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1 Introduction

These notes will introduce you to the properties of Higgs bosons in supersymmetric theories, and
what we can learn from them. This also necessarily involves the properties of the electroweak sector,
including the W boson mass. I will focus mainly on the CP-conserving MSSM, but especially nowadays
we should keep an open mind about models of low-energy supersymmetry, and I will try to show how
results generalise.

There have been many good reviews written over the years on the properties of supersymmetric
models. I try to stick to the conventions of Stephen Martin’s supersymmetry primer [1] for the basics.
There are the two tomes by Djouadi for a comprehensive discussion in the SM [2] and MSSM [3] circa
2005. For a more recent summary of (supersymmetric) Higgs production and decays see the LHC
Higgs cross-section working group report from 2016 |4]. For an overview of recent developments in

precision calculations of the masses of Higgs bosons, see [5].

2 The Higgs bosons in the MSSM at tree level

I’ll start by going through the standard stuff about the Higgs bosons at tree level in the MSSM.

2.1 Potential

For our supersymmetric model we have two Higgs doublets, so its potential is somewhat complicated

because there are scalars that mix. At tree level, the Higgs scalar potential is given in components by

Vv :VF + VD + Vvsoft
=(|ul* +m¥, ) (H 1 + [H [P) + (ul® +mE,) (Hal” + [Hy %)
+ B, (HfH; — HYHY) + c.c]
1 — 1 * —%
+ g(g% + ) (HLPP + | HF 12— [HQ)? = [H [*)* + §9§IHIH3 + HyHy ™|

In terms of just the neutral components this gives
1
V= (lul® + mi ML + (pl* +mi, ) [Hg* = (By HyHg + c.c.) + <9y + g2) (| Hyl* — [Hgl*)”

The first thing that we note is that the quartic coupling is given by the gauge couplings! This is a
drastic and important difference compared to the SM: the Higgs quartic coupling (at tree level) is
not a parameter, but a prediction of the theory! To work out the Higgs masses we need to find the
minimum conditions. But we also find that the potential must obey some conditions in order to be at
a true minimum, since we now have more field directions.

We need the potential to have a minimum and not a runaway at infinity; at large H,, Hy this is

true except perhaps when H, = Hy; = H. Along that (D-flat) line, we have

V = (miy, +miy, +2|u?)|H> = mi, +mi;, +2|u/* > 0.



Similarly, at the origin of field space, taking the second derivatives wrt HY, H) we find the mass matrix

_ m%[u + p? -B,
HO=H9=0 —B,  my, +

We see that if (m7; + ,u2)(m12qd +u?) < BZ the origin of field space is only a saddle point, and so the

M;,

true electroweak vacuum can be at nonzero HO, HY.

2.1.1 Goldstones and fields

When we break the SU(2) x U(1)y symmetry down to U(1)em we find would-be goldstone bosons.
However, determining which fields they are is not quite so straightforward since we still have only

three goldstones but we now have 8 real scalar degrees of freedom. Let us define
(HY) = vg = —=v cos f. (2.1)

If we write

then we can expand the kinetic terms to find the mass of the Z and W bosons, similar to the Standard
Model:

1 . 1 )
L D|(0n + Z§9YBM + zggT“W[})Hu\z + (0 — §gyBM + zggT“W§)Hd|2

v 2 2 . 2 U2 . 1)2 _

D’8| [(gyBu - ggWi’) sin? 8 + <gyBM — gng) cos? B} + Zg%WVJ\Qst B+ ZQS\W % cos? B
(9% +g3)? 1 gt Lo

I gz B (2.2)

So we see that the combination of generators gy Y + g1 corresponds to the broken, Z, direction,
and an orthogonal combination proportional to goY — gy'T? is unbroken, corresponding to the photon.
The fact that the (tree-level) predictions about the mass of the W and the Z bosons are identical to
the prediction of the SM (once we defined v,, = sin v, vq = cos fv) is guaranteed because the

Now we can use some facts about Goldstone bosons: if we define the field transformations under

the (broken) symmetries to be

0¢; = of =T3¢5, (0¢i) # 0, (2.3)

then the Goldstone directions are given by G x af ¢; because (ai%> = 0. To see this, note that
99

the potential of the theory is invariant under these transformations, so V(¢; + 0¢;) = V(¢;) implying
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This is true for all ¢; so we can differentiate it:

06¢; OV 0%V
= 0Q;————. 2.5
56, 061 % 9000, (2:5)

The first term vanishes if we are at the minimum of the potential, and the second is the mass matrix

0

multiplied by a non-vanishing vector for the Goldstone directions.

