▲□▶▲□▶▲□▶▲□▶ □ のQ@

The Gyrogroups and the *G*-Graph of some Gyrogroups

Farzaneh Gholaminezhad University of Kashan-Iran

Young Group theorists workshops, SwissMAP Research Station

4 - 9 Sep. 2022, Les Diablerets, Switzerland

Main Result

Refrences

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Contents

Preliminaries Gyrogroup *G*-graph

Main Result

G-gyrograph G-gyrograph of G(n)

References

Main Result

Refrences

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Gyrogroup

Gyrogroup was discovered by Abraham Ungar in his study of the parametrization of the Lorentz transformation group. A gyrogroup can be considered as a generalization of a group with a binary operation, where the associative property is replaced by the left gyroassociative and the left loop properties.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

The first example of a gyrogroup is given by Ungar in 1988. He applied the Einstein's velocity addition to define a gyrogroup on unit sphere. It is the groupoid (V_c, \oplus_E) with their composition law given by Einstein's addition. The Vectorial version of this addition in the *c*-ball of Euclidian space, $\mathbb{R}^3_c = \{X \in \mathbb{R}^3 : ||X|| < c\}$, and \oplus is given by the equation:

$$X \oplus Y = \frac{X + Y}{1 + \frac{\langle X, Y \rangle}{c^2}} - \frac{1}{c^2} \frac{\gamma x}{1 + \gamma x} \frac{\langle X, X \rangle Y - \langle X, Y \rangle X}{1 + \frac{\langle X, Y \rangle}{c^2}}$$

Where $\gamma x = \frac{1}{1 - \frac{\langle X, X \rangle}{c^2}}$. For $X = (x_1, x_2, x_3)$ and $Y = (y_1, y_2, y_3)$, the usual inner product of these vectors are $\langle X, Y \rangle = x_1y_1 + x_2y_2 + x_3y_3$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Definition

A non-empty set G together with a binary operation \oplus on G is called a Gyrogroup if it satisfies the following axioms:

G1) $\exists e \in G \text{ s.t. } e \oplus a = a, \forall a \in G. (e = 0)$

G2) $\forall a \in G, \exists an element b \in G, s.t. a \oplus b = e. (b = \ominus a)$

G3) For each $a, b \in G$, there is an automorphism $gyr[a, b] \in Aut(G, \oplus)$ s.t.

 $a \oplus (b \oplus c) = (a \oplus b) \oplus gyr[a,b](c), \forall c \in G$

G4) For all $a, b \in G$, $gyr[a \oplus b, b] = gyr[a, b]$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

$$\gamma: G \times G \longrightarrow Aut(G)$$

 $(a, b) \iff gyr[a, b](c) = \ominus (a \oplus b) \oplus (a \oplus (b \oplus c)).$

The gyrogroup *G* is called gyrocommutative if and only if for all $a, b \in G$, $a \oplus b = gyr[a, b](b \oplus a)$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Subgyrogroup: Let $\emptyset \neq H \subseteq G$, if *H* is a gyrogroup under the operation inherited from *G* and $\forall a, b \in H$, gyr[a, b](H) = H then $H \leq_* G$. *L*-Subgyrogroup: If $\forall a \in G, h \in H$, gyr[a, h](H) = H then $H \leq_L G$ and $\{g \oplus H | g \in G\}$ partition *G* and |H| | |G|, |G| = |G : H||H|.

Symmetric:

A subset *S* of a gyrogroup (G, \oplus) is said to be symmetric if $\forall s \in S, \ominus s \in S$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

left generating set:

The left generating set (S) is defined as:

$$(S
angle=\{s_{n}\oplus(\cdots\oplus(s_{3}\oplus(s_{2}\oplus s_{1}))\cdots)|s_{1},s_{2},\cdots,s_{n}\in S\}$$

if (S) = G, then G is Left-generated by S.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

G-graph [Bretto 2005]:

Let *G* be a finite group with the non-empty subset $S = \{s_1, s_2, \dots, s_k\}$, $k \ge 1$. For all $s \in S$, the right cosets $\langle s \rangle x, x \in G$ partition *G*. Let $g_s : G \to G, g_s(x) = sx$ of S_G and for $x \in G$ consider the following disjoint cycles that are used in the disjoint decomposition of g_s : $(s)x = (x, sx, s^2x, \dots, s^{o(s)-1}x)$

• $V(\Phi(G,S)) = \sqcup_{s \in S} V_s$ with $V_s = \{(s)x, x \in T_s\}$.

