

Starting up AWAKE Run 2: operating the facility during LS2 and first results of the 2021 proton run

Giovanni Zevi Della Porta (CERN)

Accelerators and Technology Sector (ATS) Seminar <u>https://indico.cern.ch/event/1129691/</u>

1 March 2022

- Introduction to AWAKE
 - Run 1 achievements
 - Plan for Run 2
- Run 2 preparation during the Long Shutdown 2 (2019-2020)
 - Laser ionization and plasma formation
 - Electron Beam: human and machine learning
 - Electron seeding in plasma: preparation for Run 2a
 - Performance: Alignment and Data Quality
- The 2021 proton run
 - Run 2a (2021-2022) physics goals
 - Preliminary results
- What's next?
 - 2022 proton run goals
 - Beyond Run 2: physics applications

Outline

- Introduction to AWAKE
 - Run 1 achievements
 - Plan for Run 2
- Run 2 preparation during the Long Shutdown 2 (2019-2020)
 - Laser ionization and plasma formation
 - Electron Beam: human and machine learning
 - Electron seeding in plasma: preparation for Run 2a
 - Performance: Alignment and Data Quality
- The 2021 proton run
 - Run 2a (2021-2022) physics goals
 - Preliminary results
- What's next?
 - 2022 proton run goals
 - Beyond Run 2: physics applications

Plasma wakefield acceleration, with a proton driver

- 1) Laser ionizes gas, forming plasma
- 2) **Proton bunch** generates **wakefields** in the plasma, at its resonant frequency
- 3) Micro-bunches form, since plasma wavelength is smaller than proton bunch (self-modulation process)

 Proton micro-bunches act coherently to generate wakefields which accelerate and focus electrons

APS/Alan Stonebraker

AWAKE

Plasma wakefield acceleration, with a proton driver

- Why plasma instead of a (superconducting) RF cavity?
 - Higher fields: can sustain more MV/m, leading to shorter accelerators
 - Metallic structures of RF accelerators break down at around 100 MV/m
 - Self-focusing: plasma can provide focusing fields, as well as accelerating
- Plasma wakefield acceleration has been studied since the 80's, but never with protons
 - Proton beams are rare, and the existing ones are very long, requiring self-modulation to scale their size down to the plasma wavelength
 - AWAKE is the only experiment exploring this possibility
- Why protons, instead of electrons or lasers, to load the wakefields in the plasma?
 - Highest stored energy per bunch (SPS and LHC : 20 and 300 kJ/bunch)
 - No need for "staging" of multiple small accelerators, since E_p >> E_e
 - We can use **existing proton beams** to reach the **energy frontier with electrons**!
 - Simulations: SPS p⁺ (450 GeV) can lead to 200 GeV e⁻. LHC p⁺ can yield to 3 TeV e⁻

AWAKE

- AWAKE: Advanced Proton Driven Plasma Wakefield Acceleration Experiment
 - Proof of principle R&D experiment to study proton driven acceleration
 - 23 institutes, >100 people. Approved in 2013, electron acceleration in 2018

Experimental setup

Giovanni Zevi Della Porta, CERN

CÉRN

Intro to AWAKE Run 1 and Run 2

AWAKE Run 1: Milestone #1

- 2016/2017: SELF-MODULATION
 - First <u>seeded</u> self-modulation of a high energy proton bunch in plasma
 - <u>Phase-stability</u> and reproducibility are essential for electron acceleration!
 - —> SPS BUNCH CAN BE USED FOR ACCELERATION <—

AWAKE Run 1: Milestone #2

- 2018: ACCELERATION: from 19 MeV to 2GeV
 - Inject e- and accelerate to GeV in the wakefield driven by the SPS protons
 - Maximum accelerated charge ~100 pC (~20% of injected)

AWAKE Run 1: a broad scientific output

- Explore the large parameter space allowed by AWAKE
 - Characterize experimental setup (laser, e- beam, diagnostics)
 - Understand how <u>self-modulation</u> starts and grows
 - Optimize charge and energy in <u>electron acceleration</u>
- Recent output (2018-2022)
 - ≥ 12 peer-reviewed journal papers by the AWAKE Collaboration
 - ≥ 30 peer-reviewed journal papers by subsets of AWAKE authors
 - ≥ 30 conference presentations/proceedings
 - ≥ 7 Master or PhD theses

The next step: AWAKE Run 2

CERN

Demonstrate the possibility to use the AWAKE scheme for high energy physics applications

