Group graded algebras over G-graded G-algebras

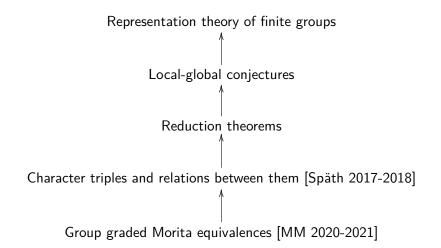
Virgilius-Aurelian Minuță

Babeș-Bolyai University of Cluj-Napoca Technical University of Cluj-Napoca

Young Group theorists workshop | Les Diablerets

07 September 2022

Introduction



Notations and preliminaries

Assumptions and notations

- G is a finite group, $N \trianglelefteq G$;
- $\bar{G} := G/N;$
- $\bullet~\mathcal{O}$ is an associative and commutative ring with unity $1\neq 0$

Definition

An algebra C is a \overline{G} -graded \overline{G} -acted \mathcal{O} -algebra if

- 2 \overline{G} acts on C (always on the left in this presentation);
- $\ \ \, {\bf 0} \ \ \, \forall \bar{h} \in \bar{G}, \, \forall c \in \mathcal{C}_{\bar{h}} \ \ \, \text{we have that} \ \ ^{\bar{g}}c \in \mathcal{C}_{\bar{s}\bar{h}} \ \, \text{for all} \ \ \, \bar{g} \in \bar{G}.$

Examples of \overline{G} -graded \overline{G} -acted \mathcal{O} -algebras

Example 1

- Let $A = \bigoplus_{\bar{g} \in \bar{G}} A_{\bar{g}}$ be a strongly \bar{G} -graded \mathcal{O} -algebra $(A_{\bar{g}}A_{\bar{h}} = A_{\bar{g}\bar{h}}, \text{ for all } \bar{g}, \bar{h} \in \bar{G}).$
- Let $B := A_1$.
- Then, the centralizer $C_A(B)$ of B in A is a \overline{G} -graded \overline{G} -acted \mathcal{O} -algebra.

Example 2

• $C := OC_G(N)$ is a \overline{G} -graded \overline{G} -acted algebra:

G-graded \mathcal{O} -algebras over \mathcal{C}

• Let \mathcal{C} be a \overline{G} -graded \overline{G} -acted \mathcal{O} -algebra.

Definition

We say that A is a \bar{G} -graded O-algebra over C if there is a \bar{G} -graded \bar{G} -acted algebra homomorphism

$$\zeta: \mathcal{C} \to \mathcal{C}_{\mathcal{A}}(\mathcal{B}),$$

i.e. for any $\bar{h} \in \bar{G}$ and $c \in C_{\bar{h}}$, we have $\zeta(c) \in C_A(B)_{\bar{h}}$, and for every $\bar{g} \in \bar{G}$, $\zeta(\bar{g}c) = \bar{g}\zeta(c)$.

Example 1

If $b \in Z(\mathcal{O}N)$ is a \overline{G} -invariant block idempotent, then $A := b\mathcal{O}G$ is a \overline{G} -graded crossed product $(hU(A) \cap A_{\overline{g}} \neq \emptyset$, for all $\overline{g} \in \overline{G}$) over $\mathcal{C} := \mathcal{O}C_G(N)$, with structural map induced by inclusion. Note that $B := A_1 = b\mathcal{O}N$.

2. \overline{G} -graded \mathcal{O} -algebras over \mathcal{C}

Examples of \overline{G} -graded \mathcal{O} -algebras over \mathcal{C}

Example 2

- Let $G' \leq G$ such that G = G'N.
- Let $N' = G' \cap N$, hence $N' \trianglelefteq G'$.
- Therefore $\overline{G} := G/N \simeq G'/N'$.

- Let $b' \in Z(\mathcal{O}N')$ be a \overline{G} -invariant block idempotent.
- Let $A' := b'\mathcal{O}G'$, which is clearly a \overline{G} -graded crossed product, with $B' := A'_1 = b'\mathcal{O}N'$.
- If $C_G(N) \subseteq G'$, then A' is a \overline{G} -graded algebra over $\mathcal{C} := \mathcal{O}C_G(N)$, with structural map also induced by inclusion.

G-graded bimodules over C

• Let A and A' be two \overline{G} -graded crossed products over C, with $B := A_1$ and $B' := A'_1$.

