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-
February 11, 2015

A younger me and Sir D.R. Cox at Nuffield College, Oxford.
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His recommendations for a young (astro-)statistician

“Astrostatistics is a very interesting field and aims to address very
important problems. What is particularly good for you is that it
will allow you to explore many different areas of statistics.”

“You need to know the maths. You don't just need the substance,
what is more important in statistics is the method.”

“Always do and focus on what interests you, not what they make
you do.”

Sir D.R. Cox.
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On computationally efficient methods for testing multivariate
distributions with unknown parameters J
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-
Goodness-of-fit vs test of hypothesis

o Goodness-of-fit tests (GOF): Given a postulated model for the
data we test it against all possible alternatives.
E.g., we expect that X ~ N(u, 1), we test

Ho: X ~ N(u,1) wversus Hy: X o N(p,1).

= we have some power against all alternative models .

o Tests of hypotheses: Given a postulated model for the data, we
test it against an alternative model.
E.g., we expect that X ~ N(u, 1), we test

Ho:p=0 wversus Hi:p#0.

= we have high power only against the alternative model under H; .
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|
Which Goodness-of-Fit test should we use? (1)

Discrete data

We typically rely on Pearson's X2 or its asymptotically equivalent
counterparts.

Main advantages
@ Simple to implement

@ When the expected counts are large we have a good x?
approximation (even if there are parameters to estimate).
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|
Which Goodness-of-Fit test should we use? (2)

Continuous data

5

have quite a few options:
Kolmogorov-Smirnov
Cramer-von Mises

Anderson-Darling

etc...

What do they have in common?

They can all be specified as functionals of the empirical process.
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The empirical distribution function

Given a set of observations xi, ..., x, from an unknown cumulative
distribution function (cdf) P(x) = P(X < x). We are interested in testing

Ho: P=Q wversus Hi: P # Q

for some postulated distribution Q(x).
Since P(x) is unknown, we begin by identifying an estimate of P(x). A
natural choice is the empirical cumulative distribution function

# observations < x

1
PH(X) ~n 27:1 IL{X/‘SX} = sample size

How can we use it to construct our test?
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The empirical process

To test
Hy: P=Q wversus Hi: P # Q

we consider the empirical process vg(x)

v(x) = v/A| Palx) = Q) | = & S0 [T — QW)

Let's invest a few seconds to understand this fundamental object for a
moment...
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-
Empirical process:  vg(x) = /n[Ps(x) — Q(x)], x € [10,50]

o
S
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Empirical process:  vg(x) = /n[Ps(x) — Q(x)], x € [10,50]

o -
vo(16) = (P,(16) -Q(16))
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-
An entire family of GOF tests

Recall that

va(x) = v/n[Pa(x) — Q(x)] (1)

By taking functionals of vg(x) we can construct a variety of GOF tests
statistics. E.g.,

e Kolmogorov-Smirnov statistic: KS = sup, vo(x) .

e Cramer-von Mises statistic: CvM = f lvo(x)[2dQ(x) .

2
@ Anderson-Darling statistic: AD = f‘ T V)‘igx 50 dQ(x) .
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-
Advantages

If X is 1-dimensional and @ does not depend on unknown parameters,
we consider the transformation

T = Q(X), and t; = Q(X,'),

for i=1,...,n. We know that T ~ Unif[0, 1], hence, use the
uniform empirical process

un(t) = 7= 21 [Liy<ey — 1]

instead of v@g(x), and take functionals of u,(t) as test statistic = we
know the distribution of KS, CvM, and AD statistics and we have
distribution-freeness.
Distribution-freeness
We have distribution-freeness whenever the distribution of the test statistic
considered does not depend on the model @ being tested.
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Limitations

If X is multidimensional and/or Q depends on unknown parameters, 6,

estimated by means of some estimator 5 then

A~

T = Q(X,0) + Uniform[0, 1]

= we loose distribution-freeness.
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The simplest possible solutions

If X is multi-dimensional and/or Q depends on unknown parameters

o Discretize the data and use Pearson X2 (or asymptotic equivalent).

Cons: Loss of information/power + in a low counts regime we run into
serious problems (e.g., Haberman, 1988).

@ Simulate the distribution of our KS, CvM, and AD statistics

numerically via Monte Carlo or the parametric bootstrap.

Cons: Computational complexity may be high -+ simulations must be

repeated on a case-by-case basis.

4

In the remaining of the talk we will see two approaches which will
help us to overcome these two limitations.
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The parametric empirical process

Given a set of observations xq, ..., x, from an unknown cumulative
distribution function (cdf) P(x) = P(X < x), X € X C RP. We are
interested in testing

Ho: P(x) = Q(x,0) versus H;: P(x) # Q(x,0)

for some postulated distribution Q(x,8). To perform the test above, we
consider the parametric empirical process vg(x, )

vo(x,0) = vn| Pa(x) — Q(x,0) ()
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Estimating the empirical process

Let 6 be the MLE of 6, plug-it in vg(x, 6):
va(x,8) = V| Pa(x) — Q(x,9)]

Simulating vQ(x,é) via the parametric bootstrap

o Let §ob5: MLE of 8 obtained on the data observed.

