Average number of zeros of characters of finite groups

S. Y. Madanha University of Pretoria

Young Group Theorists Workshop, Les Diablerets 4 - 9 September, 2022

Notation

Average character degree of a finite group

Zeros of Characters

Average number of zeros of characters of a finite group

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Irr(G)-set of irreducible characters of G.

 $\chi(1)$ - degree of a character. If $\chi(1) = 1$, then χ is called a

linear character.

 χ is invariant on conjugacy classes.

Irr(G)-set of irreducible characters of G.

 $\chi(1)$ - degree of a character. If $\chi(1) = 1$, then χ is called a

linear character. χ is invariant on conjugacy classes.

Irr(G)-set of irreducible characters of G.

 $\chi(1)$ - degree of a character. If $\chi(1) = 1$, then χ is called a

linear character.

 χ is invariant on conjugacy classes.

Irr(G)-set of irreducible characters of G.

 $\chi(1)$ - degree of a character. If $\chi(1) = 1$, then χ is called a

linear character.

 χ is invariant on conjugacy classes.

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

3

Fundamental question

Every finite group has an associated character table.

How does the information of a character table of a particular group affect its structure?

Sesuai Yash Madanha(University of Pretoria) Average number of zeros of characters

Fundamental question

Every finite group has an associated character table.

How does the information of a character table of a particular group affect its structure?

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Average character degree

Definition. Let $T(G) = \sum_{\chi \in Irr(G)} \chi(1)$, k(G) the number of conjugacy classes. Then k(G) = |Irr(G)|. Define the average character degree of *G* by

$$\operatorname{acd}(G) := \frac{T(G)}{|\operatorname{Irr}(G)|}.$$

Examples: $\operatorname{acd}(G) = 1$ when G is abelian, $\operatorname{acd}(A_5) = \frac{16}{5}$, $\operatorname{acd}(A_4) = \frac{3}{2}$.

Average character degree

Definition. Let $T(G) = \sum_{\chi \in Irr(G)} \chi(1)$, k(G) the number of conjugacy classes. Then k(G) = |Irr(G)|. Define the average character degree of *G* by

$$\operatorname{acd}(G) := rac{T(G)}{|\operatorname{Irr}(G)|}.$$

Examples: $\operatorname{acd}(G) = 1$ when G is abelian, $\operatorname{acd}(A_5) = \frac{16}{5}$, $\operatorname{acd}(A_4) = \frac{3}{2}$.

Average character degree

How does the average character degree of a finite group affect its structure?

Theorem.(Magaard and Tong-Viet, 2011) If acd(G) < 2, then G is solvable.

Conjecture 1. (Magaard and Tong-Viet, 2011) If $acd(G) \leq 3$, then *G* is solvable.

Average character degree

How does the average character degree of a finite group affect its structure?

Theorem. (Magaard and Tong-Viet, 2011) If acd(G) < 2, then G is solvable.

Conjecture 1. (Magaard and Tong-Viet, 2011) If $acd(G) \leq 3$, then *G* is solvable.

Average character degree

How does the average character degree of a finite group affect its structure?

Theorem. (Magaard and Tong-Viet, 2011) If acd(G) < 2, then G is solvable.

Conjecture 1. (Magaard and Tong-Viet, 2011) If $acd(G) \leq 3$, then *G* is solvable.

・ロット (母) ・ ヨ) ・ ・ ヨ)

Average character degree

Theorem.(Isaacs, Loukaki and Moretó, 2013) Conjecture 1 holds.

Theorem.(Isaacs, Loukaki and Moretó, 2013) If $acd(G) < \frac{3}{2}$, then *G* is supersolvable.

Theorem.(Isaacs, Loukaki and Moretó, 2013) If *G* is of odd order and $acd(G) < \frac{27}{11}$, then *G* is supersolvable.

Theorem. (Isaacs, Loukaki and Moretó, 2013) If $acd(G) < \frac{4}{3}$, then G is nilpotent.

< 日 > < 回 > < 回 > < 回 > < 回 > <

Average character degree

Theorem.(Isaacs, Loukaki and Moretó, 2013) Conjecture 1 holds.

Theorem.(Isaacs, Loukaki and Moretó, 2013) If $acd(G) < \frac{3}{2}$, then *G* is supersolvable.

