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Liquid Argon TPC
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DUNE

SBN Program

LArTPC Signal Formation Illustration

by B. Yu (BNL)

• ~mm scale position resolution with multiple 1D 

wire readouts

• Particle identification (PID) with energy 

depositions and topologies



Separation of e and γ in LArTPC

• Event topology to separate EM showers (e/γ) from tracks (proton, muon) 

• Separation of e and γ : Gap Identification + dE/dx 

• Unique capability to identify νe charge-current interactions in LArTPC 3
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Separation of e and γ in LArTPC

• Event topology to separate EM showers (e/γ) from tracks (proton, muon) 

• Separation of e and γ : Gap Identification + dE/dx 

• Unique capability to identify νe charge-current (CC) interactions in 
LArTPC

5



Challenge in Automated Event 
Reconstruction

• How to convert the excellent resolution and 
calorimetry in these pictures to rigorous physics 
analyses?

• Massive amount of information with tiny signal to 
background ratio → a big challenge for automated 
event reconstruction

U-Induction View V-Induction View

W-Collection View

Zoom-in
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Search for Low-Energy Excess in νeCC
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No excess of low-energy νe candidates! 

arXiv:2110.14054

Channels Reconstruction Purity Efficiency
Selected 

Events
References

CCQE 1e1p Deep Learning 75% 6.6% 25 2110.14080

1e0p0π Pandora 43% 9% 34 2110.14065

1eNp0π Pandora 80% 15% 64 2110.14065

Inclusive 1eX Wire-Cell 82% 46% 606 2110.13978

Comprehensive search for (examination of) the MiniBooNE low-

energy excess in νeCC with multiple final-state topologies with 

different reconstruction paradigms

Wire-Cell based inclusive νeCC analysis (46% efficiency) 

currently leads sensitivity in searching for the LEE

https://arxiv.org/abs/2110.14054
https://arxiv.org/abs/2110.14080
https://arxiv.org/abs/2110.14065
https://arxiv.org/abs/2110.14065
https://arxiv.org/abs/2110.13978


Wire-Cell Event Reconstruction
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3D imaging

clustering

charge-light matching

3D trajectory & 

dQ/dx fitting

cosmic muon tagger

TPC simulation

noise filtering

signal processing

multi-track fitting

DL-3D vertexing

particle identification

JINST 13 P05032 (2018)

JINST 16 P06043 (2021)

Phys. Rev. Applied 15, 

064071 (2021)
JINST 17 P01037 (2022)

JINST 12 P08003 (2017)

JINST 13 P07006 (2018)

JINST 13 P07007 (2018) 

JINST 16 P01036 (2020)

https://iopscience.iop.org/article/10.1088/1748-0221/13/05/P05032
https://iopscience.iop.org/article/10.1088/1748-0221/16/06/P06043
https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.15.064071
https://iopscience.iop.org/article/10.1088/1748-0221/17/01/P01037
https://iopscience.iop.org/article/10.1088/1748-0221/12/08/P08003
https://iopscience.iop.org/article/10.1088/1748-0221/16/01/P01036


Wire-Cell Tomographic Event Reconstruction 
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“Three-dimensional Imaging for Large LArTPCs”, 

JINST 13, P05032 (2018)

https://iopscience.iop.org/article/10.1088/1748-0221/13/05/P05032


Solving: usage of Charge, Sparsity, Positivity, Proximity
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• The goal is to differentiate the true hits from fake ones by 

using the charge information
• ~ large charge  → true hits

• ~ zero charge → fake hits

• Sparsity, positivity, and proximity information are added 

through compressed sensing (L1 regularization) 
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E. Candes, J. Romberg, T. Tao

arXiv-math/0503066

measured 

charges on Wires

true charge to 

be resolved

matrix determined by geometry, a=1
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Traditional Reconstruction Approach: 2D matching → 3D

2D pattern recognition Matching to 3D objects

Wire-Cell tomographic imaging is topology agnostic
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Overcome Challenges of 10% non-functional channels
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• Impact of 10% non-functional channels is reduced from ~30% 
→ ~3% dead volume by requiring only 2 out 3 wire planes in 
reconstruction when necessary

• Utilizing coverage of 3 planes, but generating a lot of fake 
3D activities (ghosts)

• Dedicated algorithm in deghosting, clustering, charge 
solving etc. have to be developed

Before 

deghosting

After 

deghosting

JINST 16, P06043

30% dead 

volume

3% dead volume

https://iopscience.iop.org/article/10.1088/1748-0221/16/06/P06043


Input of Wire-Cell imaging, quality of reconstructed charge 

was not sufficient to perform a good image reconstruction

Zoom in Zoom in

Specific 

track 

absent

Gaps 

along 

track

Old performance in 2015
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TPC Signal Processing → Recover (or Unfold) 
Ionization Electrons