•
$$(s)x - (t)y \in E(\Phi(G, S))$$
, when $|\langle s \rangle x \cap \langle t \rangle y| = d \ge 1$, and $(s)x - (t)y$ is a *d*-edge.

Main Result

Refrences

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

G-gyrographs of G_8

Example Let $G = G_8 = \{0, 1, 2, 3, 4, 5, 6, 7\}$ with $A = (1 \ 6)(2 \ 5)$ be a gyrogroup.

\oplus	0	1	2	3	4	5	6	7	gyro	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7	0	1	1	1	1	1	1	1	1
1	1	0	3	2	5	4	7	6	1	1	1	Α	Α	Α	Α	1	1
2	2	3	0	1	6	7	4	5	2	1	Α	1	Α	Α	1	Α	1
3	3	5	6	0	7	1	2	4	3	1	Α	Α	1	1	Α	Α	1
4	4	2	1	7	0	6	5	3	4	1	Α	Α	1	1	Α	Α	1
5	5	4	7	6	1	0	3	2	5	1	Α	1	Α	Α	1	Α	1
6	6	7	4	5	2	3	0	1	6	1	1	Α	Α	Α	Α	1	1
7	7	6	5	4	3	2	1	0	7	1	1	1	1	1	1	1	1

Refrences

 $V(\Phi(G_8, S = \{1, 2\})) = V_1 \cup V_2$ = $\{(1) \oplus x = (x, 1 \oplus x) | x \in G_8\} \cup \{(2) \oplus y = (y, 2 \oplus y) | y \in G_8\}$ = $\{(0, 1), (2, 3), (4, 5), (6, 7)\} \cup \{(0, 2), (1, 3), (4, 6), (5, 7)\}.$ $\Phi(G_8, S)$ is not connected and contains two cycles of C_4 .

Note that $G_8 = \langle S \rangle$. $3 = 1 \oplus 2$, $4 = 1 \oplus ((1 \oplus 2) \oplus 1)$, $5 = (1 \oplus 2) \oplus 1$, $6 = (1 \oplus 2) \oplus 2$ and $7 = 2 \oplus ((1 \oplus 2) \oplus 1)$. But $\langle S \rangle \neq G_8$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Refrences

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Example $V(\Phi(G_8, S = \{1,3\})) = V_1 \cup V_3$ $= \{(1) \oplus x = (x, 1 \oplus x) | x \in G_8\} \cup \{(3) \oplus y = (y, 3 \oplus y) | y \in G_8\}$ $= \{(0,1), (2,3), (4,5), (6,7)\} \cup \{(0,3), (1,5), (2,6), (4,7)\}.$ $\Phi(G_8, S)$ is a bipartite connected *G*-gyrograph isomorphic to cycle C_8 . Here $G_8 = (S)$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Example

Now consider the gyrogroup G_8 with the left generating set $S = \{1, 2, 3\}$: $V(\Phi(G_8, S)) = V_1 \cup V_2 \cup V_3 =$ $\{(0, 1), (2, 3), (4, 5), (6, 7)\} \cup \{(0, 2), (1, 3), (4, 6), (5, 7)\} \cup$ $\{(0, 3), (1, 5), (2, 6), (4, 7)\}$ Each vertex has two numbers in common with the vertices in other levels. Then $\Phi(G_8, S) \cong K_{4,4,4}$ is a 3-partite, 4-regular connected *G*-gyrograph and $G_8 = (S)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

The *G*-gyrograph $\Phi(G_8, S)$ is connected if and only if $G_8 = (S) \subset \langle S \rangle$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

There are some papers about the Cayley graph of gyrogroups. In the paper by Bussaban, for example $Cay(G_8, \{1,2\})$ is not connected, but $Cay(G_8, \{1,3\}) \cong C_8$ and $Cay(G_8, \{1,2,3\})$ are connected. Also it's proved that

Theorem

For a gyrogroup G with a nonempty symmetric subset S, Cay(G, S) is connected if and only if (S) = G.

