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Motivation

Universe of finite groups

By the Jordan-Hölder Theorem, the building blocks are given by finite

simple groupsy
Classification of finite simple groups

Universe of infinite groups

Too huge and too diverse for a classificationy
We divide them accordingly to the nature of some invariants
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By the Jordan-Hölder Theorem, the building blocks are given by finite

simple groupsy
Classification of finite simple groups

Universe of infinite groups

Too huge and too diverse for a classificationy
We divide them accordingly to the nature of some invariants

2



Motivation

Universe of finite groups
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Subgroup growth

Let G be a finitely generated group.

an(G )  number of subgroups of index n

sn(G )  number of subgroups of index at most n

The study of the asymptotic behaviour of sn(G )  subgroup growth

A group G has polynomial subgroup growth if there exist a, c > 0 such

that

sn(G ) ≤ cna.

A key result [Lubotzky, Mann, and Segal (1993)]

Complete characterization of finitely generated groups with polynomial

subgroup growth in terms of algebraic properties.
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Motivation

Profinite groups

A profinite group G is an inverse limit of a system of finite groups

G = lim←−Gk .

A profinite group is a Hausdorff, compact, and totally disconnected

topological group.
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Subgroup growth

Let G be a finitely generated profinite group.

an(G )  number of open subgroups of index n

sn(G )  number of open subgroups of index at most n

The study of the asymptotic behaviour of sn(G )  subgroup growth

A profinite group G has polynomial subgroup growth if there exist

a, c > 0 such that

sn(G ) ≤ cna.

A key result [Segal and Shalev (1996)]

Complete characterization of finitely generated profinite groups with

polynomial subgroup growth in terms of algebraic properties.
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Representation Growth

Let G be a finitely generated group. A (complex) representation of G of

dimension n is a group homomorphism

ρ : G → GLn(C).

rn(G )  number of irreducible representations of dimension n, up

to isomorphism

Rn(G )  number of irreducible representations of dimension at most

n, up to isomorphism

If rn(G ) <∞ for all n ∈ N  G is (representation) rigid

Asymptotic behaviour of Rn(G )  representation growth

A group G has polynomial representation growth if there exist a, c > 0

such that

Rn(G ) ≤ cna.

α(G )  minimal degree of polynomial representation growth of G .
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Representation Growth

Let G be a finitely generated profinite group. A (complex) representation

of G of dimension n is a continuous group homomorphism

ρ : G → GLn(C).

rn(G )  number of irreducible representations of dimension n, up

to isomorphism

Rn(G )  number of irreducible representations of dimension at most

n, up to isomorphism

If rn(G ) <∞ for all n ∈ N  G is (representation) rigid

Asymptotic behaviour of Rn(G )  representation growth

A group G has polynomial representation growth if there exist a, c > 0

such that
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Representation rigidity

Can we characterize rigid groups in terms of algebraic properties?

In general → No

For finitely generated profinite groups → Yes

Lemma [Bass, Lubotzky, Magid, and Mozes (2002)]

Let G be a finitely generated profinite group. Then G is rigid if and only

if G is FAb, i.e. H/[H,H] is finite for every open subgroup H of G .
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Semisimple profinite groups

In the class of profinite groups, we consider the subclass of semisimple

profinite groups

G =
∏
i∈N

Si , where each Si is a non-abelian finite simple group.

The classification of finite simple groups says that every finite

non-abelian simple group is

• an alternating group Alt(n) for n ≥ 5 or;
• a simple group of Lie type or;
• a sporadic group.

Subclass A
Product of alternating groups

Subclass L
Product of simple groups of Lie type
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Examples

Subclass A
Product of alternating groups

Subclass L
Product of simple groups of Lie type

∏
i≥5

Alt(i)

∏
i≥1

PSL2(pi )

∏
i≥1

PSLi (p)
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Examples
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Rigidity for semisimple profinite groups

Recall:

Lemma [Bass, Lubotzky, Magid, and Mozes (2002)]

Let G be a finitely generated profinite group. Then G is rigid if and only

if G is FAb, i.e. H/[H,H] is finite for every open subgroup H of G .

Finitely generated semisimple profinite groups are always rigid.

Use the fact that finite non-abelian simple groups are perfect.
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Representation zeta function

To better study the representation growth, we encode the informations

that we have, in the representation zeta function

ζG (s) =
∞∑
n=1

rn(G )n−s =
∑

χ∈Irr(G)

χ(1)−s , s ∈ C

α(G ) = inf{a |Rn(G ) = O(na)}

= lim sup
n→∞

logRn(G )

log n
.