• Signal processing is based on deconvolution technique

• O(N3) matrix inversion is achieved through a O(N logN) 
fast Fourier transformation

• Top 10 algorithms in 20th century

• 1-D deconvolution described in B. Baller “Liquid Argon TPC 
Signal Formation, Signal Processing, and reconstruction 
techniques”, JINST 12, P07010 (2017)
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2-D Deconvolution

Position-dependent responses

17

Decon. w/ Tight LF

Decon. w/ Loose LF

ROI Finding ROI

2D decon.Input Waveform

Decon. w/o LF

SigProc Result

2D measurement formation

2D deconvolution

2D decon. + ROI

electron drift 

paths in 3D



Improved TPC Signal Processing

Original
2D 

deconvolution

1D 

deconvolution
2D deconvolution1D deconvolution

The 2D deconvolution algorithm in Wire-Cell allows 

to accurately recover the ionization electrons from 

recorded original signals

Same number of electrons are reconstructed from 

each projection wire plane

JINST 13 P07006/7 18

http://iopscience.iop.org/article/10.1088/1748-0221/13/07/P07006


2D deconvolution

1D deconvolution

New Performance

2018

2015
Specific 

track 

absent

Gaps 

along 

track
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MicroBooNE detector 
operates near surface
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MicroBooNE detector 

being lowered into LArTF

1 neutrino interaction in O(20) events

1 event includes 26 comic-ray muons

JINST 16 P06043 (2021)

• clustering

• charge-light matching

Phys. Rev. Applied 15, 064071 (2021)

• 3D trajectory & dQ/dx fitting

• cosmic muon tagger

https://iopscience.iop.org/article/10.1088/1748-0221/16/06/P06043
https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.15.064071


time

Drift velocity 1.1 mm/μs  → several ms drift time

Edrift = 270 V/cm

Made by Bo Yu (BNL)

PMTs detect the scintillation light, time ~ns

• In LArTPC, the light (PMT) readout and charge (TPC) readout systems are decoupled

• The identification of neutrino interaction candidate requires matching the charge signal 

with the light signal in order to obtain the event time

Cluster-flash (light) Matching
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All possible hypotheses

• One cluster → at most one flash 

(inefficiency in the light system)

• One flash → many or zero TPC clusters 

within corresponding active volume 

(activities in inactive volume)

• Light signal proportional to 

(reconstructed 3D) charge

• Known light acceptance given position

• Predicted vs. Measured light pattern 

with Compressed Sensing

Matching Principle
JINST 16 P06043 (2021)
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https://iopscience.iop.org/article/10.1088/1748-0221/16/06/P06043


Rejecting Through-Going Muons (TGM)
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• Only event with flash(light) time matching the neutrino beam spill window is a neutrino candidate

Z (beam direction)

Y

• TGM: cosmic-ray muons go all way 

through the active TPC volume

• Identification: the two endpoints of 

TPC cluster at/outside the effective 

detector boundary

Charge-light 

matching

TGM rejection

Neutrino:Cosmic-ray

1 : 6.4

1 : 0.9

Improved by 

factor of 6
Fiducial volume used in analysis: 

3 cm inside the effective boundary

Effective detector boundary 

because of space charge effect



Rejecting Stopping Muons
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Y

X (drift direction)

• STM: cosmic-ray muons enter and 

stop inside the active volume

• Identified by directionality: from outside to inside

• Tracks from neutrino activities will go out of 

detector from inside

• Tracks from background will enter the 

detector from outside

• Trajectory and dQ/dx fitting → Bragg peak 

→ directionality

• dQ/dx vs. residual range is also important for 

the particle identification for tracks



Principle of the Fit

• Come up with a 3D track hypothesis (3D 
trajectory points and dQ/dx)

• Predict the deconvolved signals on all projection 
views

• Minimize the difference between the observation 
and prediction  

25

V view

U view

W view



Simplified Prediction of the Deconvolved Signal
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dQ/dx at 

generation

diffusion Electron at 

anode plane

Induced current 

on wires

Convolve with 

field res.
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Signal Processing 

Chain 
Deconvolved

signal

At signal processing stage, we have two 

additional effects:

• Software filters (time and wire dimension)

• Usage of position-averaged overall response 

function
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• Full process of signal formation and signal processing is complex → significant burden in 
computation

• A simplified model was developed 



Trajectory and dQ/dx Fitting
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Charge-light 

matching

TGM rejection

Neutrino:Cosmic-ray

1 : 6.4

1 : 0.91

STM rejection 1 : 0.36
Improved by 

factor of ~3

Improved by 

factor of >6

Additional Cuts 1 : 0.20



Preselection
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• Generic neutrino detection powered by many-to-
many charge light matching and additional 
cosmic taggers to reject in-time coincidence 
cosmic-ray muons