L. Bussaban, A. Kaewkhao and S. Suantai, Cayley graphs of gyrogroups, Quasigroups and Related Systems, 27 (2019) 25-32.

Main Result

Refrences

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The 2-gyrogroup G(n), $n \ge 3$

A class of 2-gyrogroups constructed by Ashrafi, et.al., whose every proper subgyrogroup is either a cyclic or a dihedral group. For an integer $n \ge 3$ let $G(n) = P(n) \cup H(n)$, where

$$P(n) = \{0, 1, 2, \dots, 2^{n-1} - 1\},\$$

$$H(n) = \{2^{n-1}, 2^{n-1} + 1, \dots, 2^n - 1\}.$$

A. R. Ashrafi, S. Mahdavi, M. A. Salahshour and A. A. Ungar,

Construction of 2-Gyrogroups in Which Every Proper Subgyrogroup Is Either a Cyclic or a Dihedral Group,

MDPI (2021)

Refrences

Let
$$m = 2^{n-1}$$
, for all $i, j \in G(n)$,

$$i \oplus j = \begin{cases} t & (i,j) \in P(n) \times P(n) \\ t + m & (i,j) \in P(n) \times H(n) \\ s + m & (i,j) \in H(n) \times P(n) \\ k & (i,j) \in H(n) \times H(n) \end{cases}$$

where $t, s, k \in P(n)$,

$$\begin{cases} t \equiv i+j & (modm) \\ s \equiv i+(\frac{m}{2}-1)j & (modm) \\ k \equiv (\frac{m}{2}+1)i+(\frac{m}{2}-1)j & (modm) \end{cases}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

$$\begin{array}{ll} A:G(n) \longrightarrow G(n), \\ x \rightsquigarrow \begin{cases} x & x \in P(n) \\ r+m & x \in H(n) \end{cases} \quad r \in P(n), \, r \equiv x + \frac{m}{2}, mod \ m. \end{array}$$

$$gyr: G(n) imes G(n) \longrightarrow Aut(G(n), \oplus)$$

 $gyr(a,b) = gyr[a,b] = \begin{cases} A & (a,b) \in M \\ I & O.W. \end{cases}$

The subgyrogroups of G(n) are

- **1)** G(n),
- **2**) $B \le P(n)$,
- **3)** $\{0, j\}, j \in H(n)$
- $\begin{array}{l} \texttt{4)} \hspace{0.2cm} \exists r,s \in \mathbb{Z}, \hspace{0.1cm} \texttt{1} \leq r \leq n-2, \hspace{0.1cm} \texttt{0} \leq s \leq 2^r-1, \\ \hspace{0.2cm} \langle 2^r \rangle \cup \langle 2^r \rangle + (m+s). \end{array}$

Also

$$\begin{array}{l} \langle 1 \rangle \cong \mathbb{Z}_m, \langle 2 \rangle \cong \mathbb{Z}_{\frac{m}{2}}, \cdots, \langle 2^{n-2} \rangle \cong \mathbb{Z}_4. \\ \langle 2, m \rangle \cong \langle 2, m+1 \rangle \cong D_m, \\ \langle 4, m \rangle \cong \langle 4, m+1 \rangle \cong \langle 4, m+2 \rangle \cong \langle 4, m+3 \rangle \cong D_{\frac{m}{2}}, \cdots \\ \langle m \rangle \cong \langle m+1 \rangle \cong \cdots \cong \langle 2m-1 \rangle \cong \mathbb{Z}_2. \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Example The gyroaddition table of $(G(3) = \{0, 1, 2, 3, 4, 5, 6, 7\}, \oplus)$ with $A = (4 \ 6)(5 \ 7)$:

\oplus	0	1	2	3	4	5	6	7	gyr	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7	0	1	1	1	1	1	1	1	1
1	1	2	3	0	5	6	7	4	1	1	1	1	1	Α	Α	Α	Α
2	2	3	0	1	6	7	4	5	2	1	1	1	1	1	1	1	1
3	3	0	1	2	7	4	5	6	3	1	1	1	1	Α	Α	Α	Α
4	4	5	6	7	0	1	2	3	4	1	Α	1	Α	1	Α	1	Α
5	5	6	7	4	3	0	1	2	5	1	Α	1	Α	Α	1	Α	1
6	6	7	4	5	2	3	0	1	6	1	Α	1	Α	1	Α	1	Α
7	7	4	5	6	1	2	3	0	7	1	Α	Ι	Α	Α	1	Α	1

Main Result

Refrences

A D F A 同 F A E F A E F A Q A

G-gyrograph of (G(n), P(n))

Example

 $\Phi(G(3), P(3))$: Since |P(3)| = 4, then the graph is 4-partite and $\langle 1 \rangle \cong \mathbb{Z}_m = \mathbb{Z}_4$, then $\langle 1 \rangle \leq_L G(3)$ that means $|V_1| = |G(3) : \langle 1 \rangle| = 2$.

