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Input: G < GL(n,q).
Output: recognition tree.

G
/ ’ \
N1 = ker(¢1) Hy :;m(‘ﬁl)
Ny = ker(¢») Ha = im(¢2)

Leaves are (almost) simple groups.
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Special linear group AR | TERRY

Special Linear Group

Let d € N, g = p’ a prime power and define

SL(d, q) := {a € GL(d, q) | det(a) = 1}.
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Word problem
Given (X) = G < GL(d, q) and a € G. The problem to write a as
a word in the generators X is called the word problem.
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Eij(c)
We define E; j(a) € F9*9 for i, j € {1,...,d} with i # j and
« € Fx as follows:

1, ifa=b,
(Ei,j(a))a,b =da, ifi=aandj=bh,
0, else.

The matrices E; j(a) for i,j € {1,...,d} with i # j and o € F* are
transvections.
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€ SL(6,7)
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SL(d, q) is generated by transvections.
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€ SL(4,7)
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Word problem in natural representation  _.yA% | ™IHELR

An efficient algorithm to solve the word problem returning SLPs
has been designed:

SL Straight-line programs with memory and matrix Bruhat
decomposition by Alice C. Niemeyer, Tomasz Popiel and
Cheryl E. Praeger, 2017

Sp Bachelors thesis, R., 2019
SU Bachelors thesis, R., 2019
SO Masters thesis, R. , 2020 (except characteristic 2)
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SL(4,7) = ( ) =: G < SL(6,7)

N OO
NOT=OWN
U= O 0T W
NWHAR WG
Wo b woum
NO O
o OGN oG
HWNANDO
GO FENWN
WNO WO
CTWwWhdh PR
PO brw

Motivation
00000@



Example in non-natural representation VAR | e

235105
50 6 3 112246
55 2 0 44522 6|
1466|7040 44a|EC
5 5 2 2 03201 2
5135 30
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2650 5 3 4410 1 2
26 30 3 6 6 220 2 4
3420012 16605 3
BaW)e ]y 5 31 36| B20¢ 341112
2530 4 6 000010
6 12025 43606 6
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Example in non-natural representation AR | TERRY

2 35105 1401 2 2
112 2 46 2 002 2 2
445226%53320266
0 40 4 4 4 6 5 2 4 6 1
0 32012 556 05 3
5135 30 2 4 25 25
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Goal of Constructive Recognition VAR | e

Let G = (X) < GL(d, q) be a a classical group.
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Let G = (X) < GL(d, q) be a a classical group.
The goal of constructive recognition is to construct an isomorphism

go:G—>@

where G is the standard copy of G such that p(g) and ¢~1(&) can
be computed efficiently for each g € G and g € G.
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Let G = (X) < GL(d, q) be a a classical group.
The goal of constructive recognition is to construct an isomorphism

p: G— G
where G is the standard copy of G such that p(g) and ¢~1(&) can

be computed efficiently for each g € G and g € G.

» Define a set of standard generators S for each classical group
in the standard copy.

> Express S = (5)~! as words in terms of X.

» Express g in terms of S and g in terms of S as words.
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One idea to express the set S in terms of X consists of three steps:
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One idea to express the set S in terms of X consists of three steps:

1) GoingDown Algorithm: Reduce the problem to a smaller
classical group until a base case.

2) Base Case Algorithm: Use a constructive recognition
algorithm for the base case.

3) GoingUp Algorithm: Use the knowledge of standard
generators for a smaller classical group to construct standard
generators for a larger one.
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One idea to express the set S in terms of X consists of three steps:

1) GoingDown Algorithm: Reduce the problem to a smaller SL
until a SL(2, g) is found.

2) Base Case Algorithm: Constructive recognition algorithm for
SL(2, g) by Conder, Leedham-Green and O'Brien.

3) GoingUp Algorithm: Use the knowledge of standard
generators for a smaller SL to construct standard generators
for a larger SL.
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One idea to express the set S in terms of X consists of three steps:

1) |GoingDown Algorithm: Reduce the problem to a smaller SL

until a SL(2, q) is found.

2) Base Case Algorithm: Constructive recognition algorithm for
SL(2, g) by Conder, Leedham-Green and O'Brien.

3) GoingUp Algorithm: Use the knowledge of standard
generators for a smaller SL to construct standard generators
for a larger SL.
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GoingDown Algorithm VAR | e

Let G < GL(d, q) with G = SL(d, q). We search for certain
elements in the special linear groups called stingray elements to
compute a chain

SL(4,q) =y < Uk %SL(dk,q) <...< U1 %SL(dl,q) < G

where C/,' < 2. |og2(d,-_1).