• 99.999% cosmic-ray muon background 
rejected

• Start with 1:20,000 neutrinos to cosmics

• End with 5.2:1 neutrinos to cosmics

• 90% efficiency for νeCC and 80% efficiency 
for νµCC

• νeCC purity ~0.4% at this stage

Phys. Rev. Applied 15, 064071

https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1103%2FPhysRevApplied.15.064071&v=c1754ed8


Booster Neutrino Beamline

BNB @ MicroBooNE

Mean Neutrino Energy 0.8 GeV

Over 99% νµ/νµ

~0.5% νe

-

468.5 m

Neutrino vertex + gap identification + 

dE/dx 𝑒/𝛾 separation are essential to 

achieve the 𝜈𝑒CC selection

⟶ need new tools

29



3D Pattern Recognition
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Sparse Regression U-Net

Graph theory

(e.g., Steiner tree)

JINST 17 P01037 (2022)

https://iopscience.iop.org/article/10.1088/1748-0221/17/01/P01037


Deep Learning based Neutrino Interaction Vertex Finding
Regressional segmentation with a sparse U-Net

• U-Net: efficiently use geometry info which is critical

• compared to graph networks

• Regressional loss on distance based “confidence map” to use a region of points instead of only one

• otherwise, data is highly imbalanced (Z. Cao etc, arXiv:1812.08008)

• Sparse: boosted computing efficiency with our sparse 3D data

• Submanifold Sparse Convolutional Networks (B. Graham etc, arXiv:1706.01307)

Zoom in
3D points from Wire-Cell

2D projection

31



Regressional segmentation
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Initially we used Cross Entropy loss

• effectively only use the vertex information for one space point

• doesn’t care about the distance between the prediction and the target.

• while our main metric is this distance.

⟶ encode the distance information for a region of points

• predicting the full “confidence map” instead of only one point

• current mapping: OpenPose: 

https://arxiv.org/pdf/1812.08008.pdf

P=B

P=A T

P=B

P=A T

https://arxiv.org/pdf/1812.08008.pdf


Network structure and data format
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3D charge 

reco’ed from 

Wire-Cell

Sparse 

U-Net

Fully 

connected 

+ sigmoid

confidence 

value for 

each voxel

Used SparseConvNet to realized 3D sparse conv. DNN

https://github.com/facebookresearch/SparseConvNet

This work: https://github.com/HaiwangYu/uboone-dl-vtx

coordinates features label

x y z q ... conf.

int int int float ... float

int int int float ... float

int int int float ... float

... ... ... ... ... ...

label: color is truth

confidence map

input: color is

charge

SparseConvNet

https://github.com/facebookresearch/SparseConvNet
https://github.com/HaiwangYu/uboone-dl-vtx
https://github.com/facebookresearch/SparseConvNet


Deep Learning based Neutrino Interaction Vertex Finding

𝜈𝑒CC vertex identification efficiency

Distance between reco. and true vertex (cm)

Rel. improved 30%

Illustration of impact of vertex ID on the 

full event reconstruction 

JINST 17 P01037 (2022)
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https://iopscience.iop.org/article/10.1088/1748-0221/17/01/P01037


Neutrino Energy Reconstruction

• Calorimetry energy reconstruction with 
particle mass and binding energy included 
if PID can be done

• Track: Range, dQ/dx → dE/dx correction
• Calibrated by stopped muons/protons

• EM shower:  scaling of charge
• Calibrated by π0 invariance mass

• Fully contained events

Fully contained νeCC

   10-15% resolution    ~7% bias

  15-20% resolution  ~10% bias

eCC

CC





JINST 17 P01037 (2022)
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https://iopscience.iop.org/article/10.1088/1748-0221/17/01/P01037


Boosted Decision Trees (BDT) for neutrino flavor tagging
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https://towardsdatascience.com/https-medium-com-vishalmorde-

xgboost-algorithm-long-she-may-rein-edd9f99be63d

Gradient Boosting

https://towardsdatascience.com/https-medium-com-vishalmorde-xgboost-algorithm-long-she-may-rein-edd9f99be63d


Neutrino Selection through Machine Learning

1 − 0.97

1 − 0.999

Human feature engineering 

+
Maching learning algorithm:
XGBOOST: extreme Gradient Boosting

37



νµCC and νeCC Event Selection

Efficiency:  46%    

w.r.t to all νeCC w. vertex in fiducial volume

Purity:  82% (>800 improvement in S/B) 

Efficiency:  68%    

w.r.t to all νµCC w. vertex in fiducial volume

Purity:  92%  (>5 improvement in S/B)

We are ready to do physics!