- a. Demonstrate electron seeding of self-modulation in 1st plasma cell
 - Need self-modulation of the entire proton bunch
- b. Demonstrate the stabilization of the micro-bunches with a density step in 1st plasma cell
 - Show levelling of strong acceleration field
- c. Demonstrate electron acceleration and emittance preservation in 2nd plasma cell
 - Simultaneous energy gain and good emittance
- d. Develop scalable plasma sources
 - Current method (laser ionization) cannot support O(100) m plasma cells

Run 2a: self-modulation of entire bunch

- a. Demonstrate electron seeding of self-modulation in 1st plasma cell
 - Need self-modulation of the entire proton bunch before entering 2nd cell, to prevent the head of the proton beam from disrupting the wakefields

CERN

AWAKE

Run 2b: wakefields preservation

- b. Demonstrate the stabilization of the micro-bunches with a density step in 1st plasma cell
 - Self-modulation can eventually destroy the beam
- Simulations predict that we can "freeze" the micro-bunching process by accurately choosing the plasma density profile

AWAKE

CÉRN

Run 2c: beam quality

- c. Demonstrate electron acceleration and emittance preservation in 2nd plasma cell
 - 1: Match e- beam transverse properties to the plasma entrance: preserve emittance
 - 2: Blow out regime (e- density >> Rb density): linear focusing, ε preservation
 - 3: **Beam loading**: tune the charge/position of e- beam to reach small $\delta E/E$

Run 2d: longer plasma

- d. Develop scalable plasma sources
 - Current method (laser ionization) cannot support O(100) m plasma cells needed for O(100) GeV
 - 'Helicon': low-frequency EM wave generated by RF antennas
 - 'Discharge': high-current arc in plasma

Run 2 schedule

CERN

AIVAKE

- In November 2021, Cost and Schedule for Run 2 were presented to a review panel
 - Run 2 program designed around injector schedule, with protons ≤ 2024 and ≥2028
 - Run 2 program requires emptying the CNGS tunnel to make room for equipment

- Introduction to AWAKE
 - Run 1 achievements
 - Plan for Run 2
- Run 2 preparation during the Long Shutdown 2 (2019-2020)
 - Laser ionization and plasma formation
 - Electron Beam: human and machine learning
 - Electron seeding in plasma: preparation for Run 2a
 - Performance: Alignment and Data Quality
- The 2021 proton run
 - Run 2a (2021-2022) physics goals
 - Preliminary results
- What's next?
 - 2022 proton run goals
 - Beyond Run 2: physics applications

Long Shutdown 2: AWAKE without protons

- The 2019-2021 years were extremely active, both in the AWAKE tunnel and on the surface
- I will focus on work in AWAKE/TAG41: 20 weeks of electron/laser beam in 2020, 11 weeks in 2021
 - Laser/Rubidium studies to improve the model of plasma formation
 - Electron beam studies to improve reproducibility, optics, trajectory and to test Machine Learning
 - Electrons-in-plasma studies to understand the electron-seeding process

• Tests at CLEAR of in-vapor diagnostics, high-frequency BPMs, bunch-length measurements with EOS

= 1·10¹⁴ cm⁻

AWAKE

Laser studies of plasned control and control of plasned control of pla

5D_{3/2} -- 5D 5/2 775.8 nm 775.9 nm Laser spectrum $|2\rangle$ $5P_{3/2}$ Laser Spectrum b) (AU) 5P3/2 ⇔ 5D3/2 5pectrum (009 007 5P3/2 ⇔ 5D5/2 $5S_{1/2}$ 790 740 750 760 770 780 8Ò0 λ (nm)

- Rb ionization: E₁ = 4.18 eV, E₂ = 27.29 eV
 - eV .
- Complex process: resonant nonlinear optical interaction, plasma becomes transparent to resonant frequency once the outermost electron is removed
- Laser (Ti:Sa) wavelength of ~780 nm is close to 3 resonances
- Experiment: measure size and energy of laser after 10 meters of propagation in Rb, as a function of laser input energy
 - Compare with different atomic transition models

• <u>Next</u>: <u>explore role of resonance</u> by scanning <u>laser wavelength</u> and measure extent of plasma channel

TRANSMITTED SIZE VS INPUT ENERGY

OUTPUT ENERGY VS INPUT ENERGY

20

G. Demeter et al, Long-range propagation of ultrafast ionizing laser pulses in a resonant nonlinear medium, Phys. Rev. A 104, 033506 (2021)

