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Overview

Lecture 1: Flavour in the SM

I Flavour in the SM

I Quark Model History

I The CKM matrix

Lecture 2: Mixing and CP violation (Today)

I Neutral Meson Mixing (no CPV)

I B-meson production and experiments

I CP violation

Lecture 3: Measuring the CKM parameters

I Measuring CKM elements and phases

I Global CKM fits

I CPT and T -reversal

I Dipole moments

Lecture 4: Flavour Changing Neutral Currents

I Effective Theories

I New Physics in B mixing

I New Physics in rare b→ s processes

I Lepton Flavour Violation
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Checkpoint Reached

1. Recap
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Recap

I Last time we introduced the role of flavour in the SM

I We saw how measurements of meson decays led to the predictions and subsequent

discoveries of strange, charm, beauty and top decays

I We saw how various meson and baryon states are built out of the consitituent quarks

I We introduced the CKM matrix (much more on that in the next two lectures)

Homework from last time

1. Can you explain the 2:1 ratio:

σ(p+ p→ d+ π+) : σ(p+ n→ d+ π0) = 2 : 1?

2. What do the spin-1 and spin-3/2 multiplets look like?

Homework for next time

Why is it that down type neutral mesons contain the anti-quark species but up type

contain the quark?

For example:

I B0 = (bd), B0
s = (b, s), K0 = (sd)

I B0 = (bd), B0
s = (b, s), K0 = (sd)

But:

I D0 = (cu)

I D0 = (cu)
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Higher resonance multiplets
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Recap

I Recall the CKM matrix which governs quark weak transitions

CKM exhibits a clear hierarchy

V =

 Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 ∼
 1 0.2 0.004

0.2 1 0.04

0.008 0.04 1


experimentally

determined values

Commonly represented in the Wolfenstein parametrisation

V =

 Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 =

 1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


4 O(1) real parameters (A, λ, ρ, η)

+O(λ4)
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Recap

I Wolfenstein parameterisation ensures that

ρ̄+ iη̄ = −(VudV
∗
ub)/(VcdV

∗
cb) (1)

is phase convention independent and CKM matrix written in (A, λ, ρ̄, η̄) is unitary to

all orders in λ

ρ̄ = ρ(1− λ2/2 + . . . ) and η̄ = η(1− λ2/2 + . . . ) (2)

I The amount of CP violation in the SM is equivalent to asking

→ how big is η relative to ρ.
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Checkpoint Reached

2. Neutral Meson Mixing (no CPV)
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Neutral Meson Mixing

I In 1987 the ARGUS experiment observed coherently produced B0 −B0 pairs and

observed them decaying to same sign leptons

I How is this possible?
I Semileptonic decays “tag” the flavour of the initial state

�̅�

�̅�

𝑏

𝑐

𝜇!

�̅�"'𝑏

̅𝑐
𝑑

𝑑
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𝐷" 𝐷#

#𝐵!

T. Blake

Observation of B “mixing”
• The ARGUS experiment observed that 

pair of              mesons could decay to a 
final-state with like-sign leptons. 

• How is this possible? 

13

Observation of B0-B0 mixing

● Same sign leptons

⇒ same flavour B mesons

● Mixing probability is large

⇒ top quark is heavy

● Mixing probability

r = 0.21 ± 0.08

● PDG 2006: 

“r” (χ
d
) = 0.188 ± 0.003

● From 103/pb of data

ARGUS experiment (1987)

B0B0

I The only explanation is that B0–B0 can oscillate

I Rate of mixing is large → top quark must be heavy
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Neutral Meson Mixing

I In the SM occurs via box diagrams involving a charged current (W±) interaction

I Weak eigenstates are not the same as the physical mass eigenstates
I The particle and antiparticle flavour states (via CPT theorem) have equal and opposite

charge, identical mass and identical lifetimes
I But the mixed states (i.e. the physical B0

