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Introduction

Representation theory of finite groups
OO

Local-global conjectures
OO

Reduction theoremsOO

Character triples and relations between them [Späth 2017-2018]
OO

Group graded Morita equivalences [MM 2020-2021]



1. Notations and preliminaries

Notations and preliminaries

Assumptions and notations
G is a finite group, N E G ;
Ḡ := G/N;
O is an associative and commutative ring with unity 1 6= 0

Definition
An algebra C is a Ḡ-graded Ḡ-acted O-algebra if

1 C is Ḡ-graded, i.e. C = ⊕ḡ∈ḠCḡ and CḡCh̄ ⊆ Cḡ h̄, for all ḡ , h̄ ∈ Ḡ ;
2 Ḡ acts on C (always on the left in this presentation);
3 ∀h̄ ∈ Ḡ , ∀c ∈ Ch̄ we have that cḡ ∈ C h̄ḡ for all ḡ ∈ Ḡ .
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Examples of Ḡ-graded Ḡ-acted O-algebras

Example 1
Let A =

⊕
ḡ∈Ḡ Aḡ be a strongly Ḡ-graded O-algebra (AḡAh̄ = Aḡ h̄, for all ḡ , h̄ ∈ Ḡ).

Let B := A1.
Then, the centralizer CA(B) of B in A is a Ḡ-graded Ḡ-acted O-algebra.

Example 2
C := OCG(N) is a Ḡ-graded Ḡ-acted algebra:
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Ḡ-graded O-algebras over C

Let C be a Ḡ-graded Ḡ-acted O-algebra.

Definition
We say that A is a Ḡ-graded O-algebra over C if there is a Ḡ-graded Ḡ-acted algebra
homomorphism

ζ : C → CA(B),

i.e. for any h̄ ∈ Ḡ and c ∈ Ch̄, we have ζ(c) ∈ CA(B)h̄, and for every ḡ ∈ Ḡ , ζ( cḡ ) = ζ(c)ḡ .

Example 1
If b ∈ Z(ON) is a Ḡ-invariant block idempotent, then A := bOG is a Ḡ-graded crossed
product (hU(A) ∩ Aḡ 6= ∅, for all ḡ ∈ Ḡ) over C := OCG(N), with structural map induced by
inclusion. Note that B := A1 = bON.
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Examples of Ḡ-graded O-algebras over C

Example 2
Let G ′ ≤ G such that G = G ′N.
Let N ′ = G ′ ∩ N, hence N ′ E G ′.
Therefore Ḡ := G/N ' G ′/N ′.

G

N G ′

N ′

Let b′ ∈ Z (ON ′) be a Ḡ-invariant block idempotent.
Let A′ := b′OG ′, which is clearly a Ḡ-graded crossed product, with B′ := A′1 = b′ON ′.
If CG(N) ⊆ G ′, then A′ is a Ḡ-graded algebra over C := OCG(N), with structural map
also induced by inclusion.
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Ḡ-graded bimodules over C

Let A and A′ be two Ḡ-graded crossed products over C, with B := A1 and B′ := A′1.

Definition
1 We say that M̃ is a Ḡ-graded (A,A′)-bimodule over C if:

1 M̃ is an (A,A′)-bimodule;
2 M̃ has a decomposition M̃ =

⊕
ḡ∈Ḡ M̃ḡ such that AḡM̃x̄ A′

h̄ ⊆ M̃ḡ x̄ h̄, for all ḡ , x̄ , h̄ ∈ Ḡ ;
3 m̃ḡ · c = cḡ · m̃ḡ , for all c ∈ C, m̃ḡ ∈ M̃ḡ , ḡ ∈ Ḡ , where c · m̃ = ζ(c) · m̃ and

m̃ · c = m̃ · ζ ′(c), for all c ∈ C, m̃ ∈ M̃.
2 Ḡ-graded (A,A′)-bimodules over C form a category,

A-Gr/C-A′,

where the morphisms between Ḡ-graded (A,A′)-bimodules over C are just homomorphism
between Ḡ-graded (A,A′)-bimodules.
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∆C

We regard A′op as a Ḡ-graded algebra with components (A′op)ḡ = A′ḡ−1 , ∀ḡ ∈ Ḡ .
We consider the diagonal part of A⊗C A′op:

∆C := ∆(A⊗C A′op) :=
⊕
ḡ∈Ḡ

Aḡ ⊗C A′ḡ−1 ,

which is clearly well-defined.