Improved control of e- beam for seeding experiment

- In Run 1, the 18 MeV electron beam was used as "witness", with the goal to accelerate some of its particles
- In Run 2, the 18 MeV beam was repurposed for electron seeding (the new 'witness' beam will be 150 MeV)
 - Simulations show that the *seed wakefield* depends strongly on the 6D phase space of the electron beam
 - To test this, we want to be able to scan parameters (charge, emittance, size) as widely as possible

- By improving our control of the electron beam, we learn to control our seed wakefields
 - Determine which parameters are most crucial to seed the self-modulation

^{*} C. Bracco et al., Systematic optics studies for the commissioning of the AWAKE electron beamline, in Proceedings of IPAC, 2019 (JACoW, Geneva, Switzerland, 2019), <u>https://doi.org/10.18429/JACoW-IPAC2019-WEPMP029</u>

The AWAKE Electron Beam

CERN

Online multi-objective optimization

• Optimize competing objectives using adaptive feedback Objective 1: beam trajectory Scheinker's ES algorithm: model BPM n independent, effective for noisy --≻ data pickup target feedback measurement Δx and time varying systems with many coupled parameters BRN028. • Use multiple competing feedback 1d 200 loops at various timescales BPN039.

Online multi-objective particle accelerator optimization of the AWAKE electron beam line for simultaneous emittance and orbit control, A Scheinker et al., AIP Adv. 10 (2020) 5, 055320

Online multi-objective 🖸

- Optimize competing objectives using a
 - Scheinker's ES algorithm: model independent, effective for noisy and time varying systems with many coupled parameters
 - Use multiple competing feedback loops at various timescales
- Optimization successful !
 - ~60 iterations to achieve objective 1
 - ~500 to achieve objectives 1+2
 - In AWAKE, 1 iteration ≈ 3 seconds

Giovanni Zevi Della Porta, CERN

simultaneous emittance and orbit control, A Scheinker et al., AIP Adv. 10 (2020) 52055

XX RMSE [mm]

Reinforcement Learning: use ML to determine the best action

- An optimizer takes many iterations, every time: how can we get there faster?
 - Encode the system as a neural network (i.e. a function)
 - <u>RL will use some time to 'train'</u> (i.e. find the coefficients of the network that lead to best action, given initial states of the system) (i.e. build a model of the system)
 - After training, RL can directly take the 'action' required to solve the problem
 - REQUIREMENT: full set of observables ($x_1, ..., x_n$) to distinguish between states
 - ASSUMPTIONS: constant response and no hidden observables

Reinforcement Learning: use ML to determine the best action

Trajectory Optimization

V Kain et al., Sample-efficient Reinforcement Learning for CERN accelerator control, Phys. Rev. Accel. Beams 23, 124801 (2020)

• Proof-of-principle: AWAKE

CERN

- Online model of beam-line is available, so trajectory optimization can be done using standard tools (YASP)
- With no knowledge of the online model, RL is able to solve problem with ≤ 2 iterations, after training for ~100 iterations
- Training still valid after 3 months
- Training on simulated model also effective

- Real challenge: CERN's LINAC4
 - Online model was not yet available at the time of study
 - Simple optimizer requires 70 iterations
 - RL can train for ~130 iterations, and afterwards find the trajectory with ≤ 3 iterations

Long Shutdown 2

Reinforcement Learning: use ML to determine the best action

Matching Injector to Transfer Line

• Real challenge: AWAKE

FRN

- Online models not available: manual tuning to optimize beam size and intensity!
- Multi-objective: beam size (80%) and intensity (20%) from a 2D BTV image
- Highly non-linear response
- Numerical optimizer requires > 100 iterations to converge
- Different approaches used to describe the 2D "state" information for RL:
 - "Explicit": Gaussian fits ($\mu_{x,y}$, $\sigma_{x,y}$) and total intensity
 - "Implicit": Let a variational autoencoder (VAE) compress image to 5 parameters
- Training the VAE gives the ability to produce synthetic data and train a synthetic model of AWAKE. How does the RL on the synthetic model?