L and B0
H) can have ∆m,∆Γ 6= 0

�
B0 B0

u, c, t

W± W±

u, c, t

d b

b d

�
B0 B0

W−

u, c, t

W+

u, c, t

d b

b d

I In the SM we have four possible neutral meson states
I K0, D0, B0, B0

s (mixing has been observed in all four)
I Although they all have rather different properties (as we will see in a second)
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Coupled meson systems

I A single particle system evolves according to the time-dependent Schrödinger equation

i
∂

∂t
|X(t)〉 = H|X(t)〉 =

(
M − iΓ

2

)
|X(t)〉 (3)

I For neutral mesons, mixing leads to a coupled system

i
∂

∂t

(
|B0〉
|B0〉

)
= H

(
|B0〉
|B0〉

)
=

(
M − iΓ

2

)(
|B0〉
|B0〉

)
(4)

=

(
M11 − iΓ11/2 M12 − iΓ12/2

M∗12 − iΓ∗12/2 M22 − iΓ22/2

)(
|B0〉
|B0〉

)
(5)

where

M12 =
1

2M
A(B0 → B0) = 〈B0|H(∆B = 2)|B0〉 (6)
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Coupled meson system

I To start with we will neglect CP -violation in mixing (approximately the case for all

four neutral meson species)

I Neglecting CP -violation, the physical states are an equal mixture of the flavour states

|B0
L〉 =

|B0〉+ |B0〉
2

, |B0
H〉 =

|B0〉 − |B0〉
2

with mass and width differences

∆Γ = ΓH − ΓL = 2|Γ12|, ∆M = MH −ML = 2|M12|

so that the physical system evolves as

i
∂

∂t

(
|B0
L〉

|B0
H〉

)
= H

(
|B0
L〉

|B0
H〉

)
=

(
M − iΓ

2

)(
|B0
L〉

|B0
H〉

)
(7)

=

(
ML − iΓL/2 0

0 MH − iΓH/2

)(
|B0
L〉

|B0
H〉

)
(8)
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Time evolution

I Solving the Schrödinger equation gives the time evolution of a pure state |B0〉 or

|B0〉 at time t = 0

|B0(t)〉 = g+(t)|B0〉+
q

p
g−(t)|B0〉

|B0(t)〉 = g+(t)|B0〉+
p

q
g−(t)|B0〉 (9)

where

g+(t) = e−iMte−Γt/2

[
cosh

(
∆Γt

4

)
cos

(
∆mt

2

)
− i sinh

(
∆Γt

4

)
sin

(
∆mt

2

)]
g−(t) = e−iMte−Γt/2

[
− sinh

(
∆Γt

4

)
cos

(
∆mt

2

)
+ i cosh

(
∆Γt

4

)
sin

(
∆mt

2

)]
(10)

and M = (ML +MH)/2 and Γ = (ΓL + ΓH)/2

I No CP -violation in mixing means that |p/q| = 1 (and thus we have equal admixtures)
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Time evolution

I Using Eq. (10) flavour remains unchanged (+) or will oscillate (−) with probability

|g±(t)|2 =
e−Γt

2

[
cosh

(
∆Γt

2

)
± cos(∆mt)

]
(11)

I With no CP violation in the mixing, the time-integrated mixing probability is∫
|g−(t)|2dt∫

|g−(t)|2dt+
∫
|g+(t)|2dt

=
x2 + y2

2(x2 + 1)
(12)

where

x =
∆m

Γ
and y =

∆Γ

2Γ
(13)

I The four different neutral meson species which mix have very different values of (x, y)

and therefore very different looking time evolution properties
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Neutral Meson Mixing

|g±(t)|2 =
e−Γt

2

[
cosh

(
∆Γt

2

)
± cos(∆mt)

]
(14)
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Neutral Meson Mixing

I Mass and width differences of the neutral meson mixing systems
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Neutral Meson Mixing

