

High Quality Automated LATTPC Reconstruction for Neutrino Experiments

Haiwang Yu (BNL) 2022-03-30

Liquid Argon TPC

- ~mm scale position resolution with multiple 1D wire readouts
- Particle identification (PID) with energy depositions and topologies

Separation of e and y in LArTPC

• Event topology to separate EM showers (e/γ) from tracks (proton, muon)

Separation of e and y in LArTPC

- Event topology to separate EM showers (e/γ) from tracks (proton, muon)
- Separation of e and γ : Gap Identification

Separation of e and y in LArTPC

Challenge in Automated Event Reconstruction

- How to convert the excellent resolution and calorimetry in these pictures to rigorous physics analyses?
 - Massive amount of information with tiny signal to background ratio → a big challenge for automated event reconstruction

Search for Low-Energy Excess in v_eCC

Comprehensive search for (examination of) the MiniBooNE lowenergy excess in v_eCC with multiple final-state topologies with different reconstruction paradigms

Selected **Purity** Efficiency Channels Reconstruction References Events 25 CCQE 1e1p Deep Learning 75% 6.6% 2110.14080 1e0p0π Pandora 43% 9% 34 2110.14065 64 1eNp0π Pandora 80% 15% 2110.14065 606 Inclusive 1eX Wire-Cell 82% 46% 2110.13978

Wire-Cell based inclusive v_eCC analysis (46% efficiency) currently leads sensitivity in searching for the LEE

No excess of low-energy v_e candidates!

Wire-Cell Event Reconstruction

µBooNE

Wire-Cel

Wire-Cell Tomographic Event Reconstruction

Fig.1:Basic principle of tomography: superposition free tomographic cross sections S1 and S2 compared with the projected image P

https://en.wikipedia.org/wiki/Tomography

"Three-dimensional Imaging for Large LArTPCs", JINST 13, P05032 (2018)

Solving: usage of Charge, Sparsity, Positivity, Proximity

measured charges on Wires	y	= A	4 • 2	X	true charge to be resolved	
$\begin{pmatrix} y1\\ y2\\ u1\\ u2\\ u3 \end{pmatrix} = \begin{pmatrix} 0\\ a\\ 0\\ 0\\ a \end{pmatrix}$	0 a 0 a 0	0 a a 0 0	a 0 0 a	a 0 0 a 0	$ \begin{pmatrix} H1 \\ H2 \\ H3 \\ H4 \\ H5 \\ H6 \end{pmatrix} $	
matrix determined by geometry, a=1						

- The goal is to differentiate the true hits from fake ones by using the charge information
 - \sim large charge \rightarrow true hits
 - ~ zero charge \rightarrow fake hits
- Sparsity, positivity, and proximity information are added through compressed sensing (L1 regularization)

L1 reg.
$$O(N!) \rightarrow O(m \times N)$$

 $\chi^2 = (y - A \cdot x)^2 + \lambda \cdot \sum_i |x_i|$
E. Candes, J. Romberg, T. Taoⁱ
arXiv-math/0503066

Traditional Reconstruction Approach: 2D matching \rightarrow 3D

2D pattern recognition

Matching to 3D objects

Wire-Cell tomographic imaging is topology agnostic

slice #: 35 | slice x: 212.5

Overcome Challenges of 10% non-functional channels

- Impact of 10% non-functional channels is reduced from ~30%
 → ~3% dead volume by requiring only 2 out 3 wire planes in reconstruction when necessary
 - Utilizing coverage of 3 planes, but generating a lot of fake 3D activities (ghosts)
 - Dedicated algorithm in deghosting, clustering, charge solving etc. have to be developed

Old performance in 2015

Input of Wire-Cell imaging, quality of reconstructed charge was not sufficient to perform a good image reconstruction

TPC Signal Processing → Recover (or Unfold) Ionization Electrons

- Signal processing is based on deconvolution technique
 - O(N³) matrix inversion is achieved through a O(N logN) fast Fourier transformation
 - Top 10 algorithms in 20th century
- 1-D deconvolution described in B. Baller "Liquid Argon TPC Signal Formation, Signal Processing, and reconstruction techniques", <u>JINST 12</u>, P07010 (2017)

2-D Deconvolution

2D measurement formation

$$M(t',x') = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} R(t,t',x,x') \cdot S(t,x) dt dx + N(t',x')$$

Improved TPC Signal Processing

The 2D deconvolution algorithm in Wire-Cell allows to accurately recover the ionization electrons from recorded original signals

Same number of electrons are reconstructed from each projection wire plane

New Performance

MicroBooNE detector operates near surface

JINST 16 P06043 (2021)

• clustering

National Laboratory

• charge-light matching

Phys. Rev. Applied 15, 064071 (2021)

