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Gyrogroup

Gyrogroup was discovered by Abraham Ungar in his study of the
parametrization of the Lorentz transformation group. A gyrogroup can
be considered as a generalization of a group with a binary operation,
where the associative property is replaced by the left gyroassociative
and the left loop properties.
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The first example of a gyrogroup is given by Ungar in 1988. He applied
the Einstein’s velocity addition to define a gyrogroup on unit sphere. It
is the groupoid (Vc ,⊕E ) with their composition law given by Einstein’s
addition. The Vectorial version of this addition in the c-ball of Euclidian
space, R3

c = {X ∈ R3 : ‖X‖ < c}, and ⊕ is given by the equation:

X ⊕ Y =
X + Y

1 + 〈X ,Y 〉
c2

− 1
c2

γx
1 + γx

〈X ,X 〉Y − 〈X ,Y 〉X
1 + 〈X ,Y 〉

c2

Where γx = 1
1− 〈X,X〉

c2
. For X = (x1, x2, x3) and Y = (y1, y2, y3), the

usual inner product of these vectors are 〈X ,Y 〉 = x1y1 + x2y2 + x3y3.
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Definition
A non-empty set G together with a binary operation ⊕ on G is called
a Gyrogroup if it satisfies the following axioms:

G1) ∃e ∈ G s.t. e ⊕ a = a, ∀a ∈ G. (e = 0)

G2) ∀a ∈ G, ∃ an element b ∈ G, s.t. a⊕ b = e. (b = 	a)

G3) For each a,b ∈ G, there is an automorphism
gyr [a,b] ∈ Aut(G,⊕) s.t.

a⊕ (b ⊕ c) = (a⊕ b)⊕ gyr [a,b](c),∀c ∈ G

G4) For all a,b ∈ G, gyr [a⊕ b,b] = gyr [a,b].
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γ : G ×G −→ Aut(G)
(a,b)! gyr [a,b](c) = 	(a⊕ b)⊕ (a⊕ (b ⊕ c)).

The gyrogroup G is called gyrocommutative if and only if for all a,b ∈
G,a⊕ b = gyr [a,b](b ⊕ a).
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Subgyrogroup:
Let ∅ 6= H ⊆ G, if H is a gyrogroup under the operation inherited from
G and ∀a,b ∈ H, gyr [a,b](H) = H then H ≤∗ G.
L-Subgyrogroup:
If ∀a ∈ G,h ∈ H, gyr [a,h](H) = H then H ≤L G and {g ⊕ H|g ∈ G}
partition G and |H| | |G|, |G| = |G : H||H|.
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Symmetric:
A subset S of a gyrogroup (G,⊕) is said to be symmetric if ∀s ∈
S, 	s ∈ S.
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left generating set:
The left generating set (S〉 is defined as:

(S〉 = {sn ⊕ (· · · ⊕ (s3 ⊕ (s2 ⊕ s1)) · · · )|s1, s2, · · · , sn ∈ S}

if (S〉 = G, then G is Left-generated by S.
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G-graph [Bretto 2005]:
Let G be a finite group with the non-empty subset S = {s1, s2, · · · , sk},
k ≥ 1. For all s ∈ S, the right cosets 〈s〉x , x ∈ G partition G. Let
gs : G → G, gs(x) = sx of SG and for x ∈ G consider the following
disjoint cycles that are used in the disjoint decomposition of gs:
(s)x = (x , sx , s2x , · · · , so(s)−1x)

• V (Φ(G,S)) = ts∈SVs with Vs = {(s)x , x ∈ Ts}.

• (s)x − (t)y ∈ E(Φ(G,S)), when |〈s〉x ∩ 〈t〉y | = d ≥ 1, and
(s)x − (t)y is a d-edge.
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G-gyrographs of G8

Example
Let G = G8 = {0,1,2,3,4,5,6,7} with A = (1 6)(2 5) be a gyrogroup.