1’ %
associated with the Z-boson gyY + goT2. Fortunately we know that the charged and neutral compo-
2

Now for the case above we have broken SU(2) generators %O‘ o2 and the broken transformation

nents cannot mix, so for o', 02 we have two real Goldstones that make one complex one: GF must

be some combination of H,', (H; )*. Following the Goldstone procedure we can determine the broken
generators just by making group tranformations acting on the expectation values of H,, Hy. Writing

the broken transformations as

1
ia' Tt +ia®T? + ia? ————(gyY + ¢2T?),
\/ 9% + 93

we can write
. 1 - 2 . Z(_9y—g2
SHT i a’ —ia §HO i —a”( )
( “ | = ——wsinf of(=ey | ) = —vcosf V93+93

0
SH? 2v/2 v
(2.6)

So if we write

+ L j
Y I I (A
ﬁ[sm} + hy, +ih] H;
and defining a* = ia' + a?,a~ =ia' — a® = —(a™)*, then we can rewrite the above as

dHF g N*qt S, 5 —NOgZ 5 —NOgZ
) = sin , = cos = cos ,
Shi, NOq? 6H N*a~ —N*(a™)*

where NO, N+ are real normalisation constants. By that token, we can isolate the neutral Goldstone

boson as
hfL:NosinﬁGo—F...,hZ: —NOCOSBGO+... (2.7)

The sign of N is entirely a convention (its modulus must be unity to ensure that the fields are
canonically normalised.) and differs among references. HY, Hg contain together 4 real scalars, one
of which is our would-be Goldstone boson G?. The other three must include the Higgs boson — but
we have two additional Higgses! If we neglect CP violation (which must be small in the Higgs sector
anyway) then By, must be real. Then the real and imaginary parts of Hg, H? do not mix — they
are split into two scalars and two pseudoscalars. Then equation is enough to determine the



pseudoscalars, because we have only two and 2 x 2 matrices are easy: by the conventions of [6] we
take N =1 and

h! = sin G + cos BA, hY = — cos BG + sin BA. (2.8)

For the charged bosons, we can either expand the real and imaginary parts, or write in terms of
complex fields where H,, (H; )* mix to give a charged Goldstone G* (and where G~ = (GT)*):

Hf = N*sinGT + ..., (H;)* = —N*cos BGT + ... (2.9)
by the same convention we take N* =1 and
H =sinBG* + cos BH ™, (Hj)* = —cosBGT +sinBH™. (2.10)

Finally, the real parts of the neutral bosons will also mix. However, their mixing is not determined

by the symmetries; so we introduce a new mixing angle «.
hr, _ co'sa sin v h _ R, h (2.11)
hy —sina cosa H H

Ry E( sinf8 cosf ) (2.12)

—cosf sinf

By defining

we can write, compactly,
HY v sin 3 1 h ) G
vl =— + —=R, +—R 2.13
(o) = (o) dem () m () o

mr \ (Gt
< (Hy ) ) - ( H ) | .

(recall G= = G+, H™ = HT).
We therefore see that the Higgs sector has decomposed into:

e One neutral and two charged would-be Goldstone bosons.

e Three real scalars h, H, A. If CP is preserved then h, H are scalars that can mix with each other,
and A is a pseudoscalar that cannot mix with the other states (if we allow for CP violation then

we need to introduce more phases, see later).
e A charged Higgs H*.

It now remains to determine the masses of these states!



2.2 Minimum condition and mass matrices

Taking the first derivatives of the potential w.r.t. HY, H) in the absence of CP violation we find

1
Ozvsinﬁ{m%qu +u2—BMcotB— 2M%cos2ﬂ]

1
O—UCOSB[m%Id—FMQ—B#taHB—F2M%C0826:|. (2.15)

To satisfy these equations we must eliminate two quantities. Clearly in the MSSM the most convenient
are either {m7 , m%{d} or {u?, B,}. Neither relate to observable quantities, but in many traditional
models there is a prediction for p/B,, so we typically solve for the first pair, and I shall do so here.

I note in passing that in other SUSY theories, sometimes trilinear couplings enter in the tadpole
equations (or even singlet tadpole terms!) and it can therefore be convenient to eliminate those. This
can apparently be simpler because they affect the masses less but have different complications.

