The Gyrogroups and the G-Graph of some Gyrogroups

Farzaneh Gholaminezhad

University of Kashan-Iran

Young Group theorists workshops, SwissMAP Research Station

4-9 Sep. 2022, Les Diablerets, Switzerland

Contents

Preliminaries
Gyrogroup G-graph

Main Result
G-gyrograph
G-gyrograph of $G(n)$

References

Gyrogroup

Gyrogroup was discovered by Abraham Ungar in his study of the parametrization of the Lorentz transformation group. A gyrogroup can be considered as a generalization of a group with a binary operation, where the associative property is replaced by the left gyroassociative and the left loop properties.

The first example of a gyrogroup is given by Ungar in 1988. He applied the Einstein's velocity addition to define a gyrogroup on unit sphere. It is the groupoid $\left(V_{c}, \oplus_{E}\right)$ with their composition law given by Einstein's addition. The Vectorial version of this addition in the c-ball of Euclidian space, $\mathbb{R}_{c}^{3}=\left\{X \in \mathbb{R}^{3}:\|X\|<c\right\}$, and \oplus is given by the equation:

$$
X \oplus Y=\frac{X+Y}{1+\frac{\langle X, Y\rangle}{c^{2}}}-\frac{1}{c^{2}} \frac{\gamma X}{1+\gamma X} \frac{\langle X, X\rangle Y-\langle X, Y\rangle X}{1+\frac{\langle X Y\rangle}{c^{2}}}
$$

Where $\gamma X=\frac{1}{1-\frac{\langle X, X\rangle}{c^{2}}}$. For $X=\left(x_{1}, x_{2}, x_{3}\right)$ and $Y=\left(y_{1}, y_{2}, y_{3}\right)$, the usual inner product of these vectors are $\langle X, Y\rangle=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}$.

Definition

A non-empty set G together with a binary operation \oplus on G is called a Gyrogroup if it satisfies the following axioms:

G1) $\exists e \in G$ s.t. $e \oplus a=a, \forall a \in G$. $(e=0)$
G2) $\forall a \in G, \exists$ an element $b \in G$, s.t. $a \oplus b=e$. $(b=\ominus a)$
G3) For each $a, b \in G$, there is an automorphism $\operatorname{gyr}[a, b] \in \operatorname{Aut}(G, \oplus)$ s.t.

$$
a \oplus(b \oplus c)=(a \oplus b) \oplus g y r[a, b](c), \forall c \in G
$$

G4) For all $a, b \in G, \operatorname{gyr}[a \oplus b, b]=\operatorname{gyr}[a, b]$.

The gyrogroup G is called gyrocommutative if and only if for all $a, b \in$ $G, a \oplus b=\operatorname{gyr}[a, b](b \oplus a)$.

Subgyrogroup:
Let $\emptyset \neq H \subseteq G$, if H is a gyrogroup under the operation inherited from G and $\forall a, b \in H, \operatorname{gyr}[a, b](H)=H$ then $H \leq_{*} G$. L-Subgyrogroup:
If $\forall a \in G, h \in H, \operatorname{gyr}[a, h](H)=H$ then $H \leq L G$ and $\{g \oplus H \mid g \in G\}$ partition G and $|H|||G|,|G|=|G: H|| H \mid$.

Symmetric:
A subset S of a gyrogroup (G, \oplus) is said to be symmetric if $\forall s \in$ $S, \ominus s \in S$.
left generating set:
The left generating set ($S\rangle$ is defined as:

$$
(S\rangle=\left\{s_{n} \oplus\left(\cdots \oplus\left(s_{3} \oplus\left(s_{2} \oplus s_{1}\right)\right) \cdots\right) \mid s_{1}, s_{2}, \cdots, s_{n} \in S\right\}
$$

if $(S\rangle=G$, then G is Left-generated by S.

G-graph [Bretto 2005]:
Let G be a finite group with the non-empty subset $S=\left\{s_{1}, s_{2}, \cdots, s_{k}\right\}$, $k \geq 1$. For all $s \in S$, the right cosets $\langle s\rangle x, x \in G$ partition G. Let $g_{s}: G \rightarrow G, g_{s}(x)=s x$ of S_{G} and for $x \in G$ consider the following disjoint cycles that are used in the disjoint decomposition of g_{s} :
$(s) x=\left(x, s x, s^{2} x, \cdots, s^{o(s)-1} x\right)$

- $V(\Phi(G, S))=\sqcup_{s \in S} V_{s}$ with $V_{s}=\left\{(s) x, x \in T_{s}\right\}$.
- (s) $x-(t) y \in E(\Phi(G, S))$, when $|\langle s\rangle x \cap\langle t\rangle y|=d \geq 1$, and (s) $x-(t) y$ is a d-edge.