ζG (s) converges when Re(s) > α(G )

α(G ) Re(s)

Im(s)

For PSL2(q) and q ≡ 1 mod 4, we have

ζPSL2(q)(s) = 1+q−s +
q − 5

4
·(q+1)−s +2·

(
q + 1

2

)−s
+
q − 1

4
·(q−1)−s

∼ 1+q1−s

12



Representation zeta function

To better study the representation growth, we encode the informations

that we have, in the representation zeta function

ζG (s) =
∞∑
n=1

rn(G )n−s =
∑

χ∈Irr(G)

χ(1)−s , s ∈ C

α(G ) = inf{a |Rn(G ) = O(na)}

= lim sup
n→∞

logRn(G )

log n
.

ζG (s) converges when Re(s) > α(G )

α(G ) Re(s)

Im(s)

For PSL2(q) and q ≡ 1 mod 4, we have

ζPSL2(q)(s) = 1+q−s +
q − 5

4
·(q+1)−s +2·

(
q + 1

2

)−s
+
q − 1

4
·(q−1)−s

∼ 1+q1−s

12



Representation zeta function

To better study the representation growth, we encode the informations

that we have, in the representation zeta function

ζG (s) =
∞∑
n=1

rn(G )n−s =
∑

χ∈Irr(G)

χ(1)−s , s ∈ C

α(G ) = inf{a |Rn(G ) = O(na)}

= lim sup
n→∞

logRn(G )

log n
.

ζG (s) converges when Re(s) > α(G )

α(G ) Re(s)

Im(s)

For PSL2(q) and q ≡ 1 mod 4, we have

ζPSL2(q)(s) = 1+q−s +
q − 5

4
·(q+1)−s +2·

(
q + 1

2

)−s
+
q − 1

4
·(q−1)−s

∼ 1+q1−s
12



Example

For PSL2(q) and q ≡ 1 mod 4, we have

ζPSL2(q)(s) = 1+q−s +
q − 5

4
·(q+1)−s +2·

(
q + 1

2

)−s
+
q − 1

4
·(q−1)−s

∼ 1+q1−s

Let G =
∏

i≥1 PSL2(pi ).

Then

ζG (s) =
∏
i≥1

ζPSL2(pi )(s) ∼
∏
i≥1

1 + pi(1−s)

It converges ⇔
∑
i≥1

pi(1−s) converges

⇔ Re(s) > 1
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State of the art

Theorem [Kassabov and Nikolov (2006)]

For any a > 0, there exists a group G ∈ A that has polynomial

representation growth and such that α(G ) = a.

Theorem [Garćıa-Rodŕıguez and Klopsch (2016)]

For any a > 0, there exists a group G ∈ L that has polynomial

representation growth and such that α(G ) = a.
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Further algebraic properties

Are the groups considered profinite completions?

A profinite group G is a profinite completion if there exists a finitely

generated abstract group H such that

G ∼= Ĥ

Do we have a criterion for a profinite group to be a profinite completion?

In general → No

For semisimple profinite groups → Yes

Theorem [Kassabov and Nikolov (2006)]

Let G be semisimple profinite group i.e. G =
∏

i∈N Si .

If G is finitely generated then

rkSi →∞⇔ G is a profinite completion.

Recall : rk S = n if S = Alt(n) and rk S = rk L if S is a simple group of Lie type L.
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Do we have a criterion for a profinite group to be a profinite completion?

In general → No

For semisimple profinite groups → Yes

Theorem [Kassabov and Nikolov (2006)]

Let G be semisimple profinite group i.e. G =
∏

i∈N Si .

If G is finitely generated then

rkSi →∞⇔ G is a profinite completion.

Recall : rk S = n if S = Alt(n) and rk S = rk L if S is a simple group of Lie type L.

15



Further algebraic properties

Are the groups considered profinite completions?

A profinite group G is a profinite completion if there exists a finitely

generated abstract group H such that

G ∼= Ĥ
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Examples

Subclass A
Product of alternating groups

Subclass L
Product of simple groups of Lie type

∏
i≥5

Alt(i)

∏
i≥1

PSL2(pi )

∏
i≥1

PSLi (p)

16



State of the art

Theorem [Kassabov and Nikolov (2006)]

For any a > 0, there exists a group G ∈ A that has polynomial

representation growth and such that α(G ) = a. Moreover, G is a

profinite completion.

Theorem [Garćıa-Rodŕıguez and Klopsch (2016)]

For any a > 0, there exists a group G ∈ L that has polynomial

representation growth and such that α(G ) = a.

The groups constructed in the proof are not profinite completions.
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New result

Theorem [Kassabov and Nikolov (2006)]

For any a > 0, there exists a group G ∈ A that has polynomial

representation growth and such that α(G ) = a. Moreover, G is a

profinite completion.

Theorem [P.]

For any a > 0, there exists a group G ∈ L that has polynomial

representation growth and such that α(G ) = a. Moreover, G is a

profinite completion.
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Further interests

Study the spectrum of growth for d-generated semisimple profinite

groups, where d ∈ N≥2.

A profinite group is positively finitely generated if for some d , the

probability that d random elements generate G is positive.

Study the interplay of groups of the class of semisimple profinite groups

with polynomial representation growth and those that are positively

finitely generated.
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Thank you
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