Young Group Theorists, Sept 2022, Les Diablerets

Generalized Foulkes Module

Sai Praveen Madireddi

Representation Theory of S_n

Foulkes Module

Generalize Foulkes

Questions

Generalized Foulkes Module

Sai Praveen Madireddi

Dept of Mathematics, Central European University

Sept 07, 2022

Overview

Generalize Foulkes Module

Sai Praveen Madireddi

Representation Theory of S_n

Foulkes Module

Generalized Foulkes

Questions

- lacktriangle Representation Theory of S_n
- 2 Foulkes Module
- Generalized Foulkes Module
- 4 Questions

Representation Theory of S_n

Generalized Foulkes Module

Sai Praveen Madireddi

Representation Theory of S_n

Foulkes Module

Generalized Foulkes Module

Questions

Let $\lambda \vdash n$. A Young diagram of λ is a 2 dimensional diagram with n boxes put together such that j^{th} row has λ_j boxes. If $\lambda = (2, 2)$, its Young diagram is

We can fill the boxes of a Young diagram with elements from $\{1,...,n\}$. Such a box is called a *Young tableau*. As an example

$$t_1 = \boxed{\begin{array}{c|c} 1 & 2 \\ \hline 3 & 4 \end{array}}$$

$$t_2 = \begin{array}{|c|c|c|} \hline 1 & 3 \\ \hline 2 & 4 \\ \hline \end{array}.$$

Representation Theory of S_n

Generalized Foulkes Module

Sai Praveen Madireddi

Representation Theory of S_n

Foulkes Module

Generalized Foulkes Module

Question

Let C_t and R_t be the set of column and row stabilizers of tableau t and

$$k_t = \sum_{\sigma \in C_t, \nu \in R_t} sgn(\sigma)\sigma\nu.$$

Then the polytabloid $e_t = k_t t$ generates a KS_n module, the Specht module S^{μ} .

Specht Module S^{μ}

Let char(K)=0. Then the set $\{S^{\mu} \mid \mu \vdash n\}$ forms the complete set of irreducible modules of KS_n .

Foulkes Module

Generalized Foulkes Module

Sai Praveer Madireddi

Representation Theory of S_n

Foulkes Module

Generalized Foulkes Module

Questions

Foulkes Module

$$F_{(b)}^a = \operatorname{Inf}_{S_b}^{S_a \wr S_b} 1 \uparrow^{S_{ab}} . \tag{1}$$

In other words, let P^{a^b} be the set of partitions of $\{1, \ldots, ab\}$ into b sets of size a each. Then the Foulkes module is the permutation module of S_{ab} acting on P^{a^b} .

Foulkes Module

Generalized Foulkes Module

Sai Praveen Madireddi

Representation Theory of S_n

Foulkes Module

Generalize Foulkes Module

Questions

Thrall, 1942

.

$$F_{(b)}^2 = \bigoplus_{\lambda \vdash b} S^{2\lambda},\tag{2}$$

$$F_{(2)}^{b} = \bigoplus_{\substack{\lambda \vdash b \\ \lambda \text{ has 2 parts}}} S^{2\lambda} \tag{3}$$

Generalized Foulkes Module

Sai Praveen Madireddi

Representation Theory of S_n

Foulkes Module

Generalized Foulkes Module

Questions

Generalized Foulkes Module

$$F_{\nu}^{a} = \operatorname{Inf}_{S_{b}}^{S_{a} \wr S_{b}} S^{\nu} \uparrow^{S_{ab}}. \tag{4}$$

- Let t be a ν tableau and X be an (a^b) ordered partition of the set $\{1,..,ab\}$. Then t_X is the ν shaped diagram with X_l as the $(i,j)^{th}$ entry where l is the $(i,j)^{th}$ entry of t.
- A set of basis elements of $\operatorname{Inf}_{S_b}^{S_a \wr Sb} S^{\nu}$ is $\{e_{t_X} \mid t \text{ is a standard } \nu \text{ tableau}\}.$
- The generalized Foulkes module F_{ν}^{a} is generated by $e_{t_{X}}$.

