

Meeting opening: Objectives, Milestones and Deliverables

Oleg B. Malyshev (UKRI) / Claire Antoine (CEA) WP9 coordinators

WP9 objectives

- Define a <u>strategy for innovative superconducting RF</u> (SRF) cavities coated with a superconducting film.
 - Deposition techniques: PVD and ALD
 - Superconducting films: Nb, NbN, Nb₃Sn, V₃Si (and others) and SIS
 - Optimization of flat SRF thin films production procedure
- Optimise and industrialise the production
 - of seamless copper cavities and
 - of the deposition techniques.
- Produce and test prototypes of SRF (single-cell elliptical) cavities:
 - Initially with pre-prototypes with f = 6 and 3 GHz
 - Scaling up for f = 1.3 GHz.
- Test a new laser treatment of Nb coated cavity.

≻Main goal:

FAST

- Improving the performance and reducing the cost of acceleration systems
 - both production and operation

WP9 tasks and order in the meeting Agenda

- Task 9.1: Coordination and strategy for innovative superconducting accelerating cavities
 - <u>CEA</u>, INFN, HZB, UKRI, USI, JLab MEPHI, PTI.
 - Task Leaders: C. Antoine (CEA), O. Malyshev (UKRI)
- Task 9.2: Innovative SC accelerating cavity prototype
 - INFN-LNL, INFN-LASA, PICCOLI, UKRI, USI, CEA, IEE, HZB, PTI, MEPHI
 - Task Leader: C. Pira (INFN)
- Task 9.3 : Optimisation of process parameters and target development for SRF cavity coating with A15 material
 - <u>UKRI</u>, INFN, IEE, USI, HZB, MEPHI, HZDR
 - Task Leader: R. Valizadeh (UKRI)
 - Task 9.4: Surface engineering by atomic layer deposition (ALD)
 - <u>CEA</u>, CNRS

FAST

- Task Leader: T. Proslier (CEA)
- Task 9.5: Improvement of mechanical and superconducting properties of RF resonator by laser radiation
 - <u>RTU</u>, UKRI, INFN, IEE, HZB
 - Task Leader: A. Medvids (RTU)
- Task 9.6: Optimization of flat SRF thin films production procedure
 - <u>HZB</u>, INFN, UKRI, USI, CEA
 - Task Leader: O. Kugeler (HZB)

	IFAST WP9 Partners	Leading	Participating
1	CEA (Saclay, France)	WP, Tasks 1 and 4	Task 1 , 2, 4 , 6
3	IEE-SAS (Bratislava, Slovakia)		Tasks 2-6
4	INFN/LNL (Legnaro, Italy)	Task 2	Tasks 1, 2 , 3, 5, 6
5	INFN/LASA (Milano, Italy)		Tasks 2, 3
6	Piccoli S.r.I. (Noale (VE), Italy)		Tasks 2, 3
7	Helmholtz-Zentrum Berlin (Berlin, Germany)	Task 6	Tasks 1 and 6
8	RTU (Riga, Latvia)	Task 5	Task 5
9	University Siegen, (Siegen, Germany)		Tasks 2, 3, 6
10	UKRI/STFC/ASTeC (Daresbury, UK)	WP, Tasks 1 and 3	Tasks 1, 2, 3 , 5, 6
11	Lancaster University (Lancaster, UK) Lancaster		Tasks 1 – 3, 6
12	Jlab (Newport News, Virginia, USA) Jefferson Lab		Tasks 1, 2
13	PTI (Physics-Polytechnic Institute, Minsk, Belarus)		Tasks 1, 2
14	MEPHI (National Research Nuclear University, Moscow, Russia)		Tasks 1 - 3
15	Helmholtz-Zentrum Dresden-Rossendorf (Dresden, Germany)		Tasks 1 – 3, 5

Milestones and Deliverables

	Year 1	Year 2	Year 3	Year 4	
Tasks Description	1 2 3 4 5 6 7 8 9 10 11 12	13 14 15 16 17 18 19 20 21 22 23 24	25 26 27 28 29 30 31 32 33 34 35 36	37 38 39 40 41 42 43 44 45 46 47 48	49 50
WP9 Innovative superconducting thin film coated cavities					
9,1 Coordination and Strategy for Innovative Superconducting Accelerating Cavities			MD		
9,2 Innovative Superconducting (SC) Accelerating Cavity Prototype	м			D	
9,3 Optimisation of process parameters and target development for SRF cavity coating with A15 material	м		D		
9,4 Surface engineering by Atomic Layer Deposition (ALD)		M		D	
9,5 Improvement of mechanical and superconducting properties of RF resonator by laser radiation			м	D	
9,6 Optimization of flat SRF thin films production procedure	м			D	

IFAST WP9 Milestones		IFAST WP9 Deliverables	
MS37 International thin film workshop organization (web site + eport)	M28	D9.1: Thin-Film SRF roadmap report. Summaries of the results obtained within the workpackage and prospective inspired from WP advances as well as discussions at TF-SRF 2022.	M35
MS38 First seamless copper 1.3 GHz cavity produced as substrate for the coating of the SC film (Report)	M12	D9.2: RF test on coated resonant cavity. Resonant cavity coated and tested with an alternative material to Niobium with a $Q_0 > 10^9$ at 4.2 K and 1.3 GHz.	M46
M39 Coating facility built and tested at STFC, USI and INFN (Report)	M12	D9.3: First 6 GHz cavity coated and characterised. <i>Results from the morphological and SC characterisation of first coated</i> <i>cavity with an alternative material to Niobium.</i>	M36
MS40 Construction and operation of the cavity dedicated ALD system (Report)	M24	D9.4: Deposition of superconducting multilayers on cavities. <i>1.3 and 3 GHz Nb and Cu cavities coated and tested with multilayers.</i>	M46
MS41 A facility for laser operation for complex 3D treatment is tested on 1.3 GHz cavity (Report)	M36	D9.5: 1.3 GHz Nb-coated cavity irradiated by laser in Ar atmosphere and RF tested. Increasing of the field of magnetic flux entry in Nb coated 1.3 GHz cavity irradiated by laser in argon atmosphere. Standard RF testing.	M45
MS42 ARIES samples prepared for renewed SC film deposition (Report)	M6	D9.6: Test of thin-film samples. Four thin film samples reprocessed by 4 different techniques and tested with QPR.	M46

ARIES/IFAST meeting

- The 1st I.FAST Annual Meeting
- Location: CERN
- Dates: 3-5 May 2022

??	ARIES meeting
??	IFAST meeting
??	EU projects for accelerators (TBC)
??	WP parallel meetings

More news: in March after StCom meeting

MEXT WP9 meeting

- During Geneva's meeting or by zoom
- 3-5th May?

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.