- 3D trajectory & dQ/dx fitting
- cosmic muon tagger

Cluster-flash (light) Matching

PMTs detect the scintillation light, time ~ns

Drift velocity 1.1 mm/ μ s \rightarrow several ms drift time

- In LArTPC, the light (PMT) readout and charge (TPC) readout systems are decoupled
- The identification of neutrino interaction candidate requires matching the charge signal with the light signal in order to obtain the event time

Matching Principle

Core Charge-Light Matching Algorithm

40-50 PMT activities

Rejecting Through-Going Muons (TGM)

• Only event with flash(light) time matching the neutrino beam spill window is a neutrino candidate

- TGM: cosmic-ray muons go all way through the active TPC volume
- Identification: the two endpoints of TPC cluster at/outside the effective detector boundary

Neutrino:Cosmic-ray				
Charge-light matching	1 : 6.4	Improved by		
TGM rejection	1:0.9	factor of 6		

Rejecting Stopping Muons

- STM: cosmic-ray muons enter and stop inside the active volume
- Identified by directionality: from outside to inside
 - Tracks from neutrino activities will go out of detector from inside
 - Tracks from background will enter the detector from outside
- Trajectory and dQ/dx fitting → Bragg peak
 → directionality
- dQ/dx vs. residual range is also important for the particle identification for tracks

Principle of the Fit

- Come up with a 3D track hypothesis (3D trajectory points and dQ/dx)
- Predict the deconvolved signals on all projection views
- Minimize the difference between the observation and prediction

Simplified Prediction of the Deconvolved Signal

- Full process of signal formation and signal processing is complex → significant burden in computation
- A simplified model was developed

Trajectory and dQ/dx Fitting

Overall Test Statistics $T\left(x_{j}, y_{j}, z_{j}, Q_{j}\right) = T_{U} + T_{V} + T_{W} + T_{reg}$ $T_{U/V/W} = \sum_{j} \sum_{i} \frac{q_{i}^{2}}{\delta q_{i}^{2}} \cdot dis \left(U/V/W\right)_{ij}^{2} \quad \begin{array}{l} \text{Unknowns} \\ \text{Measurements} \\ \text{Measurements} \\ i: \text{ pixel in 2D projection } j: 3D \text{ trajectory point} \\ dis(U)_{ij}^{2} = \Delta U^{2} \cdot \left(U_{i} - U_{j}\left(x_{j}, y_{j}, z_{j}\right)\right)^{2} + \Delta x^{2} \cdot \left(t_{i} - t_{j}\left(x_{j}, y_{j}, z_{j}\right)\right)^{2} \\ \Delta U: \text{ bin size in U view,} \qquad \Delta x: \text{ bin siz in drift time t} \end{array}$

	Neutrino:Cosmic-ray				
Charge-light matching	1:6.4	Improved by			
TGM rejection	1:0.91	Tactor or >0			
STM rejection	1:0.36	factor of ~3			
Additional Cuts	1:0.20		27		

Preselection

- Generic neutrino detection powered by many-tomany charge light matching and additional cosmic taggers to reject in-time coincidence cosmic-ray muons
 - 99.999% cosmic-ray muon background rejected
 - Start with 1:20,000 neutrinos to cosmics
 - End with 5.2:1 neutrinos to cosmics
 - + 90% efficiency for v_eCC and 80% efficiency for $v_\mu CC$
 - v_eCC purity ~0.4% at this stage

Phys. Rev. Applied 15, 064071

3D Pattern Recognition

Deep Learning based Neutrino Interaction Vertex Finding

Regressional segmentation with a sparse U-Net

- U-Net: efficiently use geometry info which is critical
 - compared to graph networks
- Regressional loss on distance based "confidence map" to use a region of points instead of only one
 - otherwise, data is highly imbalanced (Z. Cao etc, arXiv:1812.08008)
- Sparse: boosted computing efficiency with our sparse 3D data
 - Submanifold Sparse Convolutional Networks (B. Graham etc, arXiv:1706.01307)

Regressional segmentation

Initially we used Cross Entropy loss

- effectively only use the vertex information for one space point
- doesn't care about the distance between the prediction and the target.
 - while our main metric is this distance.
- \rightarrow encode the distance information for a region of points
- predicting the full "confidence map" instead of only one point

• current mapping:
$$\operatorname{Conf}_{\operatorname{truth}} = \exp\left(-\frac{\|\vec{x} - \vec{v}_{\operatorname{truth}}\|^2}{2\sigma^2}\right)$$

OpenPose: https://arxiv.org/pdf/1812.08008.pdf

Network structure and data format

Used *SparseConvNet* to realized 3D sparse conv. DNN https://github.com/facebookresearch/SparseConvNet

This work: https://github.com/HaiwangYu/uboone-dl-vtx

coordinates		feat	label		
Х	У	Z	q	•••	conf.
int	int	int	float		float
int	int	int	float		float
int	int	int	float		float