@ For b=1,..., B:
e Simulate a bootstrap sample x,(,b) = (X§b), e ,x,(,b)) from Q(x, éobs);
o Estimate 6 on x,(,b) and obtain g(b),
e For each point x considered evaluate

vo(x,6) \f Z[ Blexy — Q(x, g(b))]

Warning: If we evaluate the process at R points x over the search region,

we have to evaluate Q(x,O(b)), a total of RxB times.
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Can we make it faster?

Recall that

va(x,8) = v/n| Pa(x) = Q(x,8)]
A Taylor expansion of vQ(x,§) around @ leads to

vo(x,0) ~ vq(x,0) —vn(8—-8)T 2Q(x,0).

Moreover, let g(x, 0) be the density of Q, a know theoretical result is

N —1
Vn(0-0) ~ 7 P E %Iogq(x,,e)
Inverse of — ~
the Fisher SV
information funi:cilirgn
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The projected empirical process

Putting everything together

P n
_ 0
vo(x, 0) ~ vg(x,0) E ai Q(x,0) Fgl E — log q(xi, 0)
—— *—V—" = ~ %
Empirical Empirical Inverse of
process process the Fisher
at @ at @ information fui((::toisaens

@ The error of the approximation is 0,(1), that is, it quickly converges
to zero in probability as n — oo.

@ We call the right-hand-side of the approximation above projected
empirical process (Khmaladze, 1980) and we denote it by vg(x,8) .

@ The projected empirical process does not depend on o!

e Why “projected”? (I will tell you in a few slides).
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Simulating v(x, 6) via the parametric bootstrap

o Let §ob5: MLE of 8 obtained on the data observed.
@ Evaluate Q(x,éobs) and 8%j(?(x,@obs) at each point x considered.

e For b=1,..., B:
: (b) _ (,(b) (b) 0\
o Simulate a bootstrap sample x5 = (x{ ', ..., xn ') from Q(x, Oops);
e For each point x considered evaluate

N 1 & N
VQ(X7 Oobs) = % Z|::H-{Xi(b)§x} - Q(xaeobs)} -
i=1

1 &9 ~ "9 o~
N QX 0062y (b) g
ﬁj; 5, QX Oots) eobs;aej 08 q(x; ", Oobs)

Note: If we evaluate the process at R points x over the search region, we
have to evaluate Q(x, 0,ps) and (%,Q(x,eobs), a total of R times (instead

of R x B times!)
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A toy example

We draw a sample of n = 100 observations from

4(x,0) oc e (a0 +0a=0:F] o o 1y 2] x [1, 28], (3)

6 = (—2,5,25) and its MLE is Oops = (—0.77,6.32,22.02).
We proceed by simulating the distribution of the KS statistic via

1. Simulate vQ(x,é) by sampling from Q(x,éobs) via the parametric
bootstrap.

2. Simulate vg(x,0) by sampling from Q(x,é\obs) via the parametric
bootstrap.
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Simulated distributions of the KS statistic

The two simulated distributions are basically overlapping.
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Which simulation procedure should we use?

@ In theory, we would expect that bootstrapping the projected empirical
process will be faster. But how much faster?

Overall (system+-user) CPU time needed to simulate the distributions of
the Kolmogorov statistic sup, |vg(x,8)| and sup, |vo(x, 8)| via the
parametric bootstrap over 10,000 replicates and n = 100 observations.

A~

In our toy example...

sup, [Vo(x, )

-~

sup, [vo(x, 0)]

CPU time

9.429 mins

12.198 hrs

S. Algeri (UMN)
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But what if we want to test another model, F(x,3)
for which all of this is not at all feasible?
(Can we somehow retrieve distribution-freeness?)
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-
Why “projected”?

Consider the normalized score vector defined as

b(x.0) = T, log q(x;. ) 4)

That is, conversely from % log Q(x, @), each component bj(x,8) of (4)
J
has mean zero, unit variance and is uncorrelated with each by(x, 8), k # j.

Our projected empirical process vg(x,8) is a projection of vg(x,8)

orthogonal to the normalized scored functions bj(x, @) .
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A useful (re-)formulation

Specifically

vo(x,0)

- 1 O " x
VQ(X, 0) = ﬁ Z{ []]-{ngx} — Q(X,B)] — Z bj(X,',O) / bj(X,B) dX}
i=1 j=1 >

Setting everything within the curly brackets equal to ¥x(x;, ) , we have

VQ(X 0 Z ¢x x;,0) . (5)

We will see very soon that the functions v,(x;,0) play a
fundamental role here.
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A projected Brownian motion

The limiting process of vg(x,8) can be shown to be a projected
Brownian motion orthogonal to the normalized score functions b;(-, )
(Khmaladze, 1980).