G-gyrographs of G_{8}

Example
Let $G=G_{8}=\{0,1,2,3,4,5,6,7\}$ with $A=(16)(25)$ be a gyrogroup.

\oplus	0	1	2	3	4	5	6	7	gyro	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7	0	1	I	1	I	I	1	1	1
1	1	0	3	2	5	4	7	6	1	1	I	A	A	A	A	1	1
2	2	3	0	1	6	7	4	5	2	1	A	1	A	A	,	A	1
3	3	5	6	0	7	1	2	4	3	1	A	A	1	1	A	A	1
4	4	2	1	7	0	6	5	3	4	1	A	A	1	1	A	A	1
5	5	4	7	6	1	0	3	2	5	1	A	1	A	A	I	A	,
6	6	7	4	5	2	3	0	1	6	1	1	A	A	A	A	1	
7	7	6	5	4	3	2	1	0	7	1	1	1	1	1	1	1	1

$$
\begin{aligned}
& V\left(\Phi\left(G_{8}, S=\{1,2\}\right)\right)=V_{1} \cup V_{2} \\
& =\left\{(1) \oplus x=(x, 1 \oplus x) \mid x \in G_{8}\right\} \cup\left\{(2) \oplus y=(y, 2 \oplus y) \mid y \in G_{8}\right\} \\
& =\{(0,1),(2,3),(4,5),(6,7)\} \cup\{(0,2),(1,3),(4,6),(5,7)\} . \\
& \Phi\left(G_{8}, S\right) \text { is not connected and contains two cycles of } C_{4} .
\end{aligned}
$$

Figure 1.
Note that $G_{8}=\langle S\rangle .3=1 \oplus 2,4=1 \oplus((1 \oplus 2) \oplus 1), 5=(1 \oplus 2) \oplus 1$, $6=(1 \oplus 2) \oplus 2$ and $7=2 \oplus((1 \oplus 2) \oplus 1)$.
But $(S\rangle \neq G_{8}$.

Example

$$
\begin{aligned}
& V\left(\Phi\left(G_{8}, S=\{1,3\}\right)\right)=V_{1} \cup V_{3} \\
& =\left\{(1) \oplus x=(x, 1 \oplus x) \mid x \in G_{8}\right\} \cup\left\{(3) \oplus y=(y, 3 \oplus y) \mid y \in G_{8}\right\} \\
& =\{(0,1),(2,3),(4,5),(6,7)\} \cup\{(0,3),(1,5),(2,6),(4,7)\} . \\
& \Phi\left(G_{8}, S\right) \text { is a bipartite connected } G \text {-gyrograph isomorphic to cycle }
\end{aligned}
$$ C_{8}. Here $G_{8}=(S\rangle$.

Figure 2.

Example

Now consider the gyrogroup G_{8} with the left generating set
$S=\{1,2,3\}$:
$V\left(\Phi\left(G_{8}, S\right)\right)=V_{1} \cup V_{2} \cup V_{3}=$
$\{(0,1),(2,3),(4,5),(6,7)\} \cup\{(0,2),(1,3),(4,6),(5,7)\} \cup$ $\{(0,3),(1,5),(2,6),(4,7)\}$
Each vertex has two numbers in common with the vertices in other levels. Then $\Phi\left(G_{8}, S\right) \cong K_{4,4,4}$ is a 3-partite, 4-regular connected G-gyrograph and $G_{8}=(S)$.

The G-gyrograph $\Phi\left(G_{8}, S\right)$ is connected if and only if $G_{8}=(S\rangle \subset\langle S\rangle$.

There are some papers about the Cayley graph of gyrogroups. In the paper by Bussaban, for example Cay $\left(G_{8},\{1,2\}\right)$ is not connected, but $\operatorname{Cay}\left(G_{8},\{1,3\}\right) \cong C_{8}$ and $\operatorname{Cay}\left(G_{8},\{1,2,3\}\right)$ are connected. Also it's proved that
Theorem
For a gyrogroup G with a nonempty symmetric subset $S, \operatorname{Cay}(G, S)$ is connected if and only if $(S)=G$.