SparseConvNet

Deep Learning based Neutrino Interaction Vertex Finding

JINST 17 P01037 (2022)

 v_e CC vertex identification efficiency

Neutrino Energy Reconstruction

- Calorimetry energy reconstruction with particle mass and binding energy included if PID can be done
 - Track: Range, dQ/dx \rightarrow dE/dx correction
 - Calibrated by stopped muons/protons
 - EM shower: scaling of charge
 - Calibrated by π^0 invariance mass
- Fully contained events

JINST 17 P01037 (2022)

rookhaven

National Laboratory

180

160

14

100

80

60

40

[e/c] 12(

dQ/dx

MicroBooNE data

-- Protons

50

Muons

35

30

25

20

15

10

 10^{2}

Boosted Decision Trees (BDT) for neutrino flavor tagging

xgboost-algorithm-long-she-may-rein-edd9f99be63d

Neutrino Selection through Machine Learning

v_uCC and v_eCC Event Selection

Event counts / 100 MeV Data POT: 6.369e+20 Pred. uncertainty 100Cosmic, 1.0 EXT, 4.6 Dirt, 1.0 out FV, 14.4 NC π^0 in FV, 27.1 v_{μ} CC π^0 in FV, 26.5 NC in FV, 13.2 v_u CC in FV, 17.6 ve CC in FV, 486.6 = = LEE(x=1), 39.8 $v_{e}CC$ Data/Pred Pred total uncertainty Pred stat+xsec+flux uncertainty 500 1000 1500 2000 2500 Reconstructed E_{ν} (MeV)

arXiv:2110.13978

Efficiency: 68% w.r.t to all $v_{\mu}CC$ w. vertex in fiducial volume Purity: 92% (>5 improvement in S/B)

Efficiency: 46% w.r.t to all v_eCC w. vertex in fiducial volume Purity: 82% (**>800** improvement in S/B)

We are ready to do physics!

Application of Wire-Cell in Physics Analyses

Energy-dependent Cross Section arXiv:2110.14023, accepted by PRL

 Good separation power of model predictions from different generators

6

 GiBUU's central prediction gives best agreement at low energy transfer for Ar ⇒ more contribution of 2p2h

- 68% stat-only (full) uncer. MiniBooNE CI is disfavored at over 3σ (2.6σ)
- v_e cannot be the sole explanation of MiniBooNE LEE!

Future Developments

- DNN ROI finding
- RNN Energy Estimator
- Computing Parallelization/Acceleration

DNN ROI finding to improve LArTPC Signal Processing

DNN ROI finding with multi-plane information

JINST 16 P01036 (2021)

Multi-plane information in Signal Processing

DNN ROI finding with multi-plane information

ProtoDUNE simulation ROI finding on V plane (2nd induction) Ref. 1.4 -- DNN w/o MP DNN w/ MP 1.2 Pixel Efficiency 8.0 Bixel Efficiency **DNN** With 3-plane information 0.4 0.2 0.0 75, 75 87, 75 87,85 87,87 80, 80 82,82 85, 85 $\theta_{xz}(V), \theta_{xz}(U)$ Ref. 1.4 🔶 DNN w/o MP 1.2 DNN w/ MP 1.0 Pixel Purity 9.0 0.4 0.2 0.0 80, 80 75, 75 82, 82 85, 85 87, 75 87, 85 87,87 $\theta_{xz}(V), \theta_{xz}(U)$ Brooknaven National Laboratory JINST 16 P01036 (2021)

tested on ProtoDUNE data

43

RNN Energy Estimator: variable length list of particles → energy

RNN EE

- Extracts information from each particle
- Aggregates it with a help of an LSTM neural network
- Then combines aggregated information with event level variables and predicts energy of neutrino and energy of the primary lepton.

Initial results on MicroBooNE

New RNN EE improved the neutrino energy reconstruction with first try:

- resolution: $24\% \rightarrow 14\%$
- bias: $-12\% \rightarrow 0.6\%$

Neutrino energy reco: traditional vs. RNN-EE

LArTPC simulation acceleration with portable solutions

- LArTPC simulation is one of the most time-consuming components.
- A portable acceleration solution seems more attractive than dedicated ones, e.g., CUDA
- Some serious refactoring performed to achieve efficient acceleration
- Significant single process acceleration and node level throughput increasing observed
 - ~ 7 × per watt throughput using Kokkos-CUDA
- On-going work FFT with CPU backend

Relative throughput on Perlmutter, GPU vs 64 CPU Processes

Wire-Cell LArTPC Sim. Kokkos Porting

Number of Processes per GPU using CUDA-MPS

Summary

Summary (II)

- The development of Wire-Cell has paid off in the MicroBooNE experiment
- Knowledge cumulation from the developing
- Two main approaches: first principle & human learning
- The LArTPC technology advancements made by MicroBooNE is building a solid foundation for next discoveries in neutrino physics (SBN & DUNE)

machine learning