= the limit of vg(x,0) is Gaussian!
=> it is characterized by its mean and covariance functions, i.e.,

EolF(x.6)] = [ ¥(t.6) dQ(t.6) = Eqltx] —0

Eqlva(x, 8)7a(x',0)] = / (£, ) (£,0) dQ(t,0) = Eg[txtie]

= what really characterizes the limit are our vy .
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Towards (asymptotic) distribution-freeness

Can we construct another process whose limit, under F(x,3), will
be the same as that of vg(x,0) under Q7 J

The key here is to “play” with our tx(x;,8) functions so that, by taking

a suitable transformation of them, namely ¢x(x;,80,3) , we have that the
processes

VF(X,H,,@) = % 27:1 ¢X(X,',0,,8) and VQ(X,e) = in 27:1 wx(xiaa)

will have the same limit, under F and @, respectively.

This can be done by means of the Khmaladze-2 (K-2) transform
(Khmaladze, 2016).
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The K-2 transform in a nutshell

The K-2 transform applied to the functions ¥y (x;,8) is

6x(3.6,8) = U | K [lalos) vx8) ]|

K-2 transform

@ The isometry lg g(x) = % ensures Ep [(Igﬁqpx)(lgﬂwxf)]: Eo [wxz/)x/].
@ The unitary operator K ensures that Ef [K[(lg”@wx)]}z Eq[¢x]=0.

@ The unitary operator U ensures orthogonality w.r.t. the normalized score
functions under F, namely aj(x,0), j=1,...,p.

See Algeri (2022) for the explicit expressions of K and U.
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-
A new family of test statistics

Recall that
VF(X)GwQ) = ﬁz,ﬁﬂ (rbx(xiaea/@) and (X 0) \/‘Z, 11/}X(XI70)
We can now construct our K-2 rotated test statistics as

KSkjq = sup| Ve(x,0,8) |, CvMgq :/ vE(x,0,8) dQ(x,0),
X X

6
d AD G500 dQ(x,0 ©
nd APk = J Qe o)t - a(. o) OO
which have the same limiting distribution as
KSg =sup| vo(x,0) |, CvMg = / va(x,0) dQ(x,0),
x X
v5(x,0) (7)

and ADg =

v Q(x,0)[1 — (x,a)]dQ(x’o)’
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Where is the computational advantage?

@ The test statistics KSg|g, CvMg|q, and ADf|q need to be computed
only once on the data observed.

@ We can then compare their observed values with the simulated
distribution of KSg, CvMg, and ADg.
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Requirements on F and Q

Can we use any F(x,3) and any Q(x,0)? J

o Let f(x,3) and g(x, 8) be the densities of F(x,3) and Q(x,8). We
require that:
o f(x,B)=0iff g(x,0) = 0 (they have the same support).
e 6, 3 are both of size p (the have the same size).
@ These are rather general criteria! = Q(x, 0) can be chosen to be
arbitrarily simple to ease the computations.
o We call Q(x,0) “reference distribution” because, for any Fi,..., Fy

satisfying these criteria, we can construct a process Vg, ,
m=1,..., M with the same distribution as vq.
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An illustrative example

o Data: a sample of n = 100 observations generated from
p(x) o< (2) T2 [1 4 (x — ) TSN (x — )], (8)

where ;1 = (0,3)7, = = Eg %8] x € X = [1,20] x [1,25].

@ Null models we aim to test:
fi(x: 8) o i VPV exp{—f3(x1 + x2)
B 8) o D2 [0 — A1) + 6o — o) + 5517, o)
hi ) o e () (B () (30)

)

1
o Reference distribution: g(x,0) x e 23 [Ca=tr+0at2?]
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Classical KS, CvM and AD: null distribution
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Each simulation involves
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process is evaluated at 2000
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N
Rotated KS, CvM and AD: null distribution

° g4 < E
a z
\X/ b 6 b
o o Z °
S S — Cwq
- CWMeyg
- CWrag
= = — CVMg3q
0.‘0 U.‘S l.‘O 1‘.5 0.60 0.65 0.‘10 0.‘15 0.‘20
Cc
g Each simulation involves
= e 100,000 bootstrap replicates,
v © .
= 100 observations, and the
& ° process is evaluated at 2000
& grid points.
T @ b i
[
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Power
a = 0.001
H K CcvM AD K CvM AD
0 > v S (K-2 Fotated)
Q 4773 .7785 4633 - - -
F .3872 6762 4815 | .1578 1 1
F .0036 .0025 .0053 | .0058 .0226 .0156
F3 .6452 7947 .0295 | .5062 .7975 .6036
o = 0.05
H K M AD K M AD
0 > v > ( K—2C¥otated)
Q .0331 .0817 .9382 - - -
F .8623 .9529 9092 | .6971 1 1
F .1078 .1019 1237 | 1336 .2422 2541
=) .9528 .9820 .6356 | .9153 9746 9470