GoingDown Algorithm
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Stingray element

Let G < GL(d,q). An element s € G is called stingray element, if
s acts irreducibly on a subspace of dimension m, that is it does not
leave invariant a subspace of the m-dimensional space, with m

small relative to d, and fixes a complementary subspace pointwise.

structive Recognition GoingDown Algorithm

0@0000000



UNIVERSITY

RWTHAACHEN

7

~A

Stingray Element
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Example of a Stingray Element VAR | e

0 0 0 4
1000
010 3
0 01 4
11 € SL(10,5)
1
1
1
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OO = O
or oo
= O O O
52 Wo N

€ SL(10,5)
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5 = ( * > € GL(d, q) 9= ( * ) € GL(d, q)

GoingDown Algorithm
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5] = ( * > € GL(d, q) sy = ( * ) € GL(d, q)

1 Change of basis

1 Change of basis
0

()
k‘) )
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5] = ( * > € GL(d, q) s = ( * ) € GL(d, q)

1 Change of basis 1 Change of basis

(] -\ (] - )
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Stingray pair

* > € GL(d, q)

1 Change of basis

VAR | TIERR

S =

N

* ) € GL(d, q)

*
i/
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1 Change of basis

SL(n, q)
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Stingray candidate

Let G < GL(d, q). An element s’ € G is called stingray candidate,
if s’ acts on a subspace of dimension m with m small relative to d,
and fixes a complementary subspace pointwise.
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Stingray candidate

Let G < GL(d, q). An element s’ € G is called stingray candidate,
if s’ acts on a subspace of dimension m with m small relative to d,
and fixes a complementary subspace pointwise.

Pre-stingray candidate

Let G < GL(d,q). An element § € G is called pre-stingray
candidate, if the characteristic polynomial xz(x) has an irreducible
factor P(x) € Fq[x] of degree k over Fy and no other irreducible
factors of degree divisible by k.
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Pre-stingray candidate VAR | e

Theorem

Let G < GL(d,q) and § € G a pre-stingray candidate. Then 3’ is a
stingray candidate where ¢ € N can easily be computed with
information from yz(x).

Constructive Recognition GoingDown Algorithm
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Algorithm 1 FindStingrayCandidate

1: procedure FINDSTINGRAYCANDIDATE(H, n)
2: while true do

3: h := (pseudo)random(H); xn(x) := characteristic polynomial of h;
4: {Pi(x)} := irreducible factors of xx(x);

5: if 3Pi(x), k := deg(Pi(x)) does not divide deg(P;(x)),j # i then
6: Compute ¢ € N according to theorem

7: Return h':

8: end if

9: end do

GoingDown Algorithm
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Construct a smaller SL _JAT | PREEY

Let 51,5 € G < GL(d, q) with G =2 SL(d, q) and s1, s, stingray
elements where s; acts irreducibly on W; < Iﬁ‘g and
Wi N W, = {0}. With some probability

(s1,52) = SL(m1 + my, q)

where m; is the dimension of W,.

GoingDown Algorithm
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1) What is the probability to find a pre-stingray candidate?

GoingDown Algorithm
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UNIVERSITY

1) What is the probability to find a pre-stingray candidate?
Elements in finite classical groups whose powers have large

1-Figenspaces by Alice C. Niemeyer and Cheryl E. Praeger,
2018
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1) What is the probability to find a pre-stingray candidate?
Elements in finite classical groups whose powers have large
1-Figenspaces by Alice C. Niemeyer and Cheryl E. Praeger,
2018

2) What is the probability that two stingray elements generate a
special linear group?

uctive Recognition GoingDown Algorithm

00000000e



Probability VAR | e

1) What is the probability to find a pre-stingray candidate?

Elements in finite classical groups whose powers have large
1-Figenspaces by Alice C. Niemeyer and Cheryl E. Praeger,
2018

What is the probability that two stingray elements generate a
special linear group?

The probability of spanning a classical space by two
non-degenerate subspaces of complementary dimensions by
S.P. Glasby, Alice C. Niemeyer and Cheryl E. Praeger
Random generation of direct sums of finite non-degenerate
subspaces by S.P. Glasby, Alice C. Niemeyer and Cheryl E.
Praeger

Second item is not completely solved yet.
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Thank you for your attention!
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