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Recognition Tree

Input: G ≤ GL(n, q).
Output: recognition tree.

G

N1 = ker(ϕ1) H1 = im(ϕ1)

N2 = ker(ϕ2) H2 = im(ϕ2)
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Recognition Tree

Input: G ≤ GL(n, q).
Output: recognition tree.

G
ϕ1

N1 = ker(ϕ1) H1 = im(ϕ1)
ϕ2

N2 = ker(ϕ2) H2 = im(ϕ2)

Leaves are (almost) simple groups.
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Special linear group

Special Linear Group
Let d ∈ N, q = pf a prime power and define

SL(d , q) := {a ∈ GL(d , q) | det(a) = 1}.
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Word problem

Word problem
Given ⟨X ⟩ = G ≤ GL(d , q) and a ∈ G . The problem to write a as
a word in the generators X is called the word problem.
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Transvection

Ei ,j(α)

We define Ei ,j(α) ∈ Fd×d for i , j ∈ {1, . . . , d} with i ̸= j and
α ∈ F∗ as follows:

(Ei ,j(α))a,b =


1, if a = b,

α, if i = a and j = b,

0, else.

The matrices Ei ,j(α) for i , j ∈ {1, . . . , d} with i ̸= j and α ∈ F∗ are
transvections.
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Transvection

E2,5(3) =



1 0 0 0 0 0
0 1 0 0 3 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


∈ SL(6, 7)
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Transvection

Theorem
SL(d , q) is generated by transvections.
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Example


5 0 6 3
5 5 2 0
1 4 6 6
5 5 2 2

 ∈ SL(4, 7)
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1 5 6 3
4 3 2 0
4 5 6 6
4 3 2 2

 →

Motivation Constructive Recognition GoingDown Algorithm



Example


5 0 6 3
5 5 2 0
1 4 6 6
5 5 2 2

 →


5 5 6 3
5 3 2 0
1 5 6 6
5 3 2 2

 →


5 5 6 3
5 3 2 0
1 5 6 6
5 3 2 2




1 5 6 3
4 3 2 0
4 5 6 6
4 3 2 2

 →


1 0 0 0
4 4 6 2
4 6 3 1
4 4 6 4

 →


1 0 0 0
0 4 6 2
0 6 3 1
0 4 6 4
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Word problem in natural representation

An efficient algorithm to solve the word problem returning SLPs
has been designed:
SL Straight-line programs with memory and matrix Bruhat

decomposition by Alice C. Niemeyer, Tomasz Popiel and
Cheryl E. Praeger, 2017

Sp Bachelors thesis, R., 2019
SU Bachelors thesis, R., 2019
SO Masters thesis, R. , 2020 (except characteristic 2)
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Example in non-natural representation

SL(4, 7) ∼= ⟨


6 2 3 5 5 1
5 3 2 3 6 1
0 0 5 1 3 0
6 1 0 4 4 4
2 5 1 3 6 6
5 2 5 2 3 2

 ,


5 5 2 0 1 3
5 2 3 3 1 4
2 4 2 4 4 5
5 2 1 6 4 5
6 3 4 2 3 6
1 1 5 3 5 4

⟩ =: Ĝ ≤ SL(6, 7)
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Example in non-natural representation


5 0 6 3
5 5 2 0
1 4 6 6
5 5 2 2

 ↔



2 3 5 1 0 5
1 1 2 2 4 6
4 4 5 2 2 6
0 4 0 4 4 4
0 3 2 0 1 2
5 1 3 5 3 0


∈ Ĝ
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Example in non-natural representation

E1,2(1) ↔



2 6 5 0 5 3
2 6 3 0 3 6
3 4 2 0 1 2
2 5 3 1 3 6
2 5 3 0 4 6
6 1 2 0 2 5
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Example in non-natural representation

E1,2(1) ↔



2 6 5 0 5 3
2 6 3 0 3 6
3 4 2 0 1 2
2 5 3 1 3 6
2 5 3 0 4 6
6 1 2 0 2 5


E5,2(3) ↔



4 4 1 0 1 2
6 2 2 0 2 4
1 6 6 0 5 3
3 4 1 1 1 2
0 0 0 0 1 0
4 3 6 0 6 6
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Example in non-natural representation


5 5 6 3
5 3 2 0
1 5 6 6
5 3 2 2

 ↔



1 4 0 1 2 2
2 0 0 2 2 2
5 3 3 2 0 2
6 5 2 4 6 1
5 5 6 0 5 3
2 4 2 5 2 5


∈ Ĝ
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Example in non-natural representation

?︷ ︸︸ ︷

2 3 5 1 0 5
1 1 2 2 4 6
4 4 5 2 2 6
0 4 0 4 4 4
0 3 2 0 1 2
5 1 3 5 3 0


→



1 4 0 1 2 2
2 0 0 2 2 2
5 3 3 2 0 2
6 5 2 4 6 1
5 5 6 0 5 3
2 4 2 5 2 5


∈ Ĝ
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Constructive Recognition
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Goal of Constructive Recognition

Let G = ⟨X ⟩ ≤ GL(d , q) be a a classical group.

The goal of constructive recognition is to construct an isomorphism

φ : G → Ĝ

where Ĝ is the standard copy of G such that φ(g) and φ−1(ĝ) can
be computed efficiently for each g ∈ G and ĝ ∈ Ĝ .
▶ Define a set of standard generators Ŝ for each classical group

in the standard copy.
▶ Express S = φ(Ŝ)−1 as words in terms of X .
▶ Express g in terms of S and ĝ in terms of Ŝ as words.
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where Ĝ is the standard copy of G such that φ(g) and φ−1(ĝ) can
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Idea

One idea to express the set S in terms of X consists of three steps:

1) GoingDown Algorithm: Reduce the problem to a smaller
classical group until a base case.