RL with explicit state encoding

RL with implicit state encoding

F Velotti et al., Automatic setup of 18 MeV electron beamline using machine learning, Submitted to PRAB

- Results
 - Able to solve problem with ≤ 2 iterations, after training for 200 iterations
 - Good results on Explicit/Implicit/Synthetic Data
- Problem: system has a slowly-changing response
 - RL trained on Day 1 does not work on Day 2
 - <u>Additional efforts needed</u> to incorporate residual state information (i.e. 2D image is not enough)

Giovanni Zevi Della Porta, CERN

Long Shutdown 2

AWAKE

Beam trajectory reconstruction using neural networks

FRN

- Problem: no direct measurement of e- trajectory in p+ events
 - BPMs overwhelmed by higher charge of proton
 - Hardware solutions, under development: Cherenkov Diffraction Radiation BPMs and HF BPMs
- Solution: can we solve this in software, using the first half of the electron line?
 - In Run 1, attempted to use optics model, with insufficient results
 - Idea: teach a Physics Guided Neural Network (PGNN) to correct the estimates of the optics model
- Results: PGNN works well when BPM resolution is good
 - Measurement of PGNN performance is limited by BPM resolution
 - When BPM resolution is poor (i.e. low-charge e- beam), it is difficult to estimate the PGNN performance
 - Good news: jitter for low-charge beam is small low, so PGNN is not needed and a simple <u>average trajectory</u> works well

bpm measured

600

R. Ramjiawan et al., Design of the AWAKE Run 2c transfer lines using numerical optimizers, To be submitted

Analytic solutions and manual tuning (Human Learning)

- Tuning the Injector system:
 - Injector parameters cannot be moved continuously, so Optimizers and ML are not (yet) a solution
- Matching Injector to Transfer Line:
 - Reinforcement Learning cannot (yet) solve this: slowly changing response
 - In parallel to ML program, we developed an 'analytic' solution
 - 1) Measure beam optics (4D) out of the Injector
 - 2) Solve system of equations predicting what the best currents for the 'matching' magnets

AWAKE

Simulations: Transfer Line

AWAKE

- Full model of Transfer Line available
 - Good agreement with data, as long as injector optics variations are taken into account
 - Allowed to develop alternative focusing (i.e. changing beam size to affect e- bunch density while keeping charge fixed)
- Necessary tool since the beam size estimate at plasma entrance relies fully on simulation in 2021
 - BTV @ plasma entrance added in early 2022, undergoing commissioning

- Introduction to AWAKE
 - Run 1 achievements
 - Plan for Run 2
- Run 2 preparation during the Long Shutdown 2 (2019-2020)
 - Laser ionization and plasma formation
 - Electron Beam: human and machine learning
 - Electron seeding in plasma: preparation for Run 2a
 - Performance: Alignment and Data Quality
- The 2021 proton run
 - Run 2a (2021-2022) physics goals
 - Preliminary results
- What's next?
 - 2022 proton run goals
 - Beyond Run 2: physics applications

Electron seeding: e- bunch energy deposited in plasma

- Seeding relies on transverse wakefields generated by e- bunch in the first meters of plasma
 - Size: e⁻ bunch pinches in the first few cm and remains small for several meters

٦FR٢

- Wakefield: while the e- bunch is small, large wakefields are sustained for the first two meters
- We cannot yet measure seed wakefields directly, but we can measure the e⁻ bunch properties after the plasma

Electrons in plasma: Run 2a without protons

- Preliminary experimental results
- Plasma-off measurements (propagation in vacuum)
 - No energy loss, as expected
- Plasma-on measurements
 - Significant energy and charge loss
 - Reproducible event-to-event
 - Energy loss (i.e. seed strength) depends on electron beam properties
- Dedicated analysis and comparison with simulation ongoing
 - Decided to measure electron energy loss also during proton run

L. Verra et al., 47th EPS Conference on Plasma Physics (2021), P3.2011

Performance challenges and improvements

- Largest operational challenge: aligning the 3 beams to < 50 μm
 - Laser: $\sigma \sim 700 \ \mu m$, position jitter $\sim 200 \ \mu m$
 - **Protons**: $\sigma \simeq 200 \ \mu m$, position jitter $\simeq 40 \ \mu m$
 - Electrons: σ ~ 200 $\mu m,$ position jitter ~ 20 μm

BPM resolution: Protons: ~ 100 μm Electrons: ~ 200 μm

Alignment requires averaging many shots to beat jitter and resolution

- Laser: adapted Run 1 alignment code, using analog BTVs (1 Hz)
 - Set up a moving average on 10 Hz digital cameras along a parallel laser line
 - **2022**: finish commissioning parallel line to align at 10 Hz without interrupting proton beam
- Electrons: developed simple code to calculate offset/angle based on BPM average over ~400 events at 10 Hz
 - Can reach golden trajectory in only a few minutes
 - But lengthy alignment is still required to find the proton beam (since proton alignment is limited)
 - 2022: Improvement expected with the installation of a BTV screen at the plasma entrance
- Protons: developed simple code averaging BPMs over 20 events (10 minutes!)
 - Longer average would be needed, but 10+10 minutes of beam time is already a lot
 - Alignment affected by SPS interruption, super-cycle changes, drift.
 - **2022**: consider transitioning to BTV for higher resolution, allowing to use fewer shots

