometric space associated to h on which $G\subseteq \left(egin{array}{cc} 0 & 1 & B \end{array}
 ight)$ acts

Dávid R Szabó

Corollary of Theorem: one can construct a certain action of G on invertible sheaves. Mumford ('66) classified finite subgroups of these automorphisms using matrix groups giving

Corollary (cf. Magidin (98) for more general, less concrete statement)

 \exists 'multiplication' $\mu_G: A \times B \to \hat{C}$ between (bounded rank) abelian groups: $G \hookrightarrow \begin{pmatrix} 1 & A & C \\ 0 & 1 & B \\ 0 & 0 & 1 \end{pmatrix}$.

Algebraic geometry and Mumford's classification can be avoided from proof above:

- Theorem part 1: may assume G' is cyclic.
- Theorem part 2: $\hat{M} = G/Z(G)$ has (a complex) $\mathbb{Z}[i]$ -module structure, ω non-degenerate
- $\exists decomposition \ \hat{M} = A + iA$. Set B = iA, $\mu_G = \omega|_{A \times B}$ (for some suitable $\hat{C} \supseteq G'$).

How to get the realising actions of G from Motivation?

- M also has C[i]-module structure
- \exists 'Hermitian form' h (over a commutative ring) on M with $\Im h = \omega$
- ullet anatural geometric space associated to h on which $G\subseteq \left(egin{array}{cc} 1 & A & B \\ 0 & 1 & B \end{array}\right)$ acts

Corollary of Theorem: one can construct a certain action of G on invertible sheaves. Mumford ('66) classified finite subgroups of these automorphisms using matrix groups giving

Corollary (cf. Magidin (98) for more general, less concrete statement)

 \exists 'multiplication' $\mu_G: A \times B \to \hat{C}$ between (bounded rank) abelian groups: $G \hookrightarrow \begin{pmatrix} 1 & A & C \\ 0 & 1 & B \\ 0 & 0 & 1 \end{pmatrix}$.

Algebraic geometry and Mumford's classification can be avoided from proof above:

- Theorem part 1: may assume G' is cyclic.
- Theorem part 2: $\hat{M} = G/Z(G)$ has (a complex) $\mathbb{Z}[i]$ -module structure, ω non-degenerate
- $\exists decomposition \ \hat{M} = A + iA$. Set B = iA, $\mu_G = \omega|_{A \times B}$ (for some suitable $\hat{C} \supseteq G'$).

How to get the realising actions of G from Motivation?

- \hat{M} also has $\hat{C}[i]$ -module structure
- ullet Hermitian form' h (over a commutative ring) on \hat{M} with $\Im h = \omega$
- \exists natural geometric space associated to h on which $G \subseteq \begin{pmatrix} 1 & A & C \\ 0 & 1 & B \end{pmatrix}$ acts

Corollary of Theorem: one can construct a certain action of G on invertible sheaves. Mumford ('66) classified finite subgroups of these automorphisms using matrix groups giving

Corollary (cf. Magidin (98) for more general, less concrete statement)

 \exists 'multiplication' $\mu_G: A \times B \to \hat{C}$ between (bounded rank) abelian groups: $G \hookrightarrow \begin{pmatrix} 1 & A & C \\ 0 & 1 & B \\ 0 & 0 & 1 \end{pmatrix}$.

Algebraic geometry and Mumford's classification can be avoided from proof above:

- Theorem part 1: may assume G' is cyclic.
- Theorem part 2: $\hat{M} = G/Z(G)$ has (a complex) $\mathbb{Z}[i]$ -module structure, ω non-degenerate
- $\exists decomposition \ \hat{M} = A + iA$. Set B = iA, $\mu_G = \omega|_{A \times B}$ (for some suitable $\hat{C} \supseteq G'$).

How to get the realising actions of G from Motivation?

