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On-Shell Physics/Grassmannian Geometry Correspondence
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ΩC δ(C, p, h)

Important Open Questions

(for math and physics)

• how many functions exist?

(how to name them?)

• what (functional) relations do they satisfy?
• what are their (infinite-dimensional) symmetries?
– do these extend to entire amplitudes?
• do loop-level recursion relations exist?

On-Shell Physics

• on-shell diagrams
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, undirected, planar
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, directed

, planar
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, undirected

, non-planar

bi-colored

, directed
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Consequences of Quantum Mechanical Consistency Conditions

A Simple, Practical Problem in Quantum Chromodynamics
The Shocking Simplicity of Scattering Amplitudes (a parable)

Supercomputer Computations in Quantum Chromodynamics
Consider the amplitude for two gluons to collide and produce four: gg→gggg.

Before modern computers, this would have been computationally intractable
220 Feynman diagrams

, thousands of terms

In 1985, Parke and Taylor took up the challenge
using every theoretical tool available

and the world’s best supercomputers

final formula fit into 8 pages
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The Discovery of Incredible, Unanticipated Simplicity
They soon guessed a simplified form of the amplitude

(checked numerically):

—which naturally suggested the amplitude for all multiplicity!

?

=

〈a · · · b〉4

〈a b〉4

〈1· · · k〉 · · ·

〈1 2〉〈2 3〉〈3 4〉〈4 5〉〈5 6〉〈6 1〉

〈n · · · k − 1〉

δ2

k

×2(λ

C

·λ̃
)

δ2×(k−2)
(
λ·C⊥

)(
≡δ2×2( n∑

a=1

λαa λ̃
α̇
a
))

Here, we have used spinor variables to describe the external momenta:

λ̃1̇
1

λ̃2̇
1

pµa

7→ pαα̇a ≡ pµaσ
αα̇
µ

=

(
p0

a + p3
a p1

a−ip2
a

p1
a+ip2

a p0
a− p3

a

)

≡ λαa λ̃α̇a

⇔ “ a〉[a ”

Notice that pµpµ=det(pαα̇)

=0 for massless particles.

which is made manifest

The (local) Lorentz group, SL(2)L×SL(2)R, acts on λa and λ̃a, respectively.The Grassmannian G(k, n): the linear span of k vectors in Cn.This story raises two (perhaps whimsical) questions:Momentum conservation becomes the
• Is there any formalism where this simplicity is manifest?geometric statement:

λ⊂ λ̃⊥ and λ̃⊂λ⊥.

Thus, Lorentz invariants must be constructed out of determinants:

〈a b〉≡det(λa, λb), [a b]≡det(λ̃a, λ̃b)

λ̃β̇b
The action of the little group corresponds to:

(
λa, λ̃a

)
7→ (ta λa, t–1

a λ̃a
)

: Ψha
a 7→ t–2ha

a Ψha
a

• Is there a natural generalization of the Parke-Taylor formula?
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The Physical Vernacular of the S-Matrix
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Consequences of Quantum Mechanical Consistency Conditions

Beyond (Mere) Scattering Amplitudes: On-Shell Functions
Basic Building Blocks: S-Matrices for Three Massless Particles

On What Data Does a Scattering Amplitude Depend?
A scattering amplitude, An, can be a generally complicated(?) function of all

the physically observable data describing each of the particles involved.

An

≡

Physical data for the ath particle: |a〉

•

pµa momentum

, on-shell: p2
a m2

a =0

•
• qa all the non-kinematical quantum

numbers of a (color, flavor, . . . )

Although a Lagrangian formalism requires that we use polarization tensors,
it is impossible to continuously define polarizations for each helicity state
without introducing unobservable (gauge) redundancy

—e.g. for σa =1:

εµa ∼ εµa + α(pa)pµa
Such unphysical baggage is almost certainly responsible for the incredible

obfuscation of simplicity in the traditional approach to quantum field theory.
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• σa spin, helicity ha =±σa (ma =0)
• qa all the non-kinematical quantum

numbers of a (color, flavor, . . . )

Although a Lagrangian formalism requires that we use polarization tensors,
it is impossible to continuously define polarizations for each helicity state
without introducing unobservable (gauge) redundancy—e.g. for σa =1:

εµa ∼ εµa + α(pa)pµa

Such unphysical baggage is almost certainly responsible for the incredible
obfuscation of simplicity in the traditional approach to quantum field theory.
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Broadening the Class of Physically Meaningful Functions
We are interested in the class of functions involving only observable quantities

unitarity dictates that we marginalize over unobserved states

—integrating

over the Lorentz-invariant phase space (“LIPS”)

for each particle I, and

summing over the possible states

(helicities, masses, colours, etc.).