Theorem.(Isaacs, Loukaki and Moretó, 2013) If *G* is of odd order and $acd(G) < \frac{27}{11}$, then *G* is supersolvable.

Theorem. (Isaacs, Loukaki and Moretó, 2013) If $acd(G) < \frac{4}{3}$, then G is nilpotent.

・ロト ・四ト ・ヨト ・ヨト

Average character degree

Theorem.(Isaacs, Loukaki and Moretó, 2013) Conjecture 1 holds.

Theorem.(Isaacs, Loukaki and Moretó, 2013) If $acd(G) < \frac{3}{2}$, then *G* is supersolvable.

Theorem.(Isaacs, Loukaki and Moretó, 2013) If *G* is of odd order and $acd(G) < \frac{27}{11}$, then *G* is supersolvable.

Theorem. (Isaacs, Loukaki and Moretó, 2013) If $acd(G) < \frac{4}{3}$, then G is nilpotent.

Average character degree

Theorem.(Isaacs, Loukaki and Moretó, 2013) Conjecture 1 holds.

Theorem.(Isaacs, Loukaki and Moretó, 2013) If $acd(G) < \frac{3}{2}$, then *G* is supersolvable.

Theorem.(Isaacs, Loukaki and Moretó, 2013) If *G* is of odd order and $acd(G) < \frac{27}{11}$, then *G* is supersolvable.

Theorem.(Isaacs, Loukaki and Moretó, 2013) If $acd(G) < \frac{4}{3}$, then *G* is nilpotent.

・ロト ・四ト ・ヨト ・ヨト

Average character degree

Conjecture 2.(Isaacs, Loukaki and Moretó, 2013) If $acd(G) < \frac{16}{5}$, then *G* is solvable.

Theorem.(Moretó and Nguyen, 2014) Conjecture 2 holds.

The bounds are optimal. $\operatorname{acd}(A_5) = \frac{16}{5}$, $\operatorname{acd}(A_4) = \frac{3}{2}$ and $\operatorname{acd}(S_3) = \frac{4}{3}$.

< 日 > < 回 > < 回 > < 回 > < 回 > <

Average character degree

Conjecture 2.(Isaacs, Loukaki and Moretó, 2013) If $acd(G) < \frac{16}{5}$, then *G* is solvable.

Theorem.(Moretó and Nguyen, 2014) Conjecture 2 holds.

The bounds are optimal. $\operatorname{acd}(A_5) = \frac{16}{5}$, $\operatorname{acd}(A_4) = \frac{3}{2}$ and $\operatorname{acd}(S_3) = \frac{4}{3}$.

Sesuai Yash Madanha(University of Pretoria) Average number of zeros of characters

・ロト ・四ト ・ヨト

э

Average character degree

Conjecture 2.(Isaacs, Loukaki and Moretó, 2013) If $acd(G) < \frac{16}{5}$, then *G* is solvable.

Theorem.(Moretó and Nguyen, 2014) Conjecture 2 holds.

The bounds are optimal. $\operatorname{acd}(A_5) = \frac{16}{5}$, $\operatorname{acd}(A_4) = \frac{3}{2}$ and $\operatorname{acd}(S_3) = \frac{4}{3}$.

< 日 > < 回 > < 回 > < 回 > < 回 > <

Average number of zeros of characters of a finite group

Zeros of Characters

Let $\chi \in Irr(G)$ and $g \in G$. If $\chi(g) = 0$, then we say χ vanishes on g.

Theorem. (Burnside, 1904) Let $\chi \in Irr(G)$ be non-linear. Then there exists $g \in G$ such that $\chi(g) = 0$.

Zeros of Characters

Let $\chi \in Irr(G)$ and $g \in G$. If $\chi(g) = 0$, then we say χ vanishes on g.