⊕ 0 1 2 3 4 5 6 7 gyro 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7 0 I I I I I I I I
1 1 0 3 2 5 4 7 6 1 I I A A A A I I
2 2 3 0 1 6 7 4 5 2 I A I A A I A I
3 3 5 6 0 7 1 2 4 3 I A A I I A A I
4 4 2 1 7 0 6 5 3 4 I A A I I A A I
5 5 4 7 6 1 0 3 2 5 I A I A A I A I
6 6 7 4 5 2 3 0 1 6 I I A A A A I I
7 7 6 5 4 3 2 1 0 7 I I I I I I I I
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V (Φ(G8,S = {1,2})) = V1 ∪ V2
= {(1)⊕ x = (x ,1⊕ x)|x ∈ G8} ∪ {(2)⊕ y = (y ,2⊕ y)|y ∈ G8}
= {(0,1), (2,3), (4,5), (6,7)} ∪ {(0,2), (1,3), (4,6), (5,7)}.
Φ(G8,S) is not connected and contains two cycles of C4.

(0, 1) (2, 3)

(1, 3)(0, 2)

(4, 5) (6, 7)

(5, 7)(4, 6)

Figure 1.

Note that G8 = 〈S〉. 3 = 1⊕ 2, 4 = 1⊕ ((1⊕ 2)⊕ 1), 5 = (1⊕ 2)⊕ 1,
6 = (1⊕ 2)⊕ 2 and 7 = 2⊕ ((1⊕ 2)⊕ 1).
But (S〉 6= G8.
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Example
V (Φ(G8,S = {1,3})) = V1 ∪ V3
= {(1)⊕ x = (x ,1⊕ x)|x ∈ G8} ∪ {(3)⊕ y = (y ,3⊕ y)|y ∈ G8}
= {(0,1), (2,3), (4,5), (6,7)} ∪ {(0,3), (1,5), (2,6), (4,7)}.
Φ(G8,S) is a bipartite connected G-gyrograph isomorphic to cycle
C8. Here G8 = (S〉.

(0, 1) (2, 3) (4, 5) (6, 7)

(4, 7)(2, 6)(1, 5)(0, 3)

Figure 2.
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Example
Now consider the gyrogroup G8 with the left generating set
S = {1,2,3}:
V (Φ(G8,S)) = V1 ∪ V2 ∪ V3 =
{(0,1), (2,3), (4,5), (6,7)} ∪ {(0,2), (1,3), (4,6), (5,7)} ∪
{(0,3), (1,5), (2,6), (4,7)}
Each vertex has two numbers in common with the vertices in other
levels. Then Φ(G8,S) ∼= K4,4,4 is a 3-partite, 4-regular connected
G-gyrograph and G8 = (S〉.
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The G-gyrograph Φ(G8,S) is connected if and only if
G8 = (S〉 ⊂ 〈S〉.
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There are some papers about the Cayley graph of gyrogroups. In the
paper by Bussaban, for example Cay(G8, {1,2}) is not connected, but
Cay(G8, {1,3}) ∼= C8 and Cay(G8, {1,2,3}) are connected. Also it’s
proved that

Theorem
For a gyrogroup G with a nonempty symmetric subset S, Cay(G,S)
is connected if and only if (S〉 = G.

L. Bussaban, A. Kaewkhao and S. Suantai,
Cayley graphs of gyrogroups,
Quasigroups and Related Systems, 27 (2019) 25-32.
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The 2-gyrogroup G(n),n ≥ 3

A class of 2-gyrogroups constructed by Ashrafi, et.al., whose every
proper subgyrogroup is either a cyclic or a dihedral group. For an
integer n ≥ 3 let G(n) = P(n) ∪ H(n), where

P(n) = {0,1,2, . . . ,2n−1 − 1},

H(n) = {2n−1,2n−1 + 1, · · · ,2n − 1}.

A. R. Ashrafi, S. Mahdavi, M. A. Salahshour and A. A. Ungar,
Construction of 2-Gyrogroups in Which Every Proper Subgyrogroup Is Either a Cyclic or a Dihedral Group,

MDPI (2021)
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Let m = 2n−1, for all i , j ∈ G(n),

i ⊕ j =


t (i , j) ∈ P(n)× P(n)

t + m (i , j) ∈ P(n)× H(n)
s + m (i , j) ∈ H(n)× P(n)

k (i , j) ∈ H(n)× H(n)

where t , s, k ∈ P(n), t ≡ i + j (modm)
s ≡ i + ( m

2 − 1)j (modm)
k ≡ ( m

2 + 1)i + ( m
2 − 1)j (modm)
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A : G(n) −→ G(n),

x  
{

x x ∈ P(n)
r + m x ∈ H(n)

r ∈ P(n), r ≡ x + m
2 ,mod m.

gyr : G(n)×G(n) −→ Aut(G(n),⊕)

gyr(a,b) = gyr [a,b] =

{
A (a,b) ∈ M
I O.W .
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The subgyrogroups of G(n) are

1) G(n),

2) B ≤ P(n),

3) {0, j}, j ∈ H(n)

4) ∃r , s ∈ Z, 1 ≤ r ≤ n − 2, 0 ≤ s ≤ 2r − 1,
〈2r 〉 ∪ 〈2r 〉+ (m + s).

