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m k — algebraically closed field,
m G — connected reductive algebraic group over k,

B T ¢ G — maximal torus of G, B ¢ G — Borel subgroup containing T,

%

m All tori are isomorphic to T := {(8 .0 )‘ ti e kx} , and

th

m Borel subgroups are closed, connected, solvable subgroups of G.
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Setup

m g:= Lie(G) — Lie algebra of G,
m G acts on g via Ad: G — GL(g), where Ad(g) = dlInt, for g€ G.

Example (Adjoint map for GL,(k))

We have the map

Ad: GL,(k) — GL(gl,(k)), A~ (B~ ABA™).
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Setup

g := Lie(G) — Lie algebra of G,
G acts on g via Ad: G — GL(g), where Ad(g) = dint, for g € G.

0o — root subspace, a one-dimensional subspace (the weight space) for
each root a € ®; g =Lie(T) ® Dyeo Jas

€q € g such that (e,) = ga,
U, € G — the root subgroups; Lie(U,) = ga, G =(T,U, | a € ®)
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For certain primes p, we call p a bad prime, depending on the type of the

root system:

Root system type prime

B,(n>3), Ch(n>2), Dp(n>4) 2

Gy, Fa, Eg, E7 23
Eg 2,35
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G =5Sp,(K) = {AeGLy(k) | A"J4A = U}, where Jj := (

oloco
coro
coor
N —

|
—

with simple roots MM := {«a, 5}, type G,.
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0001
G =Spy(k) := {AeGLy(k) | A" JyA = Uy}, where Jy := ( = (1)8)
-1000
with simple roots MM := {«a, 5}, type G,.
p=2is a bad prime for G = Sp,(k):
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G =5Sp,(K) = {AeGLy(k) | A"J4A = U}, where Jj := (

with simple roots MM := {«a, 5}, type G,.
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p=2is a bad prime for G = Sp,(k):
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Why Nilpotent Pieces?

(And what does this have to do with orbits?)

But in some characteristics, the

We already know how the nilpo- picture looks a bit different (we
tent orbits look like! also call them bad characteris-
tic).

This is not very nice and causes

This i ice ©
15 15 very nice some headaches ®

%

Maybe there is a way to get a picture that is very similar to the orbits
in good characteristic and holds in both good and bad characteristic!

Laura Voggesberger On algebraic groups, their Lie algebras, and nilpotent pieces 6/ 9



MATHEMATICS

The problem with the orbits

Laura Voggesberger On algebraic groups, their Lie algebras, and nilpotent pieces

I

= TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

7/ 9



MATHEMATICS

The problem with the orbits

In good characteristic

Laura Voggesberger On algebraic groups, their Lie algebras, and nilpotent pieces

/

-
= TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

7/ 9



MATHEMATICS [ KiSERSUAUTERN

The problem with the orbits

In good characteristic In bad characteristic

Laura Voggesberger On algebraic groups, their Lie algebras, and nilpotent pieces

7/ 9



MATHEMATICS [ KiSERSUAUTERN

The problem with the orbits

In good characteristic In bad characteristic

Laura Voggesberger On algebraic groups, their Lie algebras, and nilpotent pieces

7/ 9



MATHEMATICS [ KiSERSUAUTERN

The problem with the orbits

In good characteristic In bad characteristic

%

Nilpotent orbits can be linked to maps A := {§ : & - Z}. In good
characteristic a map ¢ € A uniquely determines a nilpotent orbit.
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Nilpotent Pieces

Let V{ € g for a map 6 € A such that

X eNg < x is in the orbit of

%= ) Aaeq €9, where Co( Y Aaeq) (T, Uq|6(c) 20).
aed 5(a)=2

The nilpotent pieces are unions of nilpotent orbits!

Conjecture

,
| \

3
Ng = U(S'EA 05'
§'=6
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Nilpotent Pieces

Theorem (V.)

Let G be a simple algebraic group of type Gy, F4, and Es and Os
denote the nilpotents orbit with map d € A. Then the nilpotent piece
with respect to map ¢ and the group G is given by

)
N = U O,
d'eA
8'=6

In particular, the nilpotent pieces Ng form a partition of Ny and are
in bijection with the nilpotent orbits in good characteristic.
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