New for Run 2: Data Quality Monitoring

- A lesson from the LHC experiments: reduce downtime by catching problems as early as possible with basic data monitoring
 - Constant monitoring of timestamp and errors for all data written to disk (250 variables, 50 MB per event).
 - Trajectory monitoring for 3 beams (moving averages to overcome jitter and resolution)
- Further improvements ongoing to improve reliability.

Single event summary (main diagnostics)

A WAKE

- Introduction to AWAKE
 - Run 1 achievements
 - Plan for Run 2
- Run 2 preparation during the Long Shutdown 2 (2019-2020)
 - Laser ionization and plasma formation
 - Electron Beam: human and machine learning
 - Electron seeding in plasma: preparation for Run 2a
 - Performance: Alignment and Data Quality
- The 2021 proton run
 - Run 2a (2021-2022) physics goals
 - Preliminary results
- What's next?
 - 2022 proton run goals
 - Beyond Run 2: physics applications

Run 2a: what can we learn from eSSM?

Seeding and growth of self-modulation

CERN

Seeding and growth of **hosing**

Interplay of seeded and unseeded self-modulation

AWAKE

2021 AWAKE proton run: 2+3+2 weeks (+ 2 days)

CÉRN

First run (July 21, 2 weeks)

- First observation of electron-seeded self-modulation
 - Observed with low electron beam charge, allowing to study effect of increased charge

First run (July 21, 2 weeks)

- First observation of electron-seeded self-modulation
 - Observed with low electron beam charge, allowing to study effect of increased charge

A WAKI

→ gas

plasma 🗲

Second run (August 23, 3 weeks)

- eSSM observed up to 3E11 proton intensity (AWAKE nominal)
- Study self-modulation dependence on:
 - Electron bunch charge, i.e. seed wakefield amplitude
 - Proton bunch charge, i.e. self-modulation growth rate

Proton bunch, 210 ps scale (plasma and electron seed). Different proton bunch charges

Second run (August 23, 3 weeks)

plasma ← → gas

AWAKE

- Study hosing dependence on misalignment axis
 - Control the direction of hosing w.r.t. the streak camera slit

0.0

41.0

82.0

123.0

164.1

205.1

t [ps]

Proton bunch, 210 ps scale (plasma and electron seed). Different electron bunch alignments

Third run (September 11, 2 weeks)

• First scans of longitudinal electron position

TERN

• How does the unseeded front of the proton bunch affect the seeded back of the bunch?

seeded

un-seeded

- Important to understand the role of electron-seeding in Run 2c
- Study 3D features of beam by moving image on streak camera slit
 - Requires shot-to-shot reproducibility for O(100) consecutive shots, or O(1) hour
 - Interesting to understand both self-modulation and hosing configurations

gas

Summary for 2021 proton run

- Run 2a started in July 2021, with an ambitious program
 - Prove electron-seeded self-modulation of proton bunch
 - Use electron-seeding to understand the physics of self-modulation and hosing
- Very good results from the 7 weeks of proton beam received in 2021
 - Early observation of electron-seeding: already started advanced studies and scans
 - Sufficient stability for long scans to explore full 3D beam profile
- These results would not have been possible without the support and dedication of:
 - The control room team: Livio Verra, Jan Pucek, Tatiana Nechaeva, Michele Bergamaschi, Joshua T. Moody, Miklos Kedves, Eugenio Senes, Eloise Guran, Vasyl Hafych, Samuel Wyler, Francesca Elverson, Edda Gschwendtner and Patric Muggli
 - The SPS operation team and the support and service teams of the AWAKE facility

- Introduction to AWAKE
 - Run 1 achievements
 - Plan for Run 2
- Run 2 preparation during the Long Shutdown 2 (2019-2020)
 - Laser ionization and plasma formation
 - Electron Beam: human and machine learning
 - Electron seeding in plasma: preparation for Run 2a
 - Performance: Alignment and Data Quality
- The 2021 proton run
 - Run 2a (2021-2022) physics goals
 - Preliminary results
- What's next?
 - 2022 proton run goals
 - Beyond Run 2: physics applications