To derive the mass matrices, it is most convenient to stick to the original basis and write

Hf legv + AT + iR
Hu = 1 Y r .74 ’ Hd = \/i[ 7 d d] .
%[Sﬂfu—'_hu—’—Zhu] Hd_
Then let us write the mass matrices for the three classes of fields. We start with the pseudoscalars
( ilv hZ) :
M = m%{u +u? - %Mg cos 203 B,
B, m%{d + p? + $M% cos 283
B, cot B
= poot 5 a (2.16)
B, B, tan 8
where on the second line we used the minimum conditions. We then see that we have the Goldstone
boson (in Landau gauge — in general we need an R¢ gauge which gives a mass to the Goldstone) and
a pseudoscalar A of mass
2B, ‘
sin 23

M3 =B, (cot B + tan 3) = (2.17)

This allows us to rewrite the minimisation conditions as
M2 1
2 Z 2
a 2 tan? 3 — 1( Ha
M3 =m3;, + mi, +2p° > 0.

— tan® Sm3; )

We can also write the charged Higgs mass matrix in the basis (H,', H ), recalling that M%V = ifu2g§,

as
M2 — m%lu+/$2—%M%COSQ,B+M3VCOS2B BM—FM%,sinBcosﬂ
H= B, +M5V sin 3 cos 8 m%{d + u? + %M% cos 2B+M5V sin® 8
t 1
=(B,, + M3, sin 3 cos 3) cot B , (2.18)
1 tanpg



so again we have the would-be Goldstone boson, and the charged Higgs of mass
MZE. =M3 + Mj,. (2.19)

Finally, in the basis (hy,, h/;) the Higgs mass matrix is

M2 — mlzqu +p? - %M% cos 28 + M% sin? 3 -B, - M% cos B sin 8
H= —BM—M%cosﬁsinB m%{d+u2+%M%cos2B+M%cos2ﬂ
. cotB -1 . tanf —1
=M3 cos sin + M2 cos Bsin . 2.20
acosf 5( . tanﬁ) 7 cos 5( 4 cotﬁ) (2.20)

These now do not give a zero eigenvalue. However, it is common to diagonalise the piece proportional

to Mf‘ first by making the transformation

hy \ [ sin8 —cosp h
hl ~\ cos B8 sinp H
because in the basis (h, H) the matrix simplifies a little to

M ( MZ cos? 23 —M?%sin2f cos 23 ) ‘ (2.21)

—M% sin 23 cos 23 fo + M% sin® 23

Since we expect Mi > M% we can then treat the diagonalisation of the mass matrix perturbatively;
in the limit Mi > M % the perturbations become very small — the heavy higgs decouples — and we

must have
sina = —cos f3, cosa = sin 3, (2.22)

or equivalently o = § — 7/2. In that case, the Higgs bosons align with the would-be Goldstone boson
rotations, so we could separate the entire complex fields into a “SM-like” and a “heavy” one (which
we will discuss more later). Alternatively, it is also possible to have “alignment without decoupling”
if the angles coincide without M4 being very heavy, and this might also be important.

We note that in the case of alignment we can write

1 1
HY — E(v+h)sin6+ L HY — E(U+h) cos 3

and so the state h is really a Standard-Model-like Higgs. However, we find that this is the maximal

value for the light Higgs mass; we can write (at tree level)

M3+ M2 =M? + M% — M? = M3 + M2 — M?

1
Mf%,H 9 (Mi + M% + \/(M,% - M%)Z + 4M%Mi sin? 25)

$2a M? + M3, tan 2o M3 +M%' (2.23)
S92 M3z — MP’ tan28 M3 — M2




By convention then we take g € [0,7/2],a € [-7/2,0].

At any fixed value of tan 8, we can calculate the derivative of M, ,% with respect to M%:
dM2 . M3 — Mz +2Mjs3, X M3 — My +2M3s3,

2
dMj V(M3 = M2)? 4+ M3 M3, V(M3 — M2+ 20M33,)% + AM b s3sc3,

. (2.24)

which is only zero as Mi — oo and is positive everywhere else.

From the above we can conclude:
o At tree level, m% < M% cos? 23!

e Therefore in the MSSM loop corrections are large:
(125 GeV)? — (91 GeV)? ~ (86 GeV)?

e Since this corresponds to the maximal tree-level mass, in general the loop corrections are at least

as large, and often larger than, the tree mass.

The loop corrections to the Higgs mass are dominated by the stop squarks, which couple via the
top Yukawa coupling; these can easily give the required boost. However, it means that the two-loop
corrections to the Higgs mass are significant: they can give a mass shift of up to ~ 10 GeV — so there

has been/is a lot of work in understanding these.