arXiv:2110.13978
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https://arxiv.org/abs/2110.13978


Application of Wire-Cell in Physics Analyses 
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• Good separation power of model 
predictions from different generators

• GiBUU’s central prediction gives best 
agreement at low energy transfer for Ar ⇒
more contribution of 2p2h

Energy-dependent Cross Section

arXiv:2110.14023, accepted by PRL

Search for νe Low Energy Excess

arXiv:2110.13978

• 68% stat-only (full) uncer. MiniBooNE CI is 

disfavored at over 3σ (2.6σ)

• νe cannot be the sole explanation of 

MiniBooNE LEE!

https://arxiv.org/abs/2110.14023
https://arxiv.org/abs/2110.13978
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Future Developments

• DNN ROI finding

• RNN Energy Estimator

• Computing Parallelization/Acceleration



DNN ROI finding to improve LArTPC Signal Processing

41

• “Prolonged Track” – weak signal

• “Tear Drop” - distorted waveform

• Noisy dots - noise JINST 13 P07006 (2018)

unipolar

weak

SP

channel channel

ti
c
k

ti
c
k

Raw After SP



DNN ROI finding with multi-plane information
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Multi-plane information in Signal Processing DNN ROI finding with multiple input channel

JINST 16 P01036 (2021)

https://iopscience.iop.org/article/10.1088/1748-0221/16/01/P01036


DNN ROI finding with multi-plane information
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tested on ProtoDUNE data

Traditional

DNN w/ MP

DNN With 3-plane 

information

ProtoDUNE simulation

ROI finding on V plane (2nd induction)

JINST 16 P01036 (2021)

https://iopscience.iop.org/article/10.1088/1748-0221/16/01/P01036


RNN Energy Estimator: variable length list of particles 
⟶ energy

44

RNN EE

• Extracts information from each particle

• Aggregates it with a help of an LSTM neural network

• Then combines aggregated information with event level variables 

and predicts energy of neutrino and energy of the primary lepton. 

Simple RNN



Initial results on MicroBooNE
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New RNN EE improved the neutrino energy reconstruction with first try:

• resolution:  24% ⟶ 14%

• bias: -12% ⟶ 0.6%

Hadronic energy reco: traditional vs. RNN-EE Neutrino energy reco: traditional vs. RNN-EE



LArTPC simulation acceleration with portable solutions
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• LArTPC simulation is one of the most time-consuming 

components.

• A portable acceleration solution seems more attractive than 

dedicated ones, e.g., CUDA

• Some serious refactoring performed to achieve efficient 

acceleration

• Significant single process acceleration and node level 

throughput increasing observed

• ~ 7 × per watt throughput using Kokkos-CUDA

• On-going work - FFT with CPU backend
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CPU-ref Kokko-CUDA Kokkos-HIP Kokkos-OMP48

ScatterAdd Rasterization FFT

arxiv:2203.02479

Wire-Cell LArTPC Sim. Kokkos Porting

https://arxiv.org/abs/2203.02479
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LArTPC Signal Formation
Noise Filtering and 

Signal Processing
3D Imaging

Clustering

Charge-light 

matching

Cosmic Ray 

Removal

Event tagger 

(nue, numu):

LEE, 

cross section 

…

3D Pattern 

Recognition

JINST 12, P08003 (2017)

JINST 13, P07006 (2018)

JINST 13, P07007 (2018)

JINST 13, P05032 (2018)

JINST 16, P06043 (2021)
Phys. Rev. Applied 15, 064071 (2021)

arXiv:2012.07928
JINST 17 P01037 (2022)

arXiv:2110.13978

arXiv:2110.14023

Summary

https://lar.bnl.gov/wire-cell/
https://iopscience.iop.org/article/10.1088/1748-0221/12/08/P08003
https://iopscience.iop.org/article/10.1088/1748-0221/13/07/P07006
https://iopscience.iop.org/article/10.1088/1748-0221/13/07/P07007
https://iopscience.iop.org/article/10.1088/1748-0221/13/05/P05032
https://iopscience.iop.org/article/10.1088/1748-0221/16/06/P06043
https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.15.064071
https://arxiv.org/abs/2012.07928
https://iopscience.iop.org/article/10.1088/1748-0221/17/01/P01037
https://arxiv.org/abs/2110.13978
https://arxiv.org/abs/2110.14023


Summary (II)

• The development of Wire-Cell has paid off in the MicroBooNE experiment

• Knowledge cumulation from the developing

• Two main approaches: first principle & human learning

• The LArTPC technology advancements made by MicroBooNE is building a 
solid foundation for next discoveries in neutrino physics (SBN & DUNE)

MicroBooNE
SBND

ProtoDUNE SP
DUNE FD, SP

machine learning
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