AL(. . . , I)×AR(I, . . .)

≡d× nV

(d 1)× nI

d

= number of excess δ-functions
(= minus number of remaining integrations)

> 0

⇒ (n̂δ) kinematical constraints

= 0

⇒ ordinary (rational) function

< 0

⇒ ( n̂δ) non-trivial integrations
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Building Blocks: the S-Matrix for Three Massless Particles
Momentum conservation and Poincaré-invariance uniquely fix the kinematical

dependence of the amplitude for three massless particles (to all loop orders!).
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⇒
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Momentum conservation and Poincaré-invariance uniquely fix the kinematical

dependence of the amplitude for three massless particles (to all loop orders!).

∝



⇒



f (λ1, λ2, λ3)

=

〈2 3〉4

〈1 2〉〈2 3〉〈3 1〉
δ2×2(λ·λ̃)

∝

〈12〉h3–h1–h2〈23〉h1–h2–h3〈31〉h2–h3–h1

λ⊥≡
(
〈23〉〈31〉〈12〉

)
⊃λ̃

λ ≡
(
λ1

1 λ1
2 λ1

3
λ2

1 λ2
2 λ2

3

)

h1 + h2 + h3 ≤ 0

h1 + h2 + h3 ≥ 0

−−−−−−−→
〈a b〉→O(ε)

O
(
ε−(h1+h2+h3)

)

−−−−−−→
[a b]→O(ε)

O
(
ε(h1+h2+h3)

)
f (λ1λ̃1, λ2λ̃2, λ3λ̃3)δ2×2

(
λ·λ̃
)

or

f (λ̃1, λ̃2, λ̃3)

=

[2 3]4

[1 2] [2 3] [3 1]
δ2×2(λ·λ̃)

∝

[12]h1+h2–h3[23]h2+h3–h1[31]h3+h1–h2

λ̃ ≡
(
λ̃1̇

1 λ̃1̇
2 λ̃1̇

3

λ̃2̇
1 λ̃2̇

2 λ̃2̇
3

)
λ̃⊥≡

(
[23] [31] [12]

)
⊃λ

Amplitudes 2022 PhD Summer School Prague, Czech Republic Part I: The Vernacular of the S-Matrix



The Physical Vernacular of the S-Matrix
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Consequences of Quantum Mechanical Consistency Conditions

Beyond (Mere) Scattering Amplitudes: On-Shell Functions
Basic Building Blocks: S-Matrices for Three Massless Particles

Building Blocks: the S-Matrix for Three Massless Particles
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Momentum conservation and Poincaré-invariance uniquely fix the kinematical

dependence of the amplitude for three massless particles (to all loop orders!).

∝



⇒



f (λ1, λ2, λ3)

=

〈2 3〉4

〈1 2〉〈2 3〉〈3 1〉
δ2×2(λ·λ̃)∝

〈12〉h3–h1–h2〈23〉h1–h2–h3〈31〉h2–h3–h1

λ⊥≡
(
〈23〉〈31〉〈12〉

)
⊃λ̃

λ ≡
(
λ1

1 λ1
2 λ1

3
λ2

1 λ2
2 λ2

3

)

h1 + h2 + h3 ≤ 0

h1 + h2 + h3 ≥ 0

−−−−−−−→
〈a b〉→O(ε)

O
(
ε−(h1+h2+h3)

)

−−−−−−→
[a b]→O(ε)

O
(
ε(h1+h2+h3)

)

f (λ1λ̃1, λ2λ̃2, λ3λ̃3)δ2×2
(
λ·λ̃
)

or

f (λ̃1, λ̃2, λ̃3)