2.3 CP violation

I will now make a few brief comments about the theory with CP violation. In general, we should allow
for a phase between the expectation values of H; and H,. This is easily taken care of by defining and

overall phase, n:

1 ; ' H+
H, = 5 (Vd + da +i0q) A wo _ (2.25)
Hd_ ﬁ(vu + ¢u + ’LO’u)

The fact that the same phase rotates v, and H, is necessary for the charged Goldstone boson. We can
treat 1 as an input parameter in the same way as we previously treated v,tan 8 as input parameters,
even though strictly speaking they should be determined from the minimisation of the potential.
The real scalars {0y, 04, du, g} (which includes the longitudinal component of the Z) do not have
a definite CP phase any more so they can all mix together; we no longer deal with 2 x 2 but now 4 x 4
matrices, which are best handled numerically.
As regards the minimisation conditions, we have an additional phase that enters from the holo-

morphic Higgs mass term £ > —B,H,, - Hq; we put B, = P By |B,,| and extract ¢p, from the tadpole



equations. But now we can take the derivative of the potential with respect to four fields:

OAV 1
=0 :UCB[m%Id + fcéﬁM% + [l - tg| Byl cos(n + ¢B,)]
094 o = 2
d)u,d_o'u,d_o
DAV 1 | Byl
S| = 0 =l — 5e3s gl = P cos(y + o, )
A

aaal/ =0 =vsglsin(n + ¢, )| Bul]

OAV .

5| = 0 =veslsin(n + ¢, B (2.26)

The last two equations are not independent due to the gauge symmetries. They also show that n and
¢p, are not independent: at tree level n = —pp,, but this can be modified once loop corrections are

taken into account.

3 Higgs boson couplings

The mixing matrices determine everything as far as the phenomenology is concerned: for searches, we
will be interested in the couplings to SM particles — as well as any possible invisible or exotic particles.

The SM couplings are easily written down just from the lagrangian and the mixing matrices.

3.1 Gauge boson couplings

For the gauge boson-Higgs couplings, for a generic theory involving scalars and vectors the possible

terms are
1 1
LD §gSiVaVbSiVa,u%# + ZQSiSjVGVbSiSJ‘Va,qu” + 95:5,;Va (Si0uSj — S50,5i) V. (3.1)

For the first type of term, we have expanding the kinetic terms:

2 2 2
N -
£ o[t R) g e Ly, (1 + g

D BmQZZ#Z“ + m%VWMWp} [(sinﬁ + cosah +sinaH)? + (cos f — hsina + Hcosa)?|.  (3.2)
We therefore find the couplings
Ghzz =mysin(f — a), gaww = miy sin(8 — a)
grzz =m% cos(f — a), gaww = miy cos(B — a). (3.3)
Bearing in mind that when we have alignment we have that « = 5 — 7/2 and hence sin(f — a) =

1,cos(B — ) = 0 we see that when H becomes heavy, or in the alignment limit, its coupling via the

mass term of the gauge bosons vanishes. To derive the other trilinear, we have
e

. ig 0 Wr
Dy =0u = 1eQAy = 7 Zu(Ts = sy Q) — 7% ( —_— ) (3.4)
o



and so

H+ H+ . 1 .2 H+ . +H0
D, H, = Out ) _ ieA, vl — LZ}L (2 iw) u | tg2 ( WIH, 7
DuHy=| 00 ) wied, | )=z T ) =) 39)
Oully Hq wsw —(g +sw)Hy V2 \ W, HY

This gives us

Dy Ho? + | DyHal? 5 ——ZM0, H)(HY)" — Hd,(HY)" = 9, HY(HS)" + H)o,(H)']
Wow
' Zb[cos(B — o) ZM(A,h — hd, A) — sin(8 — a)(Ad,H — HO,A)]. (3.6)
QCWsW
Similarly we find
gwapF X sin(f — a), gwhpF X cos(ff — a).

All of these couplings are proportional to cos(8 — «) or sin(f — «).

We can also derive the couplings to Goldstone bosons (we have not discussed gauge fixing, but it
is done in the standard way for R gauges). However, it can be shown that for general renormalisable
theories — not just the MSSM or the SM — all would-be Goldstone boson couplings can be related to

the gauge couplings and gauge boson masses.