Next step: 2022 proton run

- 12 weeks of beam time foreseen for 2022
- AWAKE and SPS operations
 - Improve laser and electron alignment, using new BTV and improved software
 - Work with SPS to improve proton beam alignment, stability (for long scans), and to extract beam during LHC filling
- Physics program

CERN

- Continue scans to explore the physics of eSSM and electron-seeded hosing
- [Tentative] Use new spectrometer cameras to measure size/emittance of accelerated beam

FT b TT2	FT b TDC: Deam to 20 TED	eam to 2/TCC2 Pb El	St o ars to LENA	art omn 5 5	LHC be hissioni PS Bea E12 M to NA	am ng IM TE	Physics start SPS-NA Phy May	scis s ELEN/	start A	Multi- beam t	bur to L	nch start LHC sou	4-c Sc LN3 rce	lay Li rubbir	HC 2-day ng Scrul Jun	y L Ibbi	HC 2-day ng Scrui	y Lł bbii	HC ng 2-day Scrub	LH bin	IC g	Ju	ul
Wk		14		1!	5	16	17		18	19		20	21		22	Ι	23		24	Π	25	2	6
Мо	₩	4	•		¥ 11	Easter Mo	¥ 18	25		\diamond	9		€	23	Cool-down Lowint. test	30	Whitsun	6	أ	13		♦	27
Tu							أ		أ	\diamond		\diamond	\$\$///	Ň	Restart	ŀ	令	Î	\diamond		令	\diamond	
We	Buio Par. 8:0	PSB/PS MD 10 - 18:00	BC	¥		2	Ded. inj. M 8:00 - 18:0	0	Ded. inj. MD 8:00 - 18:00	Ded. Inj. MD 8:00 - 18:00	<u>ן</u>	Par. PSB/PS MD 8:00 - 18:00			\diamond	Π	Ded. Inj. MD 8:00 - 18:00	Ĩ.	Ded. Inj. MD 8:00 - 18:00	Π	Ded. inj. MD 8:00 - 18:00	Par. PS 8:00	58/PS MD - 18:00
Th	Scrub	¥	Scrubt			S-NA	Par. SP5 MI 8:00 - 18:0]♥	\diamond			adMa	Ascensi	on	\$¥////	Ż	\$////	VAKF			Par. SP5 MD 8:00 - 18:00	adMa	
Fr	SP		SPS	5. Fri	day	2	\diamond		A	A	-	Ĭ	May D	ay //		Ŋ		1			A	Ħ	
Sa											Į	FMPY	///sm	2//	PMDS	Ű	119404		9111	Ŋ			
Su											Į								9777	1			

S

Closure

LHC MD blocks ion period

Beyond Run 2: Roadmap for Particle Physics Applications

- The AWAKE scheme can provide high-energy (> 50 GeV) high-charge electron bunches
 - Switch from R&D to particle physics experiments!
- Step 1: produce e- bunches for fixed target experiments (standalone, least stringent)
 - Build upon AWAKE Run 2, extend plasma from 10 m to ~100 m
 - Physics: dark photons, strong-field QED, ...
- Step 2: re-inject electron beam for e-p (or e-ion) collisions
 - Move AWAKE on a transfer line feeding back into the LHC, use SPS or LHC protons
 - Physics: explore proton/ion structure, pγ cross section, leptoquarks, ...
- And beyond: e⁺e⁻, polarized beams, muons, ...

Active participation in Physics Beyond Colliders workshop and European Strategy Update

• arXiv:1812.11164, arXiv:1812.08550, CERN-PBC-REPORT-2018-005 and 007

Step 1: produce e- bunches for fixed target experiments

AWAKE

- Fixed target requirements: energy & flux important, relaxed emittance
 - Recent simulations show a maximum energy of 200 GeV with SPS protons!
 - Energy and electrons on target competitive with state-of-the-art (NA64)

AWAKE energy using the SPS beam

Dark photon mass/coupling reach

R. Alemany et al., Summary Report of Physics Beyond Colliders at CERN, arXiv:1902.00260, 2019.

AWAKE highlights and plans

- Explore QCD scaling laws at high center of mass energy, leptoquark searches
 - Limited luminosity, but very high energy

٦FR٢

AWAKE

- AWAKE was created to test a new idea for electron acceleration
 - Use plasma to transfer energy from protons to electrons and potentially reach the electron energy frontier
- So far, in Run 1 and Run 2a, all expectations have been met
 - The rest of Run 2 aims to demonstrate the possibility to use the AWAKE scheme for high energy physics applications
- AWAKE is actively thinking about future physics applications
 - Began with Physics Beyond Colliders discussion
 - Most recently in the context of the European Strategy for Particle Physics "Accelerator R&D Roadmap"