 $V_1 = \{(1) \oplus x = (x, 1 \oplus x, 2 \oplus x, 3 \oplus x)\} = \{(1, 2, 3, 0), (4, 5, 6, 7)\}.$

Also $|V_2| = 4$ because $\langle 2 \rangle \cong \mathbb{Z}_{\frac{m}{2}} \cong \mathbb{Z}_2 = \{0, 1\}$ is an *L*-subgyrogroup of *G*(3), then

$$V_2 = \{(2) \oplus x = (x, 2 \oplus x)\} = \{(0, 2), (1, 3), (4, 6), (5, 7)\}.$$

A D F A 同 F A E F A E F A Q A

Since $\langle 3 \rangle$ is an *L*-subgyrogroup of index 4 in *G*(3), then $|V(3)| = \frac{8}{4} = 2$.

 $V_3 = \{(3) \oplus x = (x, 3 \oplus x, 3 \oplus 3 \oplus x, 3 \oplus 3 \oplus 3 \oplus x)\}$

 $=\{(x,3\oplus x,2\oplus x,1\oplus x)\}=\{(0,3,2,1),(4,7,6,5)\}.$

Finally $V_0 = \{(0), (1), (2), (3), (4), (5), (6), (7)\}.$

We see that $\Phi(G(3), P(3))$ is a connected 4-partite graph with $deg(v_1) = 7$, $deg(v_2) = 4$, $deg(v_3) = 7$ and $deg(v_0) = 3$.

Main Result

Refrences

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

G-gyrograph of (G(n), H(n))

Example

 $\begin{array}{l} \Phi(G(3), H(3)) \text{ is a } m = 4\text{-partite connected graph with the vertex set:} \\ V = V_4 \cup V_5 \cup V_6 \cup V_7. \text{ Since for every } j \in H(3), \ \langle j \rangle \cong \mathbb{Z}_2 \text{ is the} \\ L\text{-subgyrogroup of } G(3), \text{ then} \\ |V_4| = |V_5| = |V_6| = |V_7| = |G(3) : V_j| = 4. \\ V = \{(4) \oplus x\} \cup \{(5) \oplus y\} \cup \{(6) \oplus z\} \cup \{(7) \oplus t\} \\ = \{(0,4), (1,5), (2,6), (3,7)\} \cup \{(0,5), (1,6), (2,7), (4,3)\} \\ \cup \{(0,6), (1,7), (2,4), (3,5)\} \cup \{(0,7), (1,4), (2,5), (3,6)\} \\ \text{This graph is } 2(4-1) = 6\text{-regular.} \end{array}$

Main Result

Refrences

Theorem The G-gyrograph $\Phi(G(n), H(n))$ is connected and Hamiltonian.

= 900

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

References

A. R. Ashrafi, S. Mahdavi, M. A. Salahshour,

Construction of new gyrogroups and the structure of their subgyrogroups Algebr. Struct. Appl., (2020)

A. R. Ashrafi, A. Bretto, F. Gholaminezhad,

The Automorphism Groups of the Involution *G*-Graph and Cayley Graph, Southeast Asian Bulletin of Mathematics, 43, (2019), 775–789.

L. Bussaban, A. Kaewkhao and S. Suantai,

Cayley graphs of gyrogroups

Quasigroups and Related Systems, 27 (2019), 25-32.

R. Maungchang, C. Detphumi, P. Khachorncharoenkul and T. Suksumran, Hamiltonian Cycles in Cayley Graphs of Gyrogroups

Mathematics 2022, 10, 1251. https://doi.org/10.3390/math10081251

A. Bretto and A. Faisant,

A new way for associating a graph to a group Mathematica Slovaca, 55 (1), (2005), 1-8.

A. Bretto, A. Faisant, L. Gillibert,

G graphs: a new representation of groups, Journal of Symbolic Computation, 42 (5), (2007), 549-560.

Thanks for your attention