3.2 Fermion couplings

The couplings to fermions are easier to derive. We just start from the Yukawa couplings:
Wrikawa =i (Y )ijQj - Hu — di(Ya)ijQj - Ha — € (Ye)ij Lj - Hy. (3.7)

Once we diagonalise the fermion mass matrices, we also diagonalise the Yukawa couplings for the

neutral scalar higgses h, H, A:

Lyvukawa D — C?S TG s%n T H i cot ﬂﬁf%tfl
sing v sinf v v
O T Boh — <O T ELH — itan 81 brysbA
cosfB v cosfB v v
V2 i
+ —Vua| H u[mgtan 5P + my, cot BPRr]d + h.c. ). (3.8)
v

We see that the couplings to charged Higgses are not diagonal; and those with the pseudoscalars contain
factors of v5. However, more pertinently, we see that certain couplings can have large enhancements
compared to the SM.

One possible explanation for the hierarchy between the up-type quark masses and the down-type
ones is that the up-type Higgs vev is larger. We have m; = 172.69+£0.3 GeV from the PDG from direct

measurements, where the uncertainty is hard to quantify, or 172.5 4+ 0.7 from direct measurements.



There are very large corrections from strong coupling effects which mean that the MS mass parameter
in the Lagrangian is closer to 160 GeV. Similarly, the pole mass of the bottom quark is difficult to
define, but the M S mass defined at the scale m; — usually quoted as my(m;) — is 4.18 4+ 0.03 GeV.
There is thus a factor of 40. While the hierarchy between the other quarks is smaller, the fact that
the masses of the leptons are similar to the down-type quarks in scale fits nicely with the structure of
the MSSM/2HDM since the scale of both is determined by vg = v cos 3.

The upshot is that we expect v, /vy = tan  to be large, or at least larger than 1. If tan 8 is small

then the top Yukawa coupling becomes large, and the bottom small, since

V2 V2
= = 3.9
Yt vsinﬁmt + .. Yb UCOS,@mb + (3.9)

where in the ellipsis we include quantum corrections. We find in practice that values below 1 for tan
are hard to realise, and complicate running of the RGEs among other problems. But we see if tan 3 is
large, then sin 8 ~ 1,cos 8 ~ 1/tan 8 and we can have y, of O(1) for tan 5 ~ 40. Hence values tan (3
are typically considered in this range.

However, when we have such large values, we have enhancements of the bottom quark and tau
lepton Yukawa couplings. We also see very large enhancements to the coupling of the pseudoscalar A

to the bottom quarks and tau leptons.

4 Production and decays

Following the discovery of the SM-like Higgs boson, its couplings have been measured with impressive
precision. This means that we can constrain SUSY models both from direct searches for the heavy

Higgs bosons and from deviations of the properties of the SM-like one.

4.1 Couplings of the SM-like Higgs

The SM Higgs couples strongly to the massive gauge bosons, and to top and bottom quarks. The

branching ratios for the important decay modes are

BRSM(h — bb
BRgy(h — WW*

) =5.81 x 107!
) =2.15 x 107}
BRsyr(h — gg) =8.18 x 1072
BRgy(h — 77) =6.3 x 1072
BRgy(h — éc) =2.88 x 1072
BRsy(h — ZZ*) =2.64 x 1072
) =2.2x 1074
) =2.27 x 107°
BRgy(h — Zv) =1.54 x 1073, (4.1)

BRsn(h — pp
BRgy(h — 7y
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Figure 1: ATLAS [?] (left) and CMS [?] (right) full run 2 data for Higgs production and decays.

A comparison with the full run 2 data is shown in figure
Any BSM theory could modify these predictions. To parametrise the deviations in the measure-
ments we can define
o(X — h) v Br(h —Y)

—USM(X SRy W= =" (4.2)

Hx = Brsa(h = Y)’

and therefore construct for each process a new observable
_ Y
= pxp, (4.3)

which is the ratio of o x Br for the production mode times branching ratio (which is the quantity that
can actually be measured). These have been measured by both ATLAS and CMS rather precisely,
and are in good agreement with the SM, as can be seen from figure [ Each experiment also produces
a combination of the weighted average p over all of its channels; as of writing (in 2022) the values

are [?,7]:
1 =1.06+0.07 (ATLAS),  p=1.02700 (CMS). (4.4)

We could expect that a slightly stronger bound on generic new physics would be found from combining
the two, but this has so far not been done for the full Run 2 dataset.