- \hat{M} also has $\hat{C}[i]$ -module structure
- ullet \exists 'Hermitian form' h (over a commutative ring) on \hat{M} with $\Im h = \omega$
- \exists natural geometric space associated to h on which $G \subseteq \begin{pmatrix} 1 & A & C \\ 0 & 1 & B \\ 0 & 1 & B \end{pmatrix}$ acts

Dávid R Szabó

Corollary of Theorem: one can construct a certain action of G on invertible sheaves. Mumford ('66) classified finite subgroups of these automorphisms using matrix groups giving

Corollary (cf. Magidin (98) for more general, less concrete statement)

 \exists 'multiplication' $\mu_G: A \times B \to \hat{C}$ between (bounded rank) abelian groups: $G \hookrightarrow \begin{pmatrix} 1 & A & \hat{C} \\ 0 & 1 & B \\ 0 & 0 & 1 \end{pmatrix}$.

Algebraic geometry and Mumford's classification can be avoided from proof above:

- Theorem part 1: may assume G' is cyclic.
- Theorem part 2: $\hat{M} = G/Z(G)$ has (a complex) $\mathbb{Z}[i]$ -module structure, ω non-degenerate
- $\exists decomposition \ \hat{M} = A + iA$. Set B = iA, $\mu_G = \omega|_{A \times B}$ (for some suitable $\hat{C} \supseteq G'$).

How to get the realising actions of G from Motivation?

- \hat{M} also has $\hat{C}[i]$ -module structure
- ullet \exists 'Hermitian form' h (over a commutative ring) on \hat{M} with $\Im h = \omega$
- \exists natural geometric space associated to h on which $G \subseteq \begin{pmatrix} 1 & A & C \\ 0 & 1 & B \\ 0 & 1 & B \end{pmatrix}$ acts

Corollary of Theorem: one can construct a certain action of G on invertible sheaves. Mumford ('66) classified finite subgroups of these automorphisms using matrix groups giving

Corollary (cf. Magidin (98) for more general, less concrete statement)

 \exists 'multiplication' $\mu_G: A \times B \to \hat{C}$ between (bounded rank) abelian groups: $G \hookrightarrow \begin{pmatrix} 1 & A & \hat{C} \\ 0 & 1 & B \\ 0 & 0 & 1 \end{pmatrix}$.

Algebraic geometry and Mumford's classification can be avoided from proof above:

- Theorem part 1: may assume G' is cyclic.
- Theorem part 2: $\hat{M} = G/Z(G)$ has (a complex) $\mathbb{Z}[i]$ -module structure, ω non-degenerate
- $\exists decomposition \ \hat{M} = A + iA$. Set B = iA, $\mu_G = \omega|_{A \times B}$ (for some suitable $\hat{C} \supseteq G'$).

How to get the realising actions of G from Motivation?

- \hat{M} also has $\hat{C}[i]$ -module structure
- \exists 'Hermitian form' h (over a commutative ring) on \hat{M} with $\Im h = \omega$
- \exists natural geometric space associated to h on which $G \subseteq \begin{pmatrix} 1 & A & C \\ 0 & 1 & B \\ 1 & 1 & 1 \end{pmatrix}$ acts

Summary

Finite class ≤ 2 nilpotent groups

- is basically the largest family that can act simultaneously on a variety birationally.
- admit a structural decomposition using 2-generated groups via central/subdirect products.
- embed to concrete unitriangular matrix groups (facilitating computations, applications).

Thank you for your attention!

Selected bibliography

- [1] Dávid R Szabó. "Jordan Type Problems via Class 2 Nilpotent and Twisted Heisenberg Groups". PhD thesis. Central European University, 2021.
- [2] Balázs Csikós, László Pyber, and Endre Szabó. Finite subgroups of the homeomorphism group of a compact topological manifold are almost nilpotent. 2022. DOI: 10.48550/ARXIV.2204.13375. URL: https://arxiv.org/abs/2204.13375.
- [3] Attila Guld. Finite subgroups of the birational automorphism group are 'almost' nilpotent of class at most two. 2020. arXiv: 2004.11715 [math.AG].