=

[2 3]4

[1 2] [2 3] [3 1]
δ2×2(λ·λ̃)∝

[12]h1+h2–h3[23]h2+h3–h1[31]h3+h1–h2 λ̃ ≡
(
λ̃1̇

1 λ̃1̇
2 λ̃1̇

3

λ̃2̇
1 λ̃2̇

2 λ̃2̇
3

)
λ̃⊥≡

(
[23] [31] [12]

)
⊃λ

Amplitudes 2022 PhD Summer School Prague, Czech Republic Part I: The Vernacular of the S-Matrix



The Physical Vernacular of the S-Matrix
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Consequences of Quantum Mechanical Consistency Conditions

Beyond (Mere) Scattering Amplitudes: On-Shell Functions
Basic Building Blocks: S-Matrices for Three Massless Particles

Building Blocks: the S-Matrix for Three Massless Particles
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Beyond (Mere) Scattering Amplitudes: On-Shell Functions
Basic Building Blocks: S-Matrices for Three Massless Particles

Building-Up On-Shell Diagrams with “BCFW” Bridges
Very complex on-shell diagrams can be constructed by successively

adding “BCFW” bridges to diagrams

(an extremely useful tool!):
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Adding the bridge has the effect of shifting the momenta pa and pb
flowing into the diagram f0 according to:

λaλ̃a 7→ λâλ̃â = λaλ̃a −

α

λI λ̃I and λbλ̃b 7→ λb̂λ̃b̂ = λbλ̃b +

α

λI λ̃I ,

introducing a new parameter α, in terms of which we may write:

f (. . . , a, b, . . .) =
dα
α

f0(. . . , â, b̂, . . .)
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f0(. . . , â, b̂, . . .)

Amplitudes 2022 PhD Summer School Prague, Czech Republic Part I: The Vernacular of the S-Matrix



The Physical Vernacular of the S-Matrix
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Consequences of Quantum Mechanical Consistency Conditions

Beyond (Mere) Scattering Amplitudes: On-Shell Functions
Basic Building Blocks: S-Matrices for Three Massless Particles

Building-Up On-Shell Diagrams with “BCFW” Bridges
Very complex on-shell diagrams can be constructed by successively

adding “BCFW” bridges to diagrams (an extremely useful tool!):

Adding the bridge has the effect of shifting the momenta pa and pb
flowing into the diagram f0 according to:
λaλ̃a 7→ λâλ̃â = λa
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the undeformed amplitude An is recovered as the residue about α=0:

An = Ân(α→0) ∝
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α=0

dα
α
Ân(α)

We can use Cauchy’s theorem to trade the residue about α=0 for (minus)
the sum of residues away from the origin

—these come in two types:
factorization-channels and forward-limits
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Ân(α)

We can use Cauchy’s theorem to trade the residue about α=0 for (minus)
the sum of residues away from the origin:

—these come in two types:
factorization-channels and forward-limits

Amplitudes 2022 PhD Summer School Prague, Czech Republic Part I: The Vernacular of the S-Matrix



The Physical Vernacular of the S-Matrix
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Consequences of Quantum Mechanical Consistency Conditions

Deriving Diagrammatic Recursion Relations for Amplitudes
Exempli Gratia: On-Shell Representations of Tree Amplitudes
On-Shell Representations of Loop-Amplitude Integrands

The Analytic Bootstrap: All-Loop Recursion Relations
Consider adding a BCFW bridge to the full n-particle scattering amplitude

the undeformed amplitude An is recovered as the residue about α=0:
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An = Ân(α→0) ∝
∮
α=0

dα
α
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Ân(α)

We can use Cauchy’s theorem to trade the residue about α=0 for (minus)
the sum of residues away from the origin:

—these come in two types:
factorization-channels and forward-limits

Amplitudes 2022 PhD Summer School Prague, Czech Republic Part I: The Vernacular of the S-Matrix



The Physical Vernacular of the S-Matrix
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Consequences of Quantum Mechanical Consistency Conditions

Deriving Diagrammatic Recursion Relations for Amplitudes
Exempli Gratia: On-Shell Representations of Tree Amplitudes
On-Shell Representations of Loop-Amplitude Integrands