I Very nice demonstration of the B0
s oscillation from the LHCb experiment

I Seen in B0
s →D−s π+ decays

I Tag the flavour of the initial state at production and compare to the flavour at decay

(the D−s π
+ final state tags the decaying flavour)

I Why is this so different from the plot on the previous slide (damped oscillation and

turn on at low values)?
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𝑠 → 𝐷−

𝑠 𝜋+ Untagged

[arXiv:2104.04421]
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Checkpoint Reached

3. B-meson production and experiments
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B-factories at the Υ(4S)

I Asymmetric e+e− colliders

I Produce excited Υ(4S) resonance (10.58 GeV) which decays strongly and produces a
coherent pair of B0B0 (50%) or B+B− pair (50%) moving in the lab frame
I BaBar produced ∼ 500M BB pairs in ∼ 530 fb−1 of data from 9 GeV and 3.1 GeV

beams at SLAC
I Belle produced ∼ 770M BB pairs in ∼ 710 fb−1 of data from 8 GeV and 3.5 GeV

beams at KEK
I Belle-II expected to produce up to ∼ 50B BB pairs in ∼ 50 ab−1 of data

I Very clean environments but notice that the B0
s is not in range of the Υ(4S)

resonance. This requires specific running at the Υ(5S).
I In comparison to LHCb, BB pairs are not produced at high boost which makes

resolution of B0
s oscillations impossible at B-factories

I Because B mesons are produced in pairs from a known resonance you get very high

flavour tagging power and very good resolution for missing energy (i.e. final state

neutrals)

I For Belle-II to acheieve desired luminosity requires incredible squeezing of the beam

(target is 8× 1035cm−2s−1 which is 40 × Belle)
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Belle-II Experiment
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B-production at the LHC

I The LHC is predominantly a gluon collider

I b-quarks are produced in pairs and
predominantly in the forward region with a
very large boost
I Hence the very forward geometry of LHCb

I The very large boost and very high quality
vertexing makes decay time measurements
much easier
I Can resolve the very rapid B0

s oscillations

T. Blake

b-production at the LHC
• LHC is predominantly a 

gluon collider.  

• b-quarks produced in the 
forward direction with large 
boost → forward geometry 
of LHCb. 

• Large boost and excellent 
vertexing makes decay time 
measurements much easier 
at the LHC → can resolve 
the fast Bs oscillations. 

24
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The LHCb detector

IP resolution
⇡ 200µm

⌧ resolution
⇡ 45 fs

Particle ID: ✏(K) ⇡ 95%
Mis-ID: p(⇡ ! K) ⇡ 5%

p resolution
⇡ 0.5%
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The LHCb upgrades
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Current LHCb Upgrade Ia Upgrade Ib Upgrade II

Belle II

• x5 luminosity
• x2 remove 

hardware trigger

LHC HL-LHC

2010 2015 2020 2025 2030 2035

I COVID has pushed back future schedule by (at least) one year
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Flavour Tagging at the LHC

PV

SV

u� → u�
u� → u�u�−
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u� → u�
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u�u�
u�+

u�

u�−

u�+

u�0

ℎu�
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Dalitz plot formalism

I For a nice overview of this, take a look at Sec. 2 of [arXiv:1711.09854]

I Provides a nice method and visualisation of 3-body decays, e.g. B → XY Z

I The n-body decay rate is

dΓ =
(2π)4

2M
|M|2dφ(p1, p2, . . . , pn) (15)

I So for a 3-body decay

dΓ =
1

(2π)3

1

32M3
|M|

2
dm2

12dm
2
23 (16)

I Note how 3-body phase-space is flat in the Dalitz plot

I Resonances appear as bands in the Dalitz plot where The number of “lobes” in the
Dalitz plot is related to the particle spin
I Spin-0 “scalar” contributions have 1 lobe
I Spin-1 “vector” contributions have 2 lobes
I Spin-2 “tensor” contributions have 3 lobes

