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Dávid R. Szabó Rényi Institute, Budapest, Hungary

Finite Subgroups of Transformation Groups



Geometric motivation Structure results of class 2 nilpotent groups

Outline

1 Geometric motivation

2 Structure results of class 2 nilpotent groups
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Geometric motivation Structure results of class 2 nilpotent groups

A classical theorem

Question (Old for warm-up)

What are the (isomorphism classes of) finite subgroups of GL2(C)?

Answer (F. Klein): Cyclic central extensions of
family 1: cyclic groups, Cn (n ∈ N+) or [index 1]
family 2: dihedral groups, D2n (n ∈ N+) or [index 2]
3 other groups: A4, A5, S5 [index ≤ 5!]

Full list is not easy. Note: these are ‘almost’ abelian: ∃ normal abelian subgroup, index ≤ 5!.
What about GLn(C)? Full classification is hard, but. . .

Theorem (C. Jordan, 1877)

∀n ∈ N+ ∀ finite F ≤ GLn(C) is ‘almost abelian’, i.e. GLn(C) is Jordan, i.e.
∃Jn ∈ N+ ∀F ∃ abelian A◁ F with |F : A| ≤ Jn.

So F = extension of [an abelian group] by [some other one from a finite list].
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Analogous problem for transformation groups

GLn(C) ⇝ “transformation group” G :

Ω ∈ {compact manifolds, algebraic varieties}
faithful action via homeomorphisms/diffeomorphisms, resp. birational automorphisms

Question (Q1)

Are all finite subgroups of every transformation group are ‘almost’ abelian?

Past two decades: positive answer for many Ω’s (Mundet, Zimmermann, Serre, Popov,
Prokhorov, Shramov etc).

But negative for some Ω’s (from 2014 Csikós – Pyber – E. Szabó, Zarhin, Sz)
Idea: action of infinite family of finite Heisenberg, special p-groups (nilpotent of class 2)

Therefore G is not Jordan.
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Dávid R. Szabó Rényi Institute, Budapest, Hungary

Finite Subgroups of Transformation Groups



2/7

Geometric motivation Structure results of class 2 nilpotent groups

Analogous problem for transformation groups

GLn(C) ⇝ “transformation group” G :

Ω ∈ {compact manifolds, algebraic varieties}
faithful action via homeomorphisms/diffeomorphisms, resp. birational automorphisms

Question (Q1)

Are all finite subgroups of every transformation group are ‘almost’ abelian?

Past two decades: positive answer for many Ω’s (Mundet, Zimmermann, Serre, Popov,
Prokhorov, Shramov etc).

But negative for some Ω’s (from 2014 Csikós – Pyber – E. Szabó, Zarhin, Sz)
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Break – a natural local question ;)

Figure: Landscape at Le Lechere this afternoon
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Break – a natural local question ;)

Figure: Landscape at Le Lechere this afternoon

How close(=près) is G to being Jordan?
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Recent development

Are finite subgroups of every transformation group G ‘almost’ [family of groups to be found]?
Yes!

Theorem

birational automorphisms: nilpotent of class ≤ 2 [Guld, ’20]

homeomorphisms: nilpotent [Csikós – Pyber – E. Szabó, ’22]

True for some smaller family of groups?

Theorem (Sz’s thesis, 2022)

birational automorphisms: the theorem is optimal

homeomorphisms: lower bound: nilpotent of class ≤ 2 (conjecture: sharp)

Idea: action of all class 2 groups in both cases.
Tools: common group theory core for both cases (+ cohomologies, sheaves, number theory)
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Dávid R. Szabó Rényi Institute, Budapest, Hungary

Finite Subgroups of Transformation Groups



4/7

Geometric motivation Structure results of class 2 nilpotent groups

Recent development

Are finite subgroups of every transformation group G ‘almost’ [family of groups to be found]?
Yes!