L. Bussaban, A. Kaewkhao and S. Suantai,

Cayley graphs of gyrogroups,
Quasigroups and Related Systems, 27 (2019) 25-32.

The 2-gyrogroup $G(n), n \geq 3$

A class of 2-gyrogroups constructed by Ashrafi, et.al., whose every proper subgyrogroup is either a cyclic or a dihedral group. For an integer $n \geq 3$ let $G(n)=P(n) \cup H(n)$, where

$$
\begin{gathered}
P(n)=\left\{0,1,2, \ldots, 2^{n-1}-1\right\} \\
H(n)=\left\{2^{n-1}, 2^{n-1}+1, \cdots, 2^{n}-1\right\} .
\end{gathered}
$$

A. R. Ashrafi, S. Mahdavi, M. A. Salahshour and A. A. Ungar,

Construction of 2-Gyrogroups in Which Every Proper Subgyrogroup Is Either a Cyclic or a Dihedral Group,
MDPI (2021)

Let $m=2^{n-1}$, for all $i, j \in G(n)$,

$$
i \oplus j=\left\{\begin{array}{cc}
t & (i, j) \in P(n) \times P(n) \\
t+m & (i, j) \in P(n) \times H(n) \\
s+m & (i, j) \in H(n) \times P(n) \\
k & (i, j) \in H(n) \times H(n)
\end{array}\right.
$$

where $t, s, k \in P(n)$,

$$
\left\{\begin{array}{cc}
t \equiv i+j & (\operatorname{modm}) \\
s \equiv i+\left(\frac{m}{2}-1\right) j & (\operatorname{modm}) \\
k \equiv\left(\frac{m}{2}+1\right) i+\left(\frac{m}{2}-1\right) j & (\operatorname{modm})
\end{array}\right.
$$

$$
\begin{aligned}
& A: G(n) \longrightarrow G(n), \\
& x \rightsquigarrow\left\{\begin{array}{cc}
x & x \in P(n) \\
r+m & x \in H(n)
\end{array} \quad r \in P(n), r \equiv x+\frac{m}{2}, \text { mod } m .\right.
\end{aligned}
$$

gyr: $G(n) \times G(n) \longrightarrow \operatorname{Aut}(G(n), \oplus)$
$\operatorname{gyr}(a, b)=\operatorname{gyr}[a, b]=\left\{\begin{array}{cc}A & (a, b) \in M \\ I & O . W .\end{array}\right.$

The subgyrogroups of $G(n)$ are

1) $G(n)$,
2) $B \leq P(n)$,
3) $\{0, j\}, j \in H(n)$
4) $\exists r, s \in \mathbb{Z}, 1 \leq r \leq n-2,0 \leq s \leq 2^{r}-1$, $\left\langle 2^{r}\right\rangle \cup\left\langle 2^{r}\right\rangle+(m+s)$.

Also
$\langle 1\rangle \cong \mathbb{Z}_{m},\langle 2\rangle \cong \mathbb{Z}_{\frac{m}{2}}, \cdots,\left\langle 2^{n-2}\right\rangle \cong \mathbb{Z}_{4}$.
$\langle 2, m\rangle \cong\langle 2, m+1\rangle \cong D_{m}$,
$\langle 4, m\rangle \cong\langle 4, m+1\rangle \cong\langle 4, m+2\rangle \cong\langle 4, m+3\rangle \cong D_{\frac{m}{2}}, \cdots$
$\langle m\rangle \cong\langle m+1\rangle \cong \cdots \cong\langle 2 m-1\rangle \cong \mathbb{Z}_{2}$.

Example
The gyroaddition table of $(G(3)=\{0,1,2,3,4,5,6,7\}, \oplus)$ with $A=(46)(57):$

\oplus	0	1	2	3	4	5	6	7	gyr	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7	0	1	1	1	1	1	1	1	I
1	1	2	3	0	5	6	7	4	1	I	1	1	1	A	A	A	A
2	2	3	0	1	6	7	4	5	2	I	1	1	1	I	I	1	1
3	3	0	1	2	7	4	5	6	3	1	1	I	1	A	A	A	A
4	4	5	6	7	0	1	2	3	4	1	A	1	A	1	A	1	A
5	5	6	7	4	3	0	1	2	5	1	A	1	A	A	1	A	1
6	6	7	4	5	2	3	0	1	6	1	A	1	A	1	A	1	A
7	7	4	5	6	1	2	3	0	7	1	A	1	A	A	I	A	1