11



As a simple example of how constraining the Higgs couplings are, if we imagine that we have some
other inert singlet field S (e.g. in the NMSSM) that mixes with the Higgs so that only h couples to

the Standard Model fermions and gauge bosons, but then the mass eigenstates are h, s mixing via
h Su S h
_ 11 12 (4.5)
s —S12 S S

#:|Sll|2 S 1. (46)

then we will find that

Hence if we allow a 30 deviation from the ATLAS result, we require
1—|Snu|* <0.15. (4.7)
Finally, the LHC has put limits on the Higgs decay to invisible particles, of [?,7]:

BR(h — invisible) < { 0.145 ATLAS (4.8)
0.18 CMS

These constrain SUSY theories in the case that there is a light neutralino, because the large phase

space typically leads to large branching ratios. However, this is a rather model-dependent statement.

These observations are rather constraining and force us to be rather near the alignment limit for
the MSSM Higgs bosons.

The good news is that at tree level in the alignment limit the branching ratios of the SM-like Higgs

boson will also be identical in SUSY models. However, quantum effects in SUSY theories are very

important and might (in future) be relevant to spoil even this case.

4.2 Diphotons and digluons

The first important observation is that the decays to diphotons (and digluons) only take place at loop

level. So any new charged particle that couples to the Higgs will modify it at the same order. This

channel, although a small branching ratio, is very clean and was used for the Higgs discovery. To

compute it, we will need the couplings to the fermions, the W boson, and any light SUSY particles.
The partial widths for any scalar decaying to diphotons and gluons at LO are given by

2
Gra®(0)m fN2,.® s,.® 2 0202 A
I(® = yy)Lo = ETrw, A ZN QFrf Ag(ry) ZN QA (1) ZN (7o)
G 3 2
Oé
(@ = gg)Lo = 26 \”5 Z 3 DIrt Ay (ry +Z DirfAu(m) + 3 SD3riAu(m)| . (49)

Here, the sums are over all fermions f, scalars s and vector bosons v which are charged or coloured

and which couple to the scalar ®. @ is the electromagnetic charges of the fields, N, are the colour

12



factors and D3 is the quadratic Dynkin index of the colour representation which is normalised to %
for the fundamental representation. We note that the electromagnetic fine structure constant « must
be taken at the scale u = 0, since the final state photons are real. In contrast, o, is evaluated at
w = mg. 7’? are the so-called reduced couplings, the ratios of the couplings of the scalar ® to the

particle ¢ normalised to SM values. These are calculated as

P R
r? = (C’ffq> +CE,), (4.10)
'U
T';I) = 27]\4_52033*(1), (411)
> (%
Ty = _2MECU’U*<I>' (412)

Here, v is the electroweak VEV and C are the couplings between the scalar and the different fields

with mass M; (i = f,s,v). Furthermore,
2

Mg
Ty = m? (4.13)
holds and the loop functions are given by
Ap=2(r + (1 = 1) f(r))/72, (4.14)
As=—(r = f(r)/7%, (4.15)
Ay = —(27% + 374+ 321 — 1) f(1))72, (4.16)
with
arcsin?\/7 for 7 <1,
f(r) = — 2 N (4.17)
—% (log }Jr\/i—m) for 7 > 1.
the loop functions have the limiting values
4 1
AO(O) =-T, A1/2(O) = g’ AO(O) = g

Ai(1/7)==24+0(1/71), A1/2(1/7-) =0(1/7), Ao(1/7) = O(1/71). (4.18)
The Standard Model values are
A (tw) ~ — 8.32, Al/z(Tt) ~ 1.38. (4.19)

The limit 7 = 0 corresponds to m; — 0o, which is useful for the top relative to the SM Higgs, and
for heavy SUSY fields. In that case though, unless the mass of the scalar/fermion scales with v, in
the limit m, — oo the amplitude vanishes — the heavy particles decouple.

For a pure pseudo-scalar state only fermions contribute, i.e. the LO widths read
2

ZNforf Al (4.20)

Gra?m?
T(A = vy)po = ———A

324273

2
Gra’m?
I'(4 = gg)ro = 32\/%;‘ Z3Df FA4(mp)| (4.21)
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where

Ad = flr)/r, (4.22)

and 7“}4 takes the same form as r? in (4.10)), simply replacing C]%c?, by C}%}i. The leading higher-order
effects in QCD for these are known for the SM and can be extended to SUSY theories, but we cannot
do better than that at the moment.

In the SM, the W boson and the top quark contribute significantly to the diphoton rate. But we

see that if any charged SUSY particle is light then it could contribute to the diphoton rate. We see
that (in contrast to the early days of the LHC) a 30 deviation of the diphoton rate would correspond
to about 30% currently.