Theorem

birational automorphisms: nilpotent of class ≤ 2 [Guld, ’20]

homeomorphisms: nilpotent [Csikós – Pyber – E. Szabó, ’22]
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Central product decomposition

Let G be a finite(ly generated) nilpotent group of class ≤ 2 (i.e. G ′ ⊆ Z(G )).
Previous counterexamples to Q1

work for G ′ ⊆ Z(G ) cyclic
can be extended to all finite 2-generated class ≤ 2 groups
can be naturally combined using central products (on external tensor product of bundles)

This and the structural description of special p-groups lead to an independent rediscovery of

Theorem (≈ Cheng, ’82)

1 ∃ subdirect product G ≤
∏d(Z(G))

i=1 Hi where H ′
i cyclic. (Done by induction.)

2 ∃ central product Hi = Zi � Ei,1 � . . . � Ei, 12 d(Hi/ Z(Hi ))
: Zi ≤ Z(Hi ), Ei,j 2-gen’d, class 2.

(Recall central product: H = K1 � . . . � Kn if H = K1 . . .Kn and [Ki ,Kj ] = 1 for i ̸= j .)
∃ classification of these building blocks Ei,j , cf. [Ahmad–Magidin–Morse, ’12] finite p case.
logp #(groups of order pn of class 2) = 2

27n
3 − 12

27n
2 [Higman ’60]

logp #(groups of order pn ) = 2
27n

3 +O(n8/3) [Sims, ’65]
Dávid R. Szabó Rényi Institute, Budapest, Hungary
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Idea for the Decomposition Theorem

Our proof (of ∃H = Z � E1 � . . . � Et): works for all orders (prime or not, odd or even, finite or
infinite) and gives bounds to the ranks (needed for the Motivation)

Consider the commutator map [−,−] : H × H → H ′.
1 [H ′, h] = [h,H ′] = 1 [descends]
2 [h, h] = 1 [alternating]
3 [h1h2, k] = [h1, k]

h2 [h2, k] = [h1, k][h2, k] (class 2) [linear in 1st argument]
4 Similarly [−,−] is a homomorphism in the other argument too [linear in 2nd argument]

Define Z-modules: M = H/H ′ and C = H ′ ⊆ Z(H).
[−,−] descends to an alternating Z-bilinear ω : M ×M → C , cf. symplectic vector spaces

Done by an alternating version of Smith normal form (C is cyclic): ∃d1 | · · · | dt ̸= 0 in C

[ω] = W = −W⊤ ∈ C n×n ∼ diag

(
0, . . . , 0︸ ︷︷ ︸

Z

,

(
0 d1

−d1 0

)
︸ ︷︷ ︸

E1

, . . . ,

(
0 dt

−dt 0

)
︸ ︷︷ ︸

Et

)
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Embedding to concrete Heisenberg groups

Corollary of Theorem: one can construct a certain action of G on invertible sheaves.
Mumford (’66) classified finite subgroups of these automorphisms using matrix groups giving

Corollary (cf. Magidin (98) for more general, less concrete statement)

∃ ‘multiplication’ µG : A× B → Ĉ between (bounded rank) abelian groups: G ↪→
(

1 A Ĉ
0 1 B
0 0 1

)
.

Algebraic geometry and Mumford’s classification can be avoided from proof above:

Theorem part 1: may assume G ′ is cyclic.
Theorem part 2: M̂ = G/Z(G ) has (a complex) Z[i ]-module structure, ω non-degenerate
∃decomposition M̂ = A+ iA. Set B = iA, µG = ω|A×B (for some suitable Ĉ ⊇ G ′).

How to get the realising actions of G from Motivation?

M̂ also has Ĉ [i ]-module structure
∃ ‘Hermitian form’ h (over a commutative ring) on M̂ with ℑh = ω

∃ natural geometric space associated to h on which G ⊆
(

1 A Ĉ
0 1 B
0 0 1

)
acts
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How to get the realising actions of G from Motivation?
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∃ ‘multiplication’ µG : A× B → Ĉ between (bounded rank) abelian groups: G ↪→
(

1 A Ĉ
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Summary

Finite class ≤ 2 nilpotent groups

1 is basically the largest family that can act simultaneously on a variety birationally.

2 admit a structural decomposition using 2-generated groups via central/subdirect products.

3 embed to concrete unitriangular matrix groups (facilitating computations, applications).

Thank you for your attention!
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