M. Kenzie 25 / 42

http://arxiv.org/abs/1711.09854


Dalitz plot formalism

I Example shown for a B0 →D0K−π+ decay
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Checkpoint Reached

4. CP violation
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Measuring CP violation

1. Need at least two interfering amplitudes

2. Need two phase differences between them
I One CP conserving (“strong”) phase difference (δ)
I One CP violating (“weak”) phase difference (φ)

I If there is only a single path to a final state, f , then we cannot get direct CP violation

I If there is only one path we can write the amplitudes for decay as

A(B → f) = A1e
i(δ1+φ1)

A(B̄ → f̄) = A1e
i(δ1−φ1)

I Which gives an asymmetry of

ACP =
|A(B → f)|2 − |A(B → f)|2

|A(B → f)|2 + |A(B → f)|2
= 0 (17)

I In order to observe CP -violation we need a second amplitude.

I This is often realised by having interefering tree and penguin amplitudes
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Measuring CP -violation

I We measure quark couplings which have a complex phase

I This is only visible when there are two amplitudes

CKM matrix
• Up-type to down-type (or vice-versa) transition probability 

governed by the elements of the CKM matrix

05/07/2017 16

Marseille, March 2015 T.M. Karbach / CERN / LHCb 12

CP Violation in the SM: CKM matrix

Cabibbo
Kobayashi
Maskawa

mass 
eigenstates

flavor
eigenstates

matrix elements determine transition probabilities:

Marseille, March 2015 T.M. Karbach / CERN / LHCb 12

CP Violation in the SM: CKM matrix

Cabibbo
Kobayashi
Maskawa

mass 
eigenstates

flavor
eigenstates

matrix elements determine transition probabilities:

gp
2
ūLiVij�µWµ+dLj

VCKM =

0
@

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1
A

We will return to the CKM matrix later!

𝑒!" 𝑒#!"

matter anti-matter

I Below we represent two amplitudes (red and blue) with the same magnitude = 1
I The strong phase difference is, δ = π/2
I The weak phase difference is, φ = π/4

𝛿 + 𝜙

si
n
𝛿
+
𝜙

1 − cos 𝛿 + 𝜙

𝛿 − 𝜙 si
n
𝛿
−
𝜙

1 + cos 𝛿 + 𝜙

Γ(B → f) = |A1 +A2e
i(δ+φ)|2 Γ(B̄ → f̄) = |A1 +A2e

i(δ−φ)|2
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Measuring (direct) CP -violation

I Introducing the second amplitude we now have

A(B → f) = A1e
i(δ1+φ1) +A2e

i(δ2+φ2) (18)

A(B̄ → f̄) = A1e
i(δ1−φ1) +A2e

i(δ2−φ2) (19)

I Which gives an asymmetry of

ACP =
|A(B → f)|2 − |A(B → f)|2

|A(B → f)|2 + |A(B → f)|2
(20)

=
4A1A2 sin(δ1 − δ2) sin(φ1 − φ2)

2A2
1 + 2A2

2 + 4A1A2 cos(δ1 − δ2) cos(φ1 − φ2)
(21)

=
2r sin(δ) sin(φ)

1 + r2 + 2r cos(δ) cos(φ)
(22)

where r = A1/A2, δ = δ1 − δ2 and φ = φ1 − φ2

I This is only non-zero if the amplitudes have different weak and strong phases
I This is CP -violation in decay (often called “direct” CP violation).