Generalized Foulkes Module

Sai Praveen Madireddi

Representation Theory of S_n

Foulkes Module

Generalize Foulkes Module

Questions

As an example, let $\nu=(2,2)$. For

$$t = \begin{array}{|c|c|} \hline 1 & 2 \\ \hline 3 & 4 \\ \hline \end{array}$$

$$t_X = \frac{|X_1|X_2|}{|X_3|X_4|}$$

Generalize Foulkes Module

Sai Praveer Madireddi

Representation Theory of S_n

Foulkes Module

Generalized Foulkes Module

Questions

- Paget and Wildon in 2019 gave the description of minimal constituents of the generalized Foulkes module.
- de Boeck in 2015 gave a description of certain irreducible constituents of the Foulkes module and the twisted Foulkes module $F^a_{(1^b)}$.

Generalized Module

Generalized

Foulkes Module

To get more insight into F_{ν}^{a} we restrict it to $S_{b} \times S_{n-b}$. It is decomposed as a sum of natural submodules. One such module is V_{ν}^{a} . It is generated by $e_{t_{1,Y}}$, where Y is a $(a-1)^{b}$ ordered partition of $\{b+1,..,ab\}$ and

$$t_{1,Y} = \frac{(1, Y_1)(2, Y_2)}{(3, Y_3)(4, Y_4)}.$$

$$V_{(b)}^{a} = \bigoplus_{\lambda \vdash b} S^{\lambda} \otimes F_{\lambda}^{(a-1)} \tag{5}$$

$$V_{(b)}^{a} = \bigoplus_{\lambda \vdash b} S^{\lambda} \otimes F_{\lambda}^{(a-1)}$$

$$V_{(1^{b})}^{a} = \bigoplus_{\lambda \vdash b} S^{\lambda} \otimes F_{\lambda^{\perp}}^{(a-1)}$$

$$(5)$$

Foulkes Module

Foulkes Module

Let $H = S_b \times S_b$ and $G = S_b \times (S_{a-1} \wr S_b)$. Then

$$V_{\nu}^{a} \cong \operatorname{Inf}_{H}^{G} V_{\nu}^{2} \uparrow^{S_{b} \times S_{n-b}} \tag{7}$$

Thus, the study of V_{ν}^2 gives an interesting insight on the general case.

Generalized Foulkes Module

Sai Praveer Madireddi

Representation Theory of S_n

Foulke: Modul

Generalized

Foulkes Module

Questions

Let $\lambda, \mu, \nu \vdash b$.

Kronecker Coefficient

The Kronecker coefficient $K_{\nu}^{\lambda,\mu}$ is the multiplicity of S^{ν} in the S_b module $S^{\lambda}\otimes S^{\mu}$.

Main Theorem

The multiplicity of $S^{\lambda} \otimes S^{\mu}$ in V_{ν}^{2} is equal to the Kronecker coefficient $k_{\nu}^{\lambda,\mu}$.

Interestingly, it is a NP hard problem to decide whether $K_{\nu}^{\lambda,\mu}$ is zero.

Generalized Foulkes Module

Representation Theory of S_n

Foulkes

Generalized

Foulkes Module

Questions

Let $\lambda + (1)^b = (\lambda_1 + 1, \dots, \lambda_b + 1, \lambda_{b+1}, \dots, \lambda_k).$

If λ has more then b parts then the multiplicity of S^λ in F^a_ν is 0.

Corollary

The multiplicity of $S^{\lambda+(1)^b}$ in $F^{a+1}_{\nu^\perp}$ is the same as multiplicity of S^λ in F^a_ν .

A generalized form of this corollary has been proved by de Boeck, Paget and Wildon. Though, their technique is quite different.

Questions

Generalize Foulkes Module

Sai Praveer Madireddi

Representation Theory of S_n

Foulkes Module

Generalized Foulkes Module

Questions

- Determine the complexity of calculating the multiplicity of S^{λ} in F^a_{ν} ?
- Find a way to generalize F_{ν}^{a} into F_{ν}^{λ} with $\lambda \vdash a$. Can we find an analog of main theorem in F_{ν}^{λ} ?

Madireddi

Representation Theory of S_n

Foulkes Module

Generalized Foulkes

Questions

Thank You