2) Base Case Algorithm: Use a constructive recognition
algorithm for the base case.

3) GoingUp Algorithm: Use the knowledge of standard
generators for a smaller classical group to construct standard
generators for a larger one.
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Idea

One idea to express the set S in terms of X consists of three steps:
1) GoingDown Algorithm: Reduce the problem to a smaller SL

until a SL(2, q) is found.
2) Base Case Algorithm: Constructive recognition algorithm for

SL(2, q) by Conder, Leedham-Green and O’Brien.
3) GoingUp Algorithm: Use the knowledge of standard

generators for a smaller SL to construct standard generators
for a larger SL.
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GoingDown Algorithm
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GoingDown Algorithm

Let G ≤ GL(d , q) with G ∼= SL(d , q). We search for certain
elements in the special linear groups called stingray elements to
compute a chain

SL(4, q) ∼= U ≤ Uk ∼= SL(dk , q) ≤ . . . ≤ U1 ∼= SL(d1, q) ≤ G

where di ≤ 2 · log2(di−1).
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Stingray Element

Stingray element
Let G ≤ GL(d , q). An element s ∈ G is called stingray element, if
s acts irreducibly on a subspace of dimension m, that is it does not
leave invariant a subspace of the m-dimensional space, with m
small relative to d , and fixes a complementary subspace pointwise.
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Example of a Stingray Element



4 1 3 3 2 1 2 4 0 4
3 3 4 4 3 4 1 0 3 2
2 1 0 4 3 1 1 2 0 3
3 1 3 4 4 0 2 0 1 3
3 4 1 1 0 3 4 4 1 1
1 0 4 4 2 2 1 1 4 2
2 4 2 2 0 3 4 2 1 0
0 2 2 2 4 0 3 4 2 0
3 4 1 1 4 3 4 4 2 1
0 2 2 2 2 1 3 2 1 2


∈ SL(10, 5)
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Example of a Stingray Element



0 0 0 4
1 0 0 0
0 1 0 3
0 0 1 4

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


∈ SL(10, 5)
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Example of a Stingray Element



0 0 0 4
1 0 0 0
0 1 0 3
0 0 1 4

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


∈ SL(10, 5)
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Stingray pair

s1 =

(
∗

)
∈ GL(d, q) s2 =

(
∗

)
∈ GL(d, q)
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Stingray pair

s1 =

(
∗

)
∈ GL(d, q) s2 =

(
∗

)
∈ GL(d, q)

↓ Change of basis ↓ Change of basis
∗

1
1

0

0

1 . . . 0
...

. . .
...

0 . . . 1




∗
1

1
0

0

1 . . . 0
...

. . .
...

0 . . . 1
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Stingray pair

s1 =

(
∗

)
∈ GL(d, q) s2 =

(
∗

)
∈ GL(d, q)

↓ Change of basis ↓ Change of basis
∗

∗ 0

0

1 . . . 0
...

. . .
...
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∗
∗ 0

0

1 . . . 0
...

. . .
...

0 . . . 1


︸ ︷︷ ︸

SL(n, q) 0

0

1 . . . 0
...

. . .
...

0 . . . 1
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(Pre-)stingray candidate

Stingray candidate
Let G ≤ GL(d , q). An element s ′ ∈ G is called stingray candidate,
if s ′ acts on a subspace of dimension m with m small relative to d ,
and fixes a complementary subspace pointwise.

Pre-stingray candidate
Let G ≤ GL(d , q). An element s̃ ∈ G is called pre-stingray
candidate, if the characteristic polynomial χs̃(x) has an irreducible
factor P(x) ∈ Fq[x ] of degree k over Fq and no other irreducible
factors of degree divisible by k.
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Pre-stingray candidate

Theorem
Let G ≤ GL(d , q) and s̃ ∈ G a pre-stingray candidate. Then s̃ℓ is a
stingray candidate where ℓ ∈ N can easily be computed with
information from χs̃(x).
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Find Stingray Candidate

Algorithm 1 FindStingrayCandidate
1: procedure FindStingrayCandidate(H, n)
2: while true do
3: h := (pseudo)random(H); χh(x) := characteristic polynomial of h;
4: {Pi (x)} := irreducible factors of χh(x);
5: if ∃Pi (x), k := deg(Pi (x)) does not divide deg(Pj(x)), j ̸= i then
6: Compute ℓ ∈ N according to theorem
7: Return hℓ;
8: end if
9: end do
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Construct a smaller SL

Let s1, s2 ∈ G ≤ GL(d , q) with G ∼= SL(d , q) and s1, s2 stingray
elements where si acts irreducibly on Wi ≤ Fd

q and
W1 ∩ W2 = {0}. With some probability

⟨s1, s2⟩ ∼= SL(m1 + m2, q)

where mi is the dimension of Wi .
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Probability

1) What is the probability to find a pre-stingray candidate?

Elements in finite classical groups whose powers have large
1-Eigenspaces by Alice C. Niemeyer and Cheryl E. Praeger,
2018

2) What is the probability that two stingray elements generate a
special linear group?
The probability of spanning a classical space by two
non-degenerate subspaces of complementary dimensions by
S.P. Glasby, Alice C. Niemeyer and Cheryl E. Praeger
Random generation of direct sums of finite non-degenerate
subspaces by S.P. Glasby, Alice C. Niemeyer and Cheryl E.
Praeger

Second item is not completely solved yet.
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Thank you for your attention!
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