The Analytic Bootstrap: All-Loop Recursion Relations
Consider adding a BCFW bridge to the full n-particle scattering amplitude

the undeformed amplitude An is recovered as the residue about α=0:
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Ân(α)

We can use Cauchy’s theorem to trade the residue about α=0 for (minus)
the sum of residues away from the origin:

—these come in two types:
factorization-channels and forward-limits

Amplitudes 2022 PhD Summer School Prague, Czech Republic Part I: The Vernacular of the S-Matrix



The Physical Vernacular of the S-Matrix
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Consequences of Quantum Mechanical Consistency Conditions

Deriving Diagrammatic Recursion Relations for Amplitudes
Exempli Gratia: On-Shell Representations of Tree Amplitudes
On-Shell Representations of Loop-Amplitude Integrands

The Analytic Bootstrap: All-Loop Recursion Relations
Consider adding a BCFW bridge to the full n-particle scattering amplitude

the undeformed amplitude An is recovered as the residue about α=0:
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An = Ân(α→0) ∝
∮
α=0

dα
α
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An = Ân(α→0) ∝
∮
α=0

dα
α
Ân(α)

We can use Cauchy’s theorem to trade the residue about α=0 for (minus)
the sum of residues away from the origin:

—these come in two types:
factorization-channels and forward-limits

Amplitudes 2022 PhD Summer School Prague, Czech Republic Part I: The Vernacular of the S-Matrix



The Physical Vernacular of the S-Matrix
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Consequences of Quantum Mechanical Consistency Conditions

Deriving Diagrammatic Recursion Relations for Amplitudes
Exempli Gratia: On-Shell Representations of Tree Amplitudes
On-Shell Representations of Loop-Amplitude Integrands

The Analytic Bootstrap: All-Loop Recursion Relations
Consider adding a BCFW bridge to the full n-particle scattering amplitude

the undeformed amplitude An is recovered as the residue about α=0:
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4 =
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6 =
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And it generates very concise formulae for all other amplitudes

—e.g. A(3)
6 :

A(3)
6 =

+ +

Observations regarding recursed representations of scattering amplitudes:

varying recursion ‘schema’ can generate many ‘BCFW formulae’

on-shell diagrams can often be related in surprising ways
Is there any way to invariantly characterize the on-shell functions

associated with on-shell diagrams?
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On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Consequences of Quantum Mechanical Consistency Conditions

Factorization and Long-Range Physics: Weinberg’s Theorem
Uniqueness of Yang-Mills Theory and the Equivalence Principle

Channeling Some Consequences of Factorization
In [arXiv:0705.4305], Benincasa and Cachazo described how elementary

considerations of locality and unitarity strongly restricts the choice of
coupling constants, and hence possible quantum field theories.

Consider the behavior of any local, unitarity theory in a factorization limit:

⇒

∼

(
〈12〉3

〈2 I〉〈I 1〉
[34]3

[I 3][4 I]

)σ

with u≡(p2+p4)2

• Homework: use the result, together with the analogous u- and t-channels to
determine the form of A4

and show that if σ>2 all factorizations vanish.

This is Wienberg’s theorem

—proving that long-range physics requires σ≤2.

Amplitudes 2022 PhD Summer School Prague, Czech Republic Part I: The Vernacular of the S-Matrix



The Physical Vernacular of the S-Matrix
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Consequences of Quantum Mechanical Consistency Conditions

Factorization and Long-Range Physics: Weinberg’s Theorem
Uniqueness of Yang-Mills Theory and the Equivalence Principle

Channeling Some Consequences of Factorization
In [arXiv:0705.4305], Benincasa and Cachazo described how elementary

considerations of locality and unitarity strongly restricts the choice of
coupling constants, and hence possible quantum field theories.

Consider the behavior of any local, unitarity theory in a factorization limit:

⇒

∼

(
〈12〉3

〈2 I〉〈I 1〉
[34]3

[I 3][4 I]

)σ

with u≡(p2+p4)2

• Homework: use the result, together with the analogous u- and t-channels to
determine the form of A4

and show that if σ>2 all factorizations vanish.

This is Wienberg’s theorem

—proving that long-range physics requires σ≤2.