Each simulation involves 100,000 bootstrap replicates, 100 observations, and the process

S. Algeri (UMN)
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A few practical considerations

and possible points of discussion

@ We should NOT expect the K-2 rotated statistics to always dominate
their classical counterparts or vice-versal

@ The “closer” our reference distribution, @, is to the F model we want
to test, the “quicker” we will achieve distribution-freeness.

@ The K-2 transform involves the operators K and U, these are linear
operators = while their implementation may be tedious when dealing
with many parameters, it is not very difficult.

@ In situations where the likelihood is not tractable in closed-form, a
possible solution is that of constructing templates for the score,
starting from the likelihood templates and applying the definition of
derivative.

e Recall that their evaluation does not need to be repeated on multiple

runs, and it is only needed to evaluate the K-2 rotated test statistics on
the data observed.
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Conclusions

“You need to know the maths. You don't just need the substance, what
is more important in statistics is the method.” - Sir D.R. Cox.

If we focus on the method we can unify them..,
> | vo(x) = vn[Pa(x) — Q()]
If we focus on the G

substance we stop here. ... and extend them to addess our needs !

Vo(x.8) = =300 te(x 8) ‘

5 (x,0,8) = = T a(x,6,5) \

e4 oe oox
‘-_‘\\
\,
PlCWsc)
G4 o o
e4 o8 o8
~——

P(KS s€)
PlAD=c)

\-_
[T
33
\‘*-\
|
gl FERE
|
afppEn
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Thank you all for your time. J

S. Algeri (UMN) PHYSTAT- 2022 42 /47



Extra slides
Material from: Algeri S. (2022+). Model assessment in counting
experiments: a look beyond x2. In preparation.
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Binned data: a toy example

We aim to test three plausible representations of the background intensity
functions typically used in the the context of the CMS Higgs-to-two
photon analysis:

)‘Fl (X7IB) = ﬁoxﬁla )‘/:2 (X7IB) = Boeﬁlxa and )‘F3(X7B) = BOXZ + 61X37
(10)

We also consider three different reference distributions @1, Q>, and Qs,
with associated intensity functions

Ao, (%,0) = 00T (x<30p + 011 xn30), g, (X,0) = Oox + 0157,

11
and A, (x,0) = fox® + 01> (1)
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N
The data

n=20
o |—
S e E(;Jv?eriaw(m)
—A—  Exponential (F2)
—%— Cubic (F3) . .
8 Stepwse (o1 We consider a sample from a Poisson
"+ Quadratic (Q3) process with intensity function is
£8
=
E 1/ x
9 A(x) o T00exp § (ﬁ - 130)
o
N . .
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Power comparison

Ho | N'| X* G | KS CM AD | KSpjo CMpjq ADpiq | KSpjo, CvMpjq, ADpjq, | KSpjq, CvMpjq, ADglq,
Q 998 999 [ 1 1 1 - - - - - - - - -
Q 307 .306 | 671 .747 730 | - - - - - - - - -
Q 107 .098 | .176 211 220 | - - - - - - - - -
F | 20| 152 137 | 286 348 356 | .196 .17 255 | 377 440 436 | 271 333 348
Fy 050 .061 | .084 .096 .094 | .103 111  .114 | .069 .073 071 | .064  .066  .067
[ 548 456 | 615 664 .795 | 580 594 639 | 824 875  .883 | .719 815  .835
Q 987 987 1 1 1 E E - E E - E - E
Q 216 215 | 661 .736 .720 | - - - - - - - - -
Q 001 081 | .181 215 .228 | - - - - - - - - -
F |40 | 124 105 | 277 337 340 | 171 200 257 | 369 435 432 | 279 337 355
Fy .055 .059 | .076 .089 .085 | .079  .085 .091 | .071 .07l 071 | .072  .075  .075
Fs 447 309 | 580 660 .788 | 513 576 648 | .835  .883  .886 | .737 835  .853
Q 930 926 1 1 1 E E - E E - E - E
Q 154 151 | .680 .760 .752 | - - - - - - - - -
Q 084 070 | .182 219 231 | - - - - - - - - -
F | 80| 105 083 | 281 343 348 | .135 164 238 | 379 442 438 | 278 340 358
Fy 052 .057 | .081 .091 .080 | .083  .086  .089 | .078 .083  .079 | .080  .086  .086
Fs 382 205 | 588 667 .792 | 523 608 701 | .853 900  .901 | .752 843 858
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