4.3 Higgs production

At 125.09 GeV the production cross-sections at 13 TeV (as listed on the CERN yellow pages) are

osm(pp — h) :48.5J:é:%?pb gluon fusion
+3.779 + 2.1%pb vector boson fusion
+1.369 + 1.9%pb WH process
+0.8824 + 4.1%pb ZH process

+0.5065 4 9.9%pb ttH process (4.23)

We see that it is dominated by gluon fusion, which is given at LO by the same amplitude computed
above for I'(® — gg); we could even use the Breit-Wigner formula:
T sT(® — gg)/mp 2

— ~ 5 m?2
U(gg — q)) _Smh (§ — mh)2 + (értot/mh)Q — mhr(q) — gg)5(8 mh) (424)

which forces us to be around § = m,%, which is the centre of mass of the gluon system. For proton-
proton collisions We define 7 = mi /s where s is now centre of mass energy of the protons, and

integrate over the parton distribution functions of the gluons g(z, u):

U dx

s10lop = @) ~oflry | Lo, ue)glru/z.ur). (4.25)

TH

If we are near the alignment limit (as we argued above that we should be) we have
Lyukawa ~ — Mg, + cot ﬂﬁftH —icot ﬁﬁf%tA
v v v
~ " %ph — tan BZ2BbH — i tan B2 byshA
v v v

2
+ £Vud <H+u[md tan 8P, + m,, cot BPg|d + h.c.> ) (4.26)
v

We see that there are tan S-enhancements for the couplings of H/A to bottom quarks — and therefore

also tau leptons in the decays. These also enhance the bottom contribution to the gluon fusion

14



2 RNSusHi(ggH +5FSbbH) = " "3
— 2l N ls=8TeV 1:
— 102 - \._ $ - %
T
Tw0F R

= B { ]

& 1 hin E

al ;

107 —gg-a

" F —-gg- hH g

10°E —bbA E

Foee bbh/H ]

10°E tanB=30 S

45 lm;umd scenario N

10- 1 1 1 1 1 1 1 1

107 10°

M, [GeV]

Figure 2: SUSY Higgs cross sections at 8 TeV.

diagrams, while the top contribution is suppressed. At low tanf, the production rate of H/A is
therefore small, but even when tan g reaches ~ 10, the enhancement to the bottom quark coupling
means that the gluon fusion rate becomes large! In addition, at large tan 8 the bbH process can even
dominate for H/A. See figure [2| for an example at tan § = 30 at 8 TeV.

At NLO, the process pp — h is not infra-red safe: real gluon emission must be included. Hence
cross-sections are quoted as pp — h + X. In the SM, the leading NNNLO corrections have been
computed, at least in the infinite top mass limit. For the MSSM and THDM, some contributions
have been computed and combined with the SM-like ones. These are included in the code SusHi ],
available at https://sushi.hepforge.org. Going beyond the MSSM is more tricky. However, even
in that case, while any new colourful SUSY particles can modify the SM Higgs production, the current
limits on such particles imply that their contribution should be small. In which case rescaling the
production cross-sections for a SM-like Higgs (and possibly including some leading NLO QCD effects

that are available for gluon fusion in certain approximations) should be good enough:

NP — 1)
F(h — i)SM,mh:m@

U(PP —- ® 4+ X)channel i X U(pp — h+ X)SM, channel i- (427)

And we can substitute the width for the coupling squared. Interpolating functions can be constructed
for the SM-like cross-section. This is the approach taken in HiggsBounds/HiggsTools https://
higgsbounds.hepforge.org, https://gitlab.com/higgsbounds/higgstools which can be used to
place limits on any new Higgs-like bosons, if you give it the couplings to SM fields and the decay
widths into SM and BSM particles. Such a calculation is automatically included in SARAH https:

//sarah.hepforge.org for any model.
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4.4 Searches for Heavy Higgs bosons

It is not possible to give model-independent bounds on supersymmetric Higgs bosons. There are

therefore three approaches we can take:

1. Consider scenarios with simplifying assumptions. E.g. in the early days of the LHC the CMSSM

was much used. I will discuss the hMSSM in a moment.

2. Produce benchmark points to compare with experiments. A set of these was produced recently [8]

and is being used.

3. Attempt to generalise the computation of limits so that any given scenario in a supersymmetric
model can be compared to data. This is now possible with the automatic tools available that I

already mentioned above.

The first two approaches are most useful for the experiments. For theorists — especially thos interested
in new scenarios or new models — the latter approach is necessary. Fortunately, a significant amount
of work has gone into automation in recent years to make this job easier.