Run 2a goals: Plasma light as a measurement or wakerierus

- Inspiration: SLAC E-164-X PWFA experiments (2004)
 - <u>Clear indication that plasma light is proportional to wakefields</u>
 - Explanation: wakefields sustained by plasma e- oscillations dissipate in plasma. Plasma recombination produces light.
- Setup @ AWAKE:
 - Optical fibers from 2 viewports to spectrograph used at 0th order
 - Data: laser-only, add electrons, protons or both
- Simple analysis to measure wakefields:
 - Use timing to reject laser pulse light, and use laser-only images for background subtraction

Second run (August 23, 3 weeks)

- Study plasma light with laser + protons
 - Focus on proton wakefields (~10 times larger than electron ones)
 - Upstream viewport: wakefields driven by local proton density
 - Downstream viewport: wakefields result from 10m evolution of self-modulation
- Promising results
 - Upstream: Correlation between plasma light and proton density at laser position
 - Correlation between two viewports
 - Measurements active for most of the run: laser+electrons and laser+protons+electrons

Laser, p+, e

Viewports

Spectrograpl

Flipper

Fiber coupler

Optical fiber

Giovanni Zevi Della Porta, CERN

CERN

Highlights of the first proton run (July 22 - Aug 3)

- July 29-30: proton timing jitter
 - Different RF issues causing proton jitter on different scales

Highlights of the first proton run (July 22 - Aug 3)

- July 29-30: proton timing jitter
 - 2.5 ns jitter solved next-day, and 100 ps reduced
 - 100 ps jitter fully solved by beginning of second proton run

No 2.5 ns jitter

No 100 ps jitter

TFR

AWAKE feedback to SPS

- Reported at Injectors and Experimental Facilities Workshop in December
 - https://indico.cern.ch/event/1063281/timetable/

AWAKE challenges (from the injector complex)

- Experiments are centered on reproducibility
 - Need for reproducible wakefields

x [mn

- A longitudinal profile requires ~10 summed images
- Data-taking consists of parameter scans
 - 1 "data point" requires 10-15 consecutive pulses
 - 10-point scan requires 1 hour

The biggest challenge comes from interruptions

Beam is interrupted for more than a few cycles: need to realign proton beam and restart scan

Current diagnostic insufficient for the necessary alignment precision

Searching 'good alignment' by manually looking at self-modulation images. Hours of physics time lost.

17

AWAKE feedback to SPS

- Reported at Injectors and Experimental Facilities Workshop in December
 - <u>https://indico.cern.ch/event/1063281/timetable/</u>
 - Feedback 1: the ALIGNMENT issue. Should SPS take over proton beam alignment?
 - Currently alignment is calculated by AWAKE operators based on BPM averages, and mm/mrad corrections are given to SPS operators. Do we want to change the procedure? Could/should SPS take this over?
 - Feedback 2: the STABILITY issue. Can we think out of the box to improve it?
 - Restart of a scan (> 1 hour): every time there is a few-minute interruption
 - Speed up scans: more frequent extractions (4 per super-cycle) in stable conditions?
 - Anticipate less stable injector conditions: give up the beam altogether in these situations?
 - Improve communication: not just with SPS but also with LHC and injectors to see if potentially disruptive tests or procedures are expected?
 - Feedback 3: the LHC FILLING issue. Can AWAKE take protons during LHC filling?
 - Not possible during Run 1 (2016-2018). What is the situation now? Showstoppers?
 - Since we suffer from upstream issues during the MDs on Wednesday and Thursday, additional interruptions from LHC filling in 2022
 - Feedback 4: the FLEXIBILITY issue. Could there be flexibility when changing conditions?

Sometimes an experiment **is not yet finished**, when physics is stopped to change the cycle, begin an LHC fill, or make other active changes.

Improve communication: an early heads-up would already help to plan accordingly

• Evaluate priorities: A "Could we have N more minutes?" card to occasionally postpone disruptive changes

Studies and experiments towards Run 2 b, c, d

[Run 2 b] New plasma cell with density steps

MPP Munich, P. Muggli, J. Pucek, WDL, R. Speroni

Prototype setup in test stand in EHN1!