G-gyrograph of $(G(n), P(n))$

Example $\Phi(G(3), P(3)):$
Since $|P(3)|=4$, then the graph is 4-partite and $\langle 1\rangle \cong \mathbb{Z}_{m}=\mathbb{Z}_{4}$, then $\langle 1\rangle \leq_{L} G(3)$ that means $\left|V_{1}\right|=|G(3):\langle 1\rangle|=2$.

$$
V_{1}=\{(1) \oplus x=(x, 1 \oplus x, 2 \oplus x, 3 \oplus x)\}=\{(1,2,3,0),(4,5,6,7)\}
$$

Also $\left|V_{2}\right|=4$ because $\langle 2\rangle \cong \mathbb{Z}_{\frac{m}{2}} \cong \mathbb{Z}_{2}=\{0,1\}$ is an L-subgyrogroup of $G(3)$, then

$$
V_{2}=\{(2) \oplus x=(x, 2 \oplus x)\}=\{(0,2),(1,3),(4,6),(5,7)\} .
$$

Since $\langle 3\rangle$ is an L-subgyrogroup of index 4 in $G(3)$, then $|V(3)|=\frac{8}{4}=2$.

$$
\begin{aligned}
& V_{3}=\{(3) \oplus x=(x, 3 \oplus x, 3 \oplus 3 \oplus x, 3 \oplus 3 \oplus 3 \oplus x)\} \\
& =\{(x, 3 \oplus x, 2 \oplus x, 1 \oplus x)\}=\{(0,3,2,1),(4,7,6,5)\} .
\end{aligned}
$$

Finally $V_{0}=\{(0),(1),(2),(3),(4),(5),(6),(7)\}$.
We see that $\Phi(G(3), P(3))$ is a connected 4-partite graph with $\operatorname{deg}\left(v_{1}\right)=$ $7, \operatorname{deg}\left(v_{2}\right)=4, \operatorname{deg}\left(v_{3}\right)=7$ and $\operatorname{deg}\left(v_{0}\right)=3$.

G-gyrograph of $(G(n), H(n))$

Example

$\Phi(G(3), H(3))$ is a $m=4$-partite connected graph with the vertex set: $V=V_{4} \cup V_{5} \cup V_{6} \cup V_{7}$. Since for every $j \in H(3),\langle j\rangle \cong \mathbb{Z}_{2}$ is the L-subgyrogroup of $G(3)$, then $\left|V_{4}\right|=\left|V_{5}\right|=\left|V_{6}\right|=\left|V_{7}\right|=\left|G(3): V_{j}\right|=4$. $V=\{(4) \oplus x\} \cup\{(5) \oplus y\} \cup\{(6) \oplus z\} \cup\{(7) \oplus t\}$
$=\{(0,4),(1,5),(2,6),(3,7)\} \cup\{(0,5),(1,6),(2,7),(4,3)\}$
$\cup\{(0,6),(1,7),(2,4),(3,5)\} \cup\{(0,7),(1,4),(2,5),(3,6)\}$
This graph is $2(4-1)=6$-regular.

$\Phi(G(n), H(n))$

Theorem
The G-gyrograph $\Phi(G(n), H(n))$ is connected and Hamiltonian.

References

A. R. Ashrafi, S. Mahdavi, M. A. Salahshour,

Construction of new gyrogroups and the structure of their subgyrogroups Algebr. Struct. Appl., (2020)
A. R. Ashrafi, A. Bretto, F. Gholaminezhad,

The Automorphism Groups of the Involution G-Graph and Cayley Graph, Southeast Asian Bulletin of Mathematics, 43, (2019), 775-789.
L. Bussaban, A. Kaewkhao and S. Suantai,

Cayley graphs of gyrogroups
Quasigroups and Related Systems, 27 (2019), 25-32.
R. Maungchang, C. Detphumi, P. Khachorncharoenkul and T. Suksumran, Hamiltonian Cycles in Cayley Graphs of Gyrogroups Mathematics 2022, 10, 1251. https://doi.org/10.3390/math10081251
A. Bretto and A. Faisant,

A new way for associating a graph to a group Mathematica Slovaca, 55 (1), (2005), 1-8.
A. Bretto, A. Faisant, L. Gillibert, G graphs: a new representation of groups, Journal of Symbolic Computation, 42 (5), (2007), 549-560.

Thanks for your attention