Theorem. (Burnside, 1904) Let $\chi \in Irr(G)$ be non-linear. Then there exists $g \in G$ such that $\chi(g) = 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Average number of zeros of characters of a finite group

Average number of zeros of characters

Definition. Let nz(G) denote the number of zeros in the character table of *G*. Define the average number of zeros of characters of *G* by

$$\operatorname{anz}(G) := \frac{\operatorname{nz}(G)}{|\operatorname{Irr}(G)|}.$$

< 回 > < 回 > < 回 > -

Character Table for A_5

Example. Character Table for A₅

$\chi \setminus \mathcal{C}$	1 <i>A</i>	2 <i>A</i>	3 <i>A</i>	5 <i>A</i>	5 <i>B</i>
χ1	1	1	1	1	1
χ2	3	-1	0	Α	* A
χ3	3	-1	0	* A	Α
χ4	4	0	1	-1	-1
χ5	5	1	-1	0	0

Where
$$A = \frac{(\sqrt{5} + 1)}{2}$$
 and $^{*}A = \frac{(-\sqrt{5} + 1)}{2}$.
From the table, $anz(A_5) = 1$.

< 日 > < 回 > < 回 > < 回 > < 回 > <

크

Character Table for S_5

Example. Character Table for S₅

$\chi \setminus \mathcal{C}$	1 <i>A</i>	2 <i>A</i>	2 <i>B</i>	3 <i>A</i>	4 <i>A</i>	5A	6 <i>A</i>
<i>χ</i> 1	1	1	1	1	1	1	1
χ2	1	-1	1	1	-1	1	-1
<i>χ</i> з	4	-2	0	1	0	-1	1
χ4	4	2	0	1	0	-1	1
χ5	5	-1	1	-1	1	0	_1
<i>χ</i> 6	5	1	1	-1	-1	0	1
χ7	6	0	-2	0	0	1	0

$$\operatorname{anz}(S_5) = \frac{10}{7}$$

・ロ・ ・ 四・ ・ 回・ ・ 回・

크

Average number of zeros of characters of a finite group

Average number of zeros of characters

How does the average number of zeros of characters of a finite group affect its structure?

Sesuai Yash Madanha(University of Pretoria) Average number of zeros of characters

・ 戸 ト ・ 三 ト ・ 三 ト

Average number of zeros of characters

Theorem. (M, 2021) If anz(G) < 1, then G is solvable. The bound is optimal since $anz(A_5) = 1$.

Proof.

- Reduced the problem to almost simple case.
- If N is a minimal non-abelian normal subgroup of G, then there exists a non-linear character χ ∈ Irr(G) such that χ_N is irreducible and χ vanishes on two conjugacy classes of G.
- (M, 2020) Classification of almost simple groups with an irreducible character that vanishes on one conjugacy class.

Average number of zeros of characters

Theorem. (M, 2021) If anz(G) < 1, then G is solvable. The bound is optimal since $anz(A_5) = 1$.

Proof.

- Reduced the problem to almost simple case.
- If N is a minimal non-abelian normal subgroup of G, then there exists a non-linear character χ ∈ Irr(G) such that χ_N is irreducible and χ vanishes on two conjugacy classes of G.
- (M, 2020) Classification of almost simple groups with an irreducible character that vanishes on one conjugacy class.

Average number of zeros of characters

Theorem. (M, 2021) If anz(G) < 1, then G is solvable. The bound is optimal since $anz(A_5) = 1$.

Proof.

- Reduced the problem to almost simple case.
- If *N* is a minimal non-abelian normal subgroup of *G*, then there exists a non-linear character χ ∈ Irr(*G*) such that χ_N is irreducible and χ vanishes on two conjugacy classes of *G*.
- (M, 2020) Classification of almost simple groups with an irreducible character that vanishes on one conjugacy class.

Average number of zeros of characters

Theorem. (M, 2021) If $anz(G) < \frac{1}{2}$, then *G* is supersolvable. The bound is optimal since $anz(A_4) = \frac{1}{2}$.

Theorem. (M, 2021) *G* is abelian if and only if $anz(G) < \frac{1}{3}$. The bound is optimal since $anz(S_3) = \frac{1}{3}$.

Theorem. (M, 2021) If G is of odd order and anz(G) < 1, then G is supersolvable.

Conjecture 3. (M, 2021) If G is of odd order and $anz(G) < \frac{16}{11}$, then G is supersolvable.

(日) (圖) (目) (目) (目)

Average number of zeros of characters

Theorem. (M, 2021) If $anz(G) < \frac{1}{2}$, then *G* is supersolvable. The bound is optimal since $anz(A_4) = \frac{1}{2}$.