System connected to Siemens control system

[Run 2 c] New UV and IR laser lines

For more details, see E. Gschwendtner SPSC report: https://indico.cern.ch/eVent/962697/contributions/4050037/

Intro to AWAKE Run 1 and Run 2

AWAKE

Studies and experiments towards Run 2 b, c, d

[Run 2 c] New 150 MeV e- source

- \rightarrow based on X-band
- \rightarrow Well advanced design
- \rightarrow Prototyping together with CLEAR

S. Doebert, M. Dayyani Kelisani, L. Garolfi

[Run 2 c] New e- line

- → Requirement of β = 5 mm at injection.
- \rightarrow Require a module which is achromatic, with no bunch lengthening.
- \rightarrow Limit of ~ 3m width set by tunnel width
- \rightarrow Dipole bending angle > 15° so beam-pipe doesn't hit plasma cell
- \rightarrow Dipole-quadrupole spacing > 1 m

For more details, see E. Gschwendtner SPSC report: https://indico.cern.ch/event/962697/contributions/4050037/

Intro to AWAKE Run 1 and Run 2

Studies and experiments towards Run 2 b, c, d

[Run 2 b] Diagnostics: beam screens in Rb vapor

Study screen installation inside the vapor source expansion volume Test screen performance in CLEAR

J. Pucek

[Run 2 b] Diagnostics: Cherenkov diffraction radiation (ChDR) BPMs

Preparing for prototype installation ~April 2021, with the goal to test it with protons during Run 2a. Full system for Run 2b.

For more details, see E. Gschwendtner SPSC report: https://indico.cern.ch/event/962697/contributions/4050037/

ments tow

bevelop scalable pl

er ionization) cannot supp 2 parallel developme

'Helicon': low-frequency EM wave generated by RF antennas Prototype (1m) moved to CERN in 2019, tests started 1 m helicon plasma source at CERN

A. Sublet, + IPP Greifswald, SPC Lausanne, Univ. Wisconsin, IST Lisbon

For more details, see E. Gschwendtner SPSC report: <u>https://indico.cern.ch/event/962697/contributions/4050037/</u>

A IV-A-KE

Step 1: produce e- bunches for fixed target experiments

- Fixed target requirements: energy & flux important, relaxed emittance
 - Simulations show parameter ranges for SPS-based beams
 - Energy and electrons on target competitive with state-of-the-art

proton energy	plasma length	electron energy	electron charge						
400 GeV	50 m	33 GeV	107 pC						
400 GeV	100 m	54 GeV	134 pC						
450 GeV	130 m	70 GeV	134 pC						

Reference: NA64 experiment @ CERN • 100 GeV

• 3x10¹² electrons for entire lifetime

Parameter	AWAKE-upgrade-type	HL-LHC-type		
Proton energy E_p (GeV)	400	450		
Number of protons per bunch N_p	3×10^{11}	$2.3 imes 10^{11}$		
Longitudinal bunch size protons σ_z (cm)	6	7.55		
Transverse bunch size protons σ_r (μ m)	200	100		
Proton bunches per cycle n_p	8	320		
Cycle length (s)	6	20		
SPS supercycle length (s)	40	40		
Electrons per cycle N_e	2×10^9	5×10^9		
Number of electrons on target per 12 weeks run	$4.1 imes 10^{15}$	2×10^{17}		

* Assumes a 12 week experimental period with a 70% SPS duty cycle.

arXiv:1812.11164, arXiv:1812.08550, CERN-PBC-REPORT-2018-005 and 007

Step 1: produce e- bunches for fi

• Significant extension in physics reach usi

PEPIC: $\sqrt{s} = 1.3$ TeV, SPS-driven

(Plasma electron-proton/ion collider)

G. Xia et al., Nucl. Instrum. Meth. A 740 (2014) 173.

VHeP: vs = 9 TeV (LHC-driven)

(Very high energy eP collider)

VHEeP: A. Caldwell and M. Wing, Eur. Phys. J. C 76 (2016) 463

Beyond CERN: RHIC-EIC proposal for 18 GeV electron beam [J. Chappel et al, *PoS* DIS2019 (2019) 219]

CERN

AWAKE highlights and plans

AWAKE

• New energy regime for Deep Inelastic Scattering

Test scaling laws at high c.m.e.

Higher c.m.e. —> larger cross sections, higher photon Q^2 , lower parton x w.r.t. HERA

CERN

• New energy regime for Leptoquark searches

٦FR٢

VHEeP: A. Caldwell and M. Wing, Eur. Phys. J. C 76 (2016) 463

A WAKE