Amplitudes 2022 PhD Summer School Prague, Czech Republic Part I: The Vernacular of the S-Matrix



The Physical Vernacular of the S-Matrix
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Consequences of Quantum Mechanical Consistency Conditions

Factorization and Long-Range Physics: Weinberg’s Theorem
Uniqueness of Yang-Mills Theory and the Equivalence Principle

Channeling Some Consequences of Factorization
In [arXiv:0705.4305], Benincasa and Cachazo described how elementary

considerations of locality and unitarity strongly restricts the choice of
coupling constants, and hence possible quantum field theories.

Consider the behavior of any local, unitarity theory in a factorization limit:

⇒

∼

(
〈12〉3

〈2 I〉〈I 1〉
[34]3

[I 3][4 I]

)σ

with u≡(p2+p4)2

• Homework: use the result, together with the analogous u- and t-channels to
determine the form of A4

and show that if σ>2 all factorizations vanish.

This is Wienberg’s theorem

—proving that long-range physics requires σ≤2.

Amplitudes 2022 PhD Summer School Prague, Czech Republic Part I: The Vernacular of the S-Matrix



The Physical Vernacular of the S-Matrix
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Consequences of Quantum Mechanical Consistency Conditions

Factorization and Long-Range Physics: Weinberg’s Theorem
Uniqueness of Yang-Mills Theory and the Equivalence Principle

Channeling Some Consequences of Factorization
In [arXiv:0705.4305], Benincasa and Cachazo described how elementary

considerations of locality and unitarity strongly restricts the choice of
coupling constants, and hence possible quantum field theories.

Consider the behavior of any local, unitarity theory in a factorization limit:

⇒

∼

(
〈12〉3

〈2 I〉〈I 1〉
[34]3

[I 3][4 I]

)σ

with u≡(p2+p4)2

• Homework: use the result, together with the analogous u- and t-channels to
determine the form of A4

and show that if σ>2 all factorizations vanish.

This is Wienberg’s theorem

—proving that long-range physics requires σ≤2.

Amplitudes 2022 PhD Summer School Prague, Czech Republic Part I: The Vernacular of the S-Matrix



The Physical Vernacular of the S-Matrix
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Consequences of Quantum Mechanical Consistency Conditions

Factorization and Long-Range Physics: Weinberg’s Theorem
Uniqueness of Yang-Mills Theory and the Equivalence Principle

Channeling Some Consequences of Factorization
In [arXiv:0705.4305], Benincasa and Cachazo described how elementary

considerations of locality and unitarity strongly restricts the choice of
coupling constants, and hence possible quantum field theories.

Consider the behavior of any local, unitarity theory in a factorization limit:

⇒ ∼

(
〈12〉3

〈2 I〉〈I 1〉
[34]3

[I 3][4 I]

)σ

with u≡(p2+p4)2

• Homework: use the result, together with the analogous u- and t-channels to
determine the form of A4

and show that if σ>2 all factorizations vanish.

This is Wienberg’s theorem

—proving that long-range physics requires σ≤2.

Amplitudes 2022 PhD Summer School Prague, Czech Republic Part I: The Vernacular of the S-Matrix



The Physical Vernacular of the S-Matrix
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Consequences of Quantum Mechanical Consistency Conditions

Factorization and Long-Range Physics: Weinberg’s Theorem
Uniqueness of Yang-Mills Theory and the Equivalence Principle

Channeling Some Consequences of Factorization
In [arXiv:0705.4305], Benincasa and Cachazo described how elementary

considerations of locality and unitarity strongly restricts the choice of
coupling constants, and hence possible quantum field theories.

Consider the behavior of any local, unitarity theory in a factorization limit:

⇒ ∼

(
〈12〉3

〈2 I〉〈I 1〉
[34]3

[I 3][4 I]

)σ

with u≡(p2+p4)2

• Homework: use the result, together with the analogous u- and t-channels to
determine the form of A4

and show that if σ>2 all factorizations vanish.

This is Wienberg’s theorem

—proving that long-range physics requires σ≤2.