I This is the only possible route of CP violation for a charged initial state
I We will see now that for a neutral initial state there are other ways of realising CP

violation
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Classification of CP violation

I First let’s consider a generalised form of a neutral meson, X0, decaying to a final

state, f

I There are four possible amplitudes to consider

Af = 〈f |X0〉 Āf = 〈f |X̄0〉

Af̄ = 〈f̄ |X0〉 Āf̄ = 〈f̄ |X̄0〉

I Define a complex parameter, λf (not the Wolfenstein parameter, λ)

λf =
q

p

Āf
Af

, λ̄f =
1

λf
, λf̄ =

q

p

Āf̄
Af̄

, λ̄f̄ =
1

λf̄
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Classification of CP violation

Can realise CP violation in three ways:

1. CP violation in decay
I For a charged initial state this is only the type possible

Γ(X0 → f) 6= Γ(X̄0 → f̄) =⇒
∣∣∣∣ Āf̄Af

∣∣∣∣ 6= 1 (23)

2. CP violation in mixing

Γ(X0 → X̄0) 6= Γ(X̄0 → X0) =⇒
∣∣∣∣pq
∣∣∣∣ 6= 1 (24)

3. CP violation in the interference between mixing and decay

Γ(X0 → f) 6= Γ(X0 → X̄0 → f) =⇒ arg(λf ) = arg

(
q

p

Āf
Af

)
6= 0 (25)

I We just saw an example of CP violation in decay

I Let’s extend our formalism of neutral mixing, Eqs. (9–13), to include CP violation
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Neutral meson mixing with CP violation

I Allowing for CP violation, M12 6= M∗12 and Γ12 6= Γ∗12

I The physical states can now be unequal mixtures of the weak states

|B0
L〉 = p|B0〉+ q|B0〉

|B0
H〉 = p|B0〉 − q|B0〉 (26)

where

|p|2 + |q|2 = 1

I The states now have mass and width differences

|∆Γ| ≈ 2|Γ12| cos(φ), |∆M | ≈ 2|M12|, φ = arg(−M12/Γ12) (27)

I We’ll see some examples of this later

I Now to equip ourselves with the formalism for a generalised meson decay
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Generalised Meson Decay Formalism

The probability that state X0 at time t decays to f at time t

I contains terms for CPV in decay, mixing and the interference between the two

ΓX0→f (t) = |Af |2
(
|g+(t)|2 + |λf |2 |g−(t)|2 + 2Re [λfg

∗
+(t)g−(t)]

)
(28)

ΓX0→f̄ (t) = |Āf̄ |
2

∣∣∣∣ qp
∣∣∣∣2 ( |g−(t)|2 + |λf̄ |

2 |g+(t)|2 + 2Re
[
λf̄g+(t)g∗−(t)

] )
(29)

Γ
X

0→f (t) = |Af |2
∣∣∣∣pq
∣∣∣∣2 ( |g−(t)|2 + |λf |2 |g+(t)|2 + 2Re [λfg+(t)g∗−(t)]

)
(30)

Γ
X

0→f̄ (t) = |Āf̄ |
2

(
|g+(t)|2 + |λf̄ |

2 |g−(t)|2 + 2Re
[
λf̄g

∗
+(t)g−(t)

] )
(31)

where the mixing probabilities are as before

|g±(t)|2 =
e−Γt

2

[
cosh

(
∆Γt

2

)
± cos(∆mt)

]
(32)

g∗+g
(∗)
− =

e−Γt

2

[
sinh

(
∆Γt

2

)
± i sin(∆mt)

]
(33)
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Generalised Meson Decay Formalism

I From the above we get the “master equations” for neutral meson decay

ΓX0→f (t) = |Af |2 (1 + |λf |2)
e−Γt

2

[
cosh( 1

2
∆Γt) + Cf cos(∆mt)

+Df sinh( 1
2
∆Γt)− Sf sin(∆mt)

]
(34)

Γ
X

0→f (t) = |Af |2
∣∣∣∣pq
∣∣∣∣2(1 + |λf |2)

e−Γt

2

[
cosh( 1

2
∆Γt)− Cf cos(∆mt)

+Df sinh( 1
2
∆Γt) + Sf sin(∆mt)

]
(35)

where

Cf =
1− |λf |2

1 + |λf |2
, Df =

2Re(λf )