A brief and very incomplete list of tools that can be used:
e SusHi https://sushi.hepforge.org.

e HiggsSignals/HiggsBounds/HiggsTools https://higgsbounds.hepforge.org, https://gitlab.
com/higgsbounds/higgstools.

e Lilithhttps://lpsc.in2p3.fr/projects-th/1lilith/. Compares model to constraints on the
SM-like Higgs couplings.

e FeynHiggs http://www.feynhiggs.de/. Computes spectrum, decays and production cross-
sections for MSSM Higgs bosons with state-of-the-art precision.

e SUSY-HIT https://www.itp.kit.edu/~maggie/SUSY-HIT/ which includes HDECAY to compute

the spectrum of particles (see later) and decays.

e NMSSMCALChttps://www.itp.kit.edu/~maggie/NMSSMCALC/|does the same for the MSSM. Most
advanced code for the NMSSM.

e FlexibleSUSYhttps://flexiblesusy.hepforge.org/. Creates a spectrum generator any model
linked to the SoftSUSY library (https://softsusy.hepforge.org/) using expressions from
SARAH. Now includes LO Higgs decays.

e SARAH https://sarah.hepforge.org. Creates a spectrum generator for any model linked to
the SPheno library (https://spheno.hepforge.org/), including Higgs masses and decays with
state-of-the-art precision, Higgs cross-sections, and output files for HiggsBounds/HiggsSignals/HiggsTools.

4.4.1 The hMSSM

Here I will consider one important and simple scenario which is used as a benchmark for seaches. The

idea is to attempt to use the Higgs mass as an input. We will see in the next section that this is
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Figure 3: Latest constraints from CMS on the hMSSM.

complicated, because there are substantial quantum corrections to the tree-level masses. But suppose
that we assume that the dominant contribution is to correct the up-type Higgs, so in the basis H, Hg

we have
0 0

Mi, = (M3 )tree + ( ) ) : (4.28)

If we rotate to the h, H basis this gives
2 2 4 2 3
m2 ( MZCQB +€sp —M7zsapc23 + scge > (4.29)
h,H 2 3 2 2 2 2 .2 ) )

—MZs95co5 + sgege my + MZSQB + s5c5€

By assuming that the lightest eigenvalue is (125GeV)?, we can solve this for AM3, as a function of

tan 8 and Mi! In turn, we can use this to determine o and MIQJ as a function of these:

(M3 + M% — m3)(M2 cos® B + M3 sin® B) — M3 M% cos® 23
M?2 cos? 3+ M% sin? B — m?
(M% + M3) cos Bsin 3
M2 cos? B+ M2 sin? 8 —m?’

My =

tana = — (4.30)

In the hMSSM, we ignore the quantum corrections to Mfli = M3 + M‘%V which are therefore nearly

degenerate. Hence the entire phenomenology of the Higgs sector is reduced to the parameters tan

and M 4. The latest constraints on this scenario are given in figure
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One conclusion is that alignment without decoupling is not possible in the hMSSM. If tana =
— cot 3 then

M% cos® B+ M3 sin? B — m2 =(M% 4+ M3)sin®  — mi = M% cos2f3 (4.31)

which is not possible. Hence in the hMSSM the measurements of the light Higgs’ couplings constrain
the tan 8 — —M 4 parameter space. This can certainly be relaxed in in more general scenarios or
models beyond the MSSM.

Of course, this approximation can break down in many ways. It assumes that all other SUSY
particles do not change the situation, so must be heavy; yet at the same time it assumes that the
tree-level expressions for the couplings of the Higgs in terms of the gauge couplings etc should not
be changed. This therefore ignores, among other things, running of the gauge couplings. So the

predictions should not be considered precise, but it can be a useful guide.

4.4.2 Remark on rare decays

Finally, while I will discuss precision computations in the next section, it is also necesary to mention
the decay B — s7. This has a contribution from loops involving the charged Higgs, and, as determined
in 9], it bounds the charged Higgs mass to be heavier than 580 GeV independent of the value of tan
(which in turn bounds the mass of the pseudoscalar Higgs to be above around 568 GeV).

5 Precision corrections

In the previous section I hinted at ways in which loop corrections are important in SUSY theories.
There has been a very significant industry to bring the precision of supersymmetric models up to the
level of the MSSM. Notably this includes computations of decays and production as we have discussed,
but in recent years there has been a concerted effort to improve the precision of the prediction of the
Higgs mass, to promote it to the level of an electroweak precision observable. This should also be

accompanied by predictions for the W boson mass, which are less sensitive to (very) heavy particles.

5.1 The Higgs potential in the SM

I’ll start with a recap about the Higgs potential in the SM, to show the similarities and