Definition

• We say that \tilde{M} is a \bar{G} -graded (A, A')-bimodule over C if:

- \tilde{M} is an (A, A')-bimodule; • \tilde{M} has a decomposition $\tilde{M} = \bigoplus_{\bar{g} \in \bar{G}} \tilde{M}_{\bar{g}}$ such that $A_{\bar{g}} \tilde{M}_{\bar{x}} A'_{\bar{h}} \subseteq \tilde{M}_{\bar{g}\bar{x}\bar{h}}$, for all $\bar{g}, \bar{x}, \bar{h} \in \bar{G}$;
- $\begin{array}{l} \bullet \quad \tilde{m}_{\overline{g}} \cdot c = {}^{\overline{g}} c \cdot \tilde{m}_{\overline{g}}, \text{ for all } c \in \mathcal{C}, \tilde{m}_{\overline{g}} \in \tilde{M}_{\overline{g}}, \overline{g} \in \overline{G}, \text{ where } c \cdot \tilde{m} = \zeta(c) \cdot \tilde{m} \text{ and } \\ \tilde{m} \cdot c = \tilde{m} \cdot \zeta'(c), \text{ for all } c \in \mathcal{C}, \tilde{m} \in \tilde{M}. \end{array}$

2 \overline{G} -graded (A, A')-bimodules over C form a category,

 $A\text{-}\mathsf{Gr}/\mathcal{C}\text{-}A',$

where the morphisms between \overline{G} -graded (A, A')-bimodules over C are just homomorphism between \overline{G} -graded (A, A')-bimodules.

• We consider the diagonal part of $A \otimes_{\mathcal{C}} A'^{op}$:

$$\Delta^{\mathcal{C}} := \Delta(A \otimes_{\mathcal{C}} A'^{op}) := igoplus_{ar{g} \in ar{G}} A_{ar{g}} \otimes_{\mathcal{C}} A'_{ar{g}^{-1}},$$

which is clearly well-defined.

Lemma-Example

 $\Lambda^{\mathcal{C}}$

- $\Delta^{\mathcal{C}}$ is an \mathcal{O} -algebra;
- $A \otimes_{\mathcal{C}} A'^{op}$ is a right $\Delta^{\mathcal{C}}$ -module and a \overline{G} -graded (A, A')-bimodule over \mathcal{C} .

Theorem

We have three naturally isomorphic equivalences of categories, and their inverse is $(-)_1$:

• Let M be a $\Delta^{\mathcal{C}}$ -module, then $A \otimes_B M$, $M \otimes_{B'} A'$ and $(A \otimes_{\mathcal{C}} A'^{op}) \otimes_{\Delta^{\mathcal{C}}} M$ are isomorphic as \overline{G} -graded (A, A')-bimodules over \mathcal{C} . We shall denote them by \widetilde{M} .

\overline{G} -graded Morita equivalences over \mathcal{C}

Let *M* be a *G*-graded (*A*, *A'*)-bimodule over *C*, then its *A*-dual *M*^{*} = Hom_A(*M*, *A*) of *M* is a *G*-graded (*A'*, *A*)-bimodule over *C*.

Definition

We say that \tilde{M} induces a \bar{G} -graded Morita equivalence over C between A and A', if the following conditions hold:

•
$$\tilde{M} \otimes_{A'} \tilde{M}^* \cong A$$
 as \bar{G} -graded (A, A) -bimodules over C ;

 $\widetilde{M}^* \otimes_A \widetilde{M} \cong A' \text{ as } \overline{G}\text{-graded } (A', A')\text{-bimodules over } \mathcal{C}.$

G-graded Morita equivalences over C

Theorem

Let ${}_{B}M_{B'}$ and ${}_{B'}M^{*}{}_{B} := \text{Hom}_{B}(M, B)$ (the *B*-dual of *M*) be two bimodules that induce a Morita equivalence between *B* and *B*':

$$B \xrightarrow{M^* \otimes_B -} B' \xrightarrow{M \otimes_{B'} -} B'$$

If *M* extends to a Δ^{C} -module, then we have the following:

- M^* becomes a $\Delta(A' \otimes_C A^{op})$ -module;
- $\widetilde{M} := (A \otimes_C A'^{op}) \otimes_{\Delta^C} M \text{ and } \widetilde{M}^* := (A' \otimes_C A^{op}) \otimes_{\Delta(A' \otimes_C A^{op})} M^* \text{ are } \overline{G} \text{-graded bimodules}$ over C and they induce a \overline{G} -graded Morita equivalence over C between A and A':

$$A \xrightarrow{\sim} A'.$$

5. The butterfly theorem for group graded Morita equivalences over $\ensuremath{\mathcal{C}}$

Main framework

Assumptions and notations

- $G' \leq G$, such that G = G'N
- $N' = G' \cap N$, hence $N' \trianglelefteq G'$
- Therefore, $\overline{G} := G/N \simeq G'/N'$.