Amplitudes 2022 PhD Summer School Prague, Czech Republic Part I: The Vernacular of the S-Matrix



The Physical Vernacular of the S-Matrix
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Consequences of Quantum Mechanical Consistency Conditions

Factorization and Long-Range Physics: Weinberg’s Theorem
Uniqueness of Yang-Mills Theory and the Equivalence Principle

Channeling Some Consequences of Factorization
In [arXiv:0705.4305], Benincasa and Cachazo described how elementary

considerations of locality and unitarity strongly restricts the choice of
coupling constants, and hence possible quantum field theories.

Consider the behavior of any local, unitarity theory in a factorization limit:

⇒ ∼
(
〈12〉[34]

)2σ

uσ

with u≡(p2+p4)2

• Homework: use the result, together with the analogous u- and t-channels to
determine the form of A4

and show that if σ>2 all factorizations vanish.

This is Wienberg’s theorem

—proving that long-range physics requires σ≤2.

Amplitudes 2022 PhD Summer School Prague, Czech Republic Part I: The Vernacular of the S-Matrix



The Physical Vernacular of the S-Matrix
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Consequences of Quantum Mechanical Consistency Conditions

Factorization and Long-Range Physics: Weinberg’s Theorem
Uniqueness of Yang-Mills Theory and the Equivalence Principle

Channeling Some Consequences of Factorization
In [arXiv:0705.4305], Benincasa and Cachazo described how elementary

considerations of locality and unitarity strongly restricts the choice of
coupling constants, and hence possible quantum field theories.

Consider the behavior of any local, unitarity theory in a factorization limit:

⇒ ∼
(
〈12〉[34]

)2σ

uσ

with u≡(p2+p4)2

• Homework: use the result, together with the analogous u- and t-channels to
determine the form of A4

and show that if σ>2 all factorizations vanish.

This is Wienberg’s theorem

—proving that long-range physics requires σ≤2.

Amplitudes 2022 PhD Summer School Prague, Czech Republic Part I: The Vernacular of the S-Matrix



The Physical Vernacular of the S-Matrix
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Consequences of Quantum Mechanical Consistency Conditions

Factorization and Long-Range Physics: Weinberg’s Theorem
Uniqueness of Yang-Mills Theory and the Equivalence Principle

Channeling Some Consequences of Factorization
In [arXiv:0705.4305], Benincasa and Cachazo described how elementary

considerations of locality and unitarity strongly restricts the choice of
coupling constants, and hence possible quantum field theories.

Consider the behavior of any local, unitarity theory in a factorization limit:

⇒ ∼
(
〈12〉[34]

)2σ

uσ

with u≡(p2+p4)2

• Homework: use the result, together with the analogous u- and t-channels to
determine the form of A4

and show that if σ>2 all factorizations vanish.

This is Wienberg’s theorem

—proving that long-range physics requires σ≤2.

Amplitudes 2022 PhD Summer School Prague, Czech Republic Part I: The Vernacular of the S-Matrix



The Physical Vernacular of the S-Matrix
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Consequences of Quantum Mechanical Consistency Conditions

Factorization and Long-Range Physics: Weinberg’s Theorem
Uniqueness of Yang-Mills Theory and the Equivalence Principle

Channeling Some Consequences of Factorization
In [arXiv:0705.4305], Benincasa and Cachazo described how elementary

considerations of locality and unitarity strongly restricts the choice of
coupling constants, and hence possible quantum field theories.

Consider the behavior of any local, unitarity theory in a factorization limit:

⇒ ∼
(
〈12〉[34]

)2σ

uσ

with u≡(p2+p4)2

• Homework:

use the result, together with the analogous u- and t-channels to
determine the form of A4

and show that if σ>2 all factorizations vanish.

This is Wienberg’s theorem

—proving that long-range physics requires σ≤2.

Amplitudes 2022 PhD Summer School Prague, Czech Republic Part I: The Vernacular of the S-Matrix



The Physical Vernacular of the S-Matrix
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Consequences of Quantum Mechanical Consistency Conditions

Factorization and Long-Range Physics: Weinberg’s Theorem
Uniqueness of Yang-Mills Theory and the Equivalence Principle

Channeling Some Consequences of Factorization
In [arXiv:0705.4305], Benincasa and Cachazo described how elementary

considerations of locality and unitarity strongly restricts the choice of
coupling constants, and hence possible quantum field theories.