Lemma-Example
∆C is an O-algebra;
A⊗C A′op is a right ∆C-module and a Ḡ-graded (A,A′)-bimodule over C.
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∆C

Theorem
We have three naturally isomorphic equivalences of categories, and their inverse is (−)1:

∆C-mod //
//

(A⊗CA′op)⊗∆C−, A⊗B−,−⊗B′A′
//

A-Gr/C-A′.
(−)1

oo

Let M be a ∆C-module, then A⊗B M, M ⊗B′ A′ and (A⊗C A′op)⊗∆C M are isomorphic
as Ḡ-graded (A,A′)-bimodules over C. We shall denote them by M̃.
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Ḡ-graded Morita equivalences over C

Let M̃ be a Ḡ-graded (A,A′)-bimodule over C, then its A-dual M̃∗ = HomA(M̃,A) of M̃
is a Ḡ-graded (A′,A)-bimodule over C.

Definition
We say that M̃ induces a Ḡ-graded Morita equivalence over C between A and A′, if the
following conditions hold:

1 M̃ ⊗A′ M̃∗ ∼= A as Ḡ-graded (A,A)-bimodules over C;
2 M̃∗ ⊗A M̃ ∼= A′ as Ḡ-graded (A′,A′)-bimodules over C.
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Ḡ-graded Morita equivalences over C

Theorem
Let MB B′ and M∗B′ B := HomB (M,B) (the B-dual of M) be two bimodules that induce a
Morita equivalence between B and B′:

B
M∗⊗B− // B′
M⊗B′−

oo

If M extends to a ∆C -module, then we have the following:
1 M∗ becomes a ∆(A′ ⊗C Aop)-module;
2 M̃ := (A⊗C A′op)⊗∆C M and M̃∗ := (A′⊗C Aop)⊗∆(A′⊗C Aop) M∗ are Ḡ-graded bimodules

over C and they induce a Ḡ-graded Morita equivalence over C between A and A′:

A
∼ // A′.oo
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Main framework

Assumptions and notations
G ′ ≤ G , such that G = G ′N
N ′ = G ′ ∩ N, hence N ′ E G ′

Therefore, Ḡ := G/N ' G ′/N ′.
G

N G ′

N ′

b ∈ Z (ON) and b′ ∈ Z (ON ′) are Ḡ-invariant block idempotents
A := bOG and A′ := b′OG ′, which are Ḡ-graded crossed products
B := A1 = bON and B′ := A′1 = b′ON ′

Assume CG(N) ⊆ G ′, hence A and A′ are Ḡ-graded crossed products over C := OCG(N)
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Proposition
Assume that:

1 CG(N) ⊆ G ′;
2 M induces a Morita equivalence between B and B′;
3 zm = mz , for all m ∈ M and z ∈ Z (N).

Then there is a C̄G(N) := NCG(N)/N-graded Morita equivalence between C and C ′ over
C := OCG(N)

A := bOG A′ := b′OG ′

C := bONCG(N) ∼ C ′ := b′ON ′CG(N)

B := bON
MB B′

∼ B′ := b′ON ′,

induced by the C̄G(N)-graded (C ,C ′)-bimodule over C
C ⊗B M ' M ⊗B′ C ′ ' (C ⊗C C ′op)⊗∆(C⊗CC ′op) M.
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The butterfly theorem for group graded Morita equivalences over C

The butterfly theorem for group graded Morita equivalences over C

Let Ĝ be another finite group with normal subgroup N, such that the block b is also
Ĝ-invariant. Assume that:

1 CG(N) ⊆ G ′,
2 M̃ induces a Ḡ-graded Morita equivalence over C between A and A′;
3 the conjugation maps ε : G → Aut(N) and ε̂ : Ĝ → Aut(N) satisfy ε(G) = ε̂(Ĝ).

Denote Ĝ ′ = ε̂−1(ε(G ′)). Then there is a Ĝ/N-graded Morita equivalence over Ĉ := OCĜ(N)
between Â := bOĜ and Â′ := b′OĜ ′.
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The butterfly theorem for group graded Morita equivalences over C

The butterfly theorem for group graded Morita equivalences over C

Â := bOĜ A := bOG M̃
∼ A′ := b′OG ′ Â′ := b′OĜ ′

bONCĜ(N) bONCG(N) ∼ b′ON ′CG(N) b′ON ′CĜ(N)

B := ONb M
∼ B′ := ON ′b′.
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