1 + |λf |2
, Sf =

2Im(λf )

1 + |λf |2
(36)

I and equivalents for the CP conjugate final state f̄

I The time-dependent CP asymmetry is (for non-CP -eigenstates there are two)

ACP (t) =
ΓX0→f (t)− Γ

X
0→f (t)

ΓX0→f (t) + Γ
X

0→f (t)
=

2Cf cos(∆mt)− 2Sf sin(∆mt)

2 cosh( 1
2
∆Γt) + 2Df sinh( 1

2
∆Γt)

(37)
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Specific Meson Formalism

I In the B0 system ∆Γ ∼ 0

ΓX0→f (t) = |Af |2 (1 + |λf |2)
e−iΓt

2

[
+ Cf cos(∆mt)

− Sf sin(∆mt)

]
(38)

Γ
X

0→f (t) = |Af |2
∣∣∣∣pq
∣∣∣∣(1 + |λf |2)

e−iΓt

2

[
− Cf cos(∆mt)

+ Sf sin(∆mt)

]
(39)

I The time-dependent CP asymmetry is

ACP (t) =
ΓX0→f (t)− Γ

X
0→f (t)

ΓX0→f (t) + Γ
X

0→f (t)
= Cf cos(∆mt)− Sf sin(∆mt) (40)
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Specific Meson Formalism

I In the D0 system ∆m and ∆Γ are both small

ΓX0→f (t) = |Af |2 (1 + |λf |2)
e−iΓt

2

[
1 + Cf

+Df
1
2
∆Γt − Sf∆mt

]
(41)

Γ
X

0→f (t) = |Af |2
∣∣∣∣pq
∣∣∣∣(1 + |λf |2)

e−iΓt

2

[
1 − Cf

+Df
1
2
∆Γt + Sf∆mt

]
(42)

I The time-dependent CP asymmetry is

ACP (t) =
ΓX0→f (t)− Γ

X
0→f (t)

ΓX0→f (t) + Γ
X

0→f (t)
=

Cf − Sf∆mt

1 + 1
2
Df∆Γt

(43)

M. Kenzie 37 / 42



Specific Meson Decay Formalism

I With no tagging of flavour we see no asymmetry (just get the sum)

ΓX0→f (t) = |Af |2 (1 + |λf |2)
e−iΓt

2

[
cosh( 1

2
∆Γt)

+Df sinh( 1
2
∆Γt)

]
(44)

Γ
X

0→f (t) = |Af |2
∣∣∣∣pq
∣∣∣∣(1 + |λf |2)

e−iΓt

2

[
cosh( 1

2
∆Γt)

+Df sinh( 1
2
∆Γt)

]
(45)

I The time-dependent CP asymmetry is

ACP (t) =
ΓX0→f (t)− Γ

X
0→f (t)

ΓX0→f (t) + Γ
X

0→f (t)
= 0 (46)
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CP violation status

K0 K+ Λ0 D0 D+ D+
s Λ+

c B0 B+ B0
s Λ0

b

CP violation in mixing 33 - - 7 - - - 7 - 7 -

CP violation in interference 3 - - 7 - - - 33 - 33 -

CP violation in decay 3 7 7 33 7 7 7 33 33 3 3

KEY:
33 Strong evidence (> 5σ)

3 Some evidence (> 3σ)

7 Not seen

- Not possible
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Checkpoint Reached

5. Recap
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Recap

In this lecture we have covered

I Neutral Meson Mixing (without CPV)
I Time evolution of coupled systems
I Differences in mixing parameters between neutral meson states

I B-meson production and experiments / techniques
I B-factories and Belle 2
I LHCb
I Flavour Tagging
I Dalitz analysis

I CP violation
I CP violation types
I The “master” equations for generalised meson decays

M. Kenzie 41 / 42



Checkpoint Reached

End of Lecture 2
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