Consider the behavior of any local, unitarity theory in a factorization limit:

⇒ ∼
(
〈12〉[34]

)2σ

uσ

with u≡(p2+p4)2

• Homework: use the result, together with the analogous u- and t-channels to
determine the form of A4

and show that if σ>2 all factorizations vanish.
This is Wienberg’s theorem

—proving that long-range physics requires σ≤2.

Amplitudes 2022 PhD Summer School Prague, Czech Republic Part I: The Vernacular of the S-Matrix



The Physical Vernacular of the S-Matrix
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Consequences of Quantum Mechanical Consistency Conditions

Factorization and Long-Range Physics: Weinberg’s Theorem
Uniqueness of Yang-Mills Theory and the Equivalence Principle

Channeling Some Consequences of Factorization
In [arXiv:0705.4305], Benincasa and Cachazo described how elementary

considerations of locality and unitarity strongly restricts the choice of
coupling constants, and hence possible quantum field theories.

Consider the behavior of any local, unitarity theory in a factorization limit:

⇒ ∼
(
〈12〉[34]

)2σ

uσ

with u≡(p2+p4)2

• Homework: use the result, together with the analogous u- and t-channels to
determine the form of A4 and show that if σ>2 all factorizations vanish.

This is Wienberg’s theorem

—proving that long-range physics requires σ≤2.

Amplitudes 2022 PhD Summer School Prague, Czech Republic Part I: The Vernacular of the S-Matrix



The Physical Vernacular of the S-Matrix
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Consequences of Quantum Mechanical Consistency Conditions

Factorization and Long-Range Physics: Weinberg’s Theorem
Uniqueness of Yang-Mills Theory and the Equivalence Principle

Channeling Some Consequences of Factorization
In [arXiv:0705.4305], Benincasa and Cachazo described how elementary

considerations of locality and unitarity strongly restricts the choice of
coupling constants, and hence possible quantum field theories.

Consider the behavior of any local, unitarity theory in a factorization limit:

⇒ ∼
(
〈12〉[34]

)2σ

uσ

with u≡(p2+p4)2

• Homework: use the result, together with the analogous u- and t-channels to
determine the form of A4 and show that if σ>2 all factorizations vanish.
This is Wienberg’s theorem

—proving that long-range physics requires σ≤2.

Amplitudes 2022 PhD Summer School Prague, Czech Republic Part I: The Vernacular of the S-Matrix



The Physical Vernacular of the S-Matrix
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Consequences of Quantum Mechanical Consistency Conditions

Factorization and Long-Range Physics: Weinberg’s Theorem
Uniqueness of Yang-Mills Theory and the Equivalence Principle

Channeling Some Consequences of Factorization
In [arXiv:0705.4305], Benincasa and Cachazo described how elementary

considerations of locality and unitarity strongly restricts the choice of
coupling constants, and hence possible quantum field theories.

Consider the behavior of any local, unitarity theory in a factorization limit:

⇒ ∼
(
〈12〉[34]

)2σ

uσ

with u≡(p2+p4)2

• Homework: use the result, together with the analogous u- and t-channels to
determine the form of A4 and show that if σ>2 all factorizations vanish.
This is Wienberg’s theorem—proving that long-range physics requires σ≤2.

Amplitudes 2022 PhD Summer School Prague, Czech Republic Part I: The Vernacular of the S-Matrix



The Physical Vernacular of the S-Matrix
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Consequences of Quantum Mechanical Consistency Conditions

Factorization and Long-Range Physics: Weinberg’s Theorem
Uniqueness of Yang-Mills Theory and the Equivalence Principle

Quantum Consistency Conditions from Cauchy’s Theorem
Using Cauchy’s theorem to relate the three factorization channels to each

other, Benincasa and Cachazo prove in [arXiv:0705.4305] following:

σ=1: the coupling constants satisfy a Jacobi identity!

whatever quantum numbers distinguish mutually interacting spin-1
particles, they form the adjoint representation of a Lie algebra!

σ=2: multiple spin-2 particles can always be decomposed into
mutually non-interacting sectors

—there is at most one graviton!

the coupling strength of any spin-2 particle to itself must be the
same as its coupling to any other field

—the equivalence principle!
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