Theorem. (M, 2021) *G* is abelian if and only if $anz(G) < \frac{1}{3}$. The bound is optimal since $anz(S_3) = \frac{1}{3}$.

Theorem. (M, 2021) If G is of odd order and anz(G) < 1, then G is supersolvable.

Conjecture 3. (M, 2021) If G is of odd order and $anz(G) < \frac{16}{11}$, then G is supersolvable.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Average number of zeros of characters

Theorem. (M, 2021) If $anz(G) < \frac{1}{2}$, then *G* is supersolvable. The bound is optimal since $anz(A_4) = \frac{1}{2}$.

Theorem. (M, 2021) *G* is abelian if and only if $anz(G) < \frac{1}{3}$. The bound is optimal since $anz(S_3) = \frac{1}{3}$.

Theorem. (M, 2021) If *G* is of odd order and anz(G) < 1, then *G* is supersolvable.

Conjecture 3. (M, 2021) If G is of odd order and $anz(G) < \frac{16}{11}$, then G is supersolvable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Average number of zeros of characters

Theorem. (M, 2021) If $anz(G) < \frac{1}{2}$, then *G* is supersolvable. The bound is optimal since $anz(A_4) = \frac{1}{2}$.

Theorem. (M, 2021) *G* is abelian if and only if $anz(G) < \frac{1}{3}$. The bound is optimal since $anz(S_3) = \frac{1}{3}$.

Theorem. (M, 2021) If *G* is of odd order and anz(G) < 1, then *G* is supersolvable.

Conjecture 3. (M, 2021) If *G* is of odd order and $anz(G) < \frac{16}{11}$, then *G* is supersolvable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Average number of zeros of characters

Theorem. (Moretó, 2022) Classified all non-abelian finite groups such that anz(G) < 1.

Proof.

- Used a different approach to show solvablity of the groups.
- Used the classification in which every non-linear irreducible character vanishes on at most two conjugacy classes. (Chillag, 1999 and Moretó-Sangroniz, 2004).
- only non-solvable groups with property above are A₅ and PSL₂(7).

Average number of zeros of characters

Theorem. (Moretó, 2022) Classified all non-abelian finite groups such that anz(G) < 1.

Proof.

- Used a different approach to show solvablity of the groups.
- Used the classification in which every non-linear irreducible character vanishes on at most two conjugacy classes. (Chillag, 1999 and Moretó-Sangroniz, 2004).

 only non-solvable groups with property above are A₅ and PSL₂(7).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Average number of zeros of characters

Theorem. (Moretó, 2022) Classified all non-abelian finite groups such that anz(G) < 1.

Proof.

- Used a different approach to show solvablity of the groups.
- Used the classification in which every non-linear irreducible character vanishes on at most two conjugacy classes. (Chillag, 1999 and Moretó-Sangroniz, 2004).
- only non-solvable groups with property above are A_5 and $PSL_2(7)$.

Average number of zeros of characters of a finite group

Average number of zeros of characters

Theorem. (Moretó, 2022) Conjecture 3 holds. In fact there are only four non-abelian groups of odd order such that $anz(G) < \frac{16}{11}$.

< 日 > < 回 > < 回 > < 回 > < 回 > <

Average number of zeros of characters of a finite group

Average number of zeros of characters

Question. (Moretó, 2022) Is it true that there exists a real valued function *f* such that for every solvable group *G* the Fitting height of *G*, $h(G) \le f(anz(G))$?

Question. Is there a relationship between anz(G) and acd(G)?

・ロット (母) ・ ヨ) ・ コ)

Average number of zeros of characters of a finite group

Average number of zeros of characters

Question. (Moretó, 2022) Is it true that there exists a real valued function *f* such that for every solvable group *G* the Fitting height of *G*, $h(G) \le f(\operatorname{anz}(G))$?

Question. Is there a relationship between anz(G) and acd(G)?

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Notation

Average character degree of a finite group

Zeros of Characters

Average number of zeros of characters of a finite group

Average number of zeros of characters

Thank you

Sesuai Yash Madanha(University of Pretoria) Average number of zeros of characters

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・

크