Also
〈1〉 ∼= Zm, 〈2〉 ∼= Zm

2
, · · · , 〈2n−2〉 ∼= Z4.

〈2,m〉 ∼= 〈2,m + 1〉 ∼= Dm,
〈4,m〉 ∼= 〈4,m + 1〉 ∼= 〈4,m + 2〉 ∼= 〈4,m + 3〉 ∼= D m

2
, · · ·

〈m〉 ∼= 〈m + 1〉 ∼= · · · ∼= 〈2m − 1〉 ∼= Z2.
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Example
The gyroaddition table of (G(3) = {0,1,2,3,4,5,6,7},⊕) with
A = (4 6)(5 7):

⊕ 0 1 2 3 4 5 6 7 gyr 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7 0 I I I I I I I I
1 1 2 3 0 5 6 7 4 1 I I I I A A A A
2 2 3 0 1 6 7 4 5 2 I I I I I I I I
3 3 0 1 2 7 4 5 6 3 I I I I A A A A
4 4 5 6 7 0 1 2 3 4 I A I A I A I A
5 5 6 7 4 3 0 1 2 5 I A I A A I A I
6 6 7 4 5 2 3 0 1 6 I A I A I A I A
7 7 4 5 6 1 2 3 0 7 I A I A A I A I



Preliminaries Main Result Refrences

G-gyrograph of (G(n),P(n))

Example
Φ(G(3),P(3)):
Since |P(3)| = 4, then the graph is 4-partite and 〈1〉 ∼= Zm = Z4, then
〈1〉 ≤L G(3) that means |V1| = |G(3) : 〈1〉| = 2.

V1 = {(1)⊕ x = (x ,1⊕ x ,2⊕ x ,3⊕ x)} = {(1,2,3,0), (4,5,6,7)}.

Also |V2| = 4 because 〈2〉 ∼= Zm
2
∼= Z2 = {0,1} is an L-subgyrogroup

of G(3), then

V2 = {(2)⊕ x = (x ,2⊕ x)} = {(0,2), (1,3), (4,6), (5,7)}.
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Since 〈3〉 is an L-subgyrogroup of index 4 in G(3), then |V (3)| = 8
4 = 2.

V3 = {(3)⊕ x = (x ,3⊕ x ,3⊕ 3⊕ x ,3⊕ 3⊕ 3⊕ x)}

= {(x ,3⊕ x ,2⊕ x ,1⊕ x)} = {(0,3,2,1), (4,7,6,5)}.

Finally V0 = {(0), (1), (2), (3), (4), (5), (6), (7)}.
We see that Φ(G(3),P(3)) is a connected 4-partite graph with deg(v1) =

7, deg(v2) = 4, deg(v3) = 7 and deg(v0) = 3.
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G-gyrograph of (G(n),H(n))

Example
Φ(G(3),H(3)) is a m = 4-partite connected graph with the vertex set:
V = V4 ∪ V5 ∪ V6 ∪ V7. Since for every j ∈ H(3), 〈j〉 ∼= Z2 is the
L-subgyrogroup of G(3), then
|V4| = |V5| = |V6| = |V7| = |G(3) : Vj | = 4.
V = {(4)⊕ x} ∪ {(5)⊕ y} ∪ {(6)⊕ z} ∪ {(7)⊕ t}
= {(0,4), (1,5), (2,6), (3,7)} ∪ {(0,5), (1,6), (2,7), (4,3)}
∪{(0,6), (1,7), (2,4), (3,5)} ∪ {(0,7), (1,4), (2,5), (3,6)}
This graph is 2(4− 1) = 6-regular.



Preliminaries Main Result Refrences

Φ(G(n),H(n))

Theorem
The G-gyrograph Φ(G(n),H(n)) is connected and Hamiltonian.
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Thanks for your attention
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