- $b \in Z(\mathcal{O}N)$ and $b' \in Z(\mathcal{O}N')$ are $ar{G}$ -invariant block idempotents
- A := bOG and A' := b'OG', which are \overline{G} -graded crossed products
- $B := A_1 = b\mathcal{O}N$ and $B' := A'_1 = b'\mathcal{O}N'$
- Assume $C_G(N) \subseteq G'$, hence A and A' are \overline{G} -graded crossed products over $\mathcal{C} := \mathcal{O}C_G(N)$

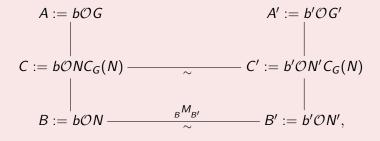
Proposition

Assume that:

Ø M induces a Morita equivalence between B and B';

$$I m = mz, \text{ for all } m \in M \text{ and } z \in Z(N).$$

Then there is a $\overline{C}_G(N) := NC_G(N)/N$ -graded Morita equivalence between C and C' over $C := \mathcal{O}C_G(N)$



induced by the $\overline{C}_G(N)$ -graded (C, C')-bimodule over \mathcal{C} $C \otimes_B M \simeq M \otimes_{B'} C' \simeq (C \otimes_{\mathcal{C}} C'^{\mathrm{op}}) \otimes_{\Delta(C \otimes_{\mathcal{C}} C'^{\mathrm{op}})} M.$

The butterfly theorem for group graded Morita equivalences over $\ensuremath{\mathcal{C}}$

The butterfly theorem for group graded Morita equivalences over ${\mathcal C}$

Let \hat{G} be another finite group with normal subgroup N, such that the block b is also \hat{G} -invariant. Assume that:

 $G_G(N) \subseteq G',$

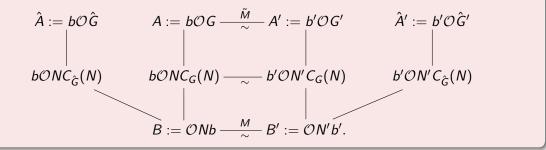
2 \tilde{M} induces a \bar{G} -graded Morita equivalence over C between A and A';

③ the conjugation maps ε : G → Aut(N) and $\hat{\varepsilon}$: \hat{G} → Aut(N) satisfy ε (G) = $\hat{\varepsilon}(\hat{G})$.

Denote $\hat{G}' = \hat{\varepsilon}^{-1}(\varepsilon(G'))$. Then there is a \hat{G}/N -graded Morita equivalence over $\hat{C} := \mathcal{O}C_{\hat{G}}(N)$ between $\hat{A} := b\mathcal{O}\hat{G}$ and $\hat{A}' := b'\mathcal{O}\hat{G}'$.

The butterfly theorem for group graded Morita equivalences over ${\mathcal C}$

The butterfly theorem for group graded Morita equivalences over ${\mathcal C}$



References I

ㅣ A. Marcus, V. A. Minuță

Group graded endomorphism algebras and Morita equivalences Mathematica **62 (85)** (2020), pp. 73–80

A. Marcus, V. A. Minuță Character triples and equivalences over a group graded G-algebra

J. Algebra 565 (2021), pp. 98–127

📄 A. Marcus, V. A. Minuță

Blockwise relations between triples, and derived equivalences for wreath products Comm. Algebra **49** (2021), pp. 2941–2951

🚺 V. A. Minuță

Graded Morita theory over a G-graded G-acted algebra Acta Univ. Sapientiae Math. **12** (2020), pp. 164–178

🚺 V. A. Minuță

Group graded Morita equivalences for wreath products Stud. Univ. Babes-Bolyai Math. **66** (2021), pp. 411–422

B. Späth

A reduction theorem for Dade's projective conjecture

J. Eur. Math. Soc. (JEMS) 19 (2017), pp. 1071–1126

B. Späth

Inductive Conditions for Counting Conjectures via Character Triples In: Representation theory–current trends and perspectives EMS Ser. Congr. Rep., Zürich (2017), pp. 665–680

B. Späth

Reduction theorems for some global-local conjectures In: Local Representation Theory and Simple Groups EMS Ser. Lect. Math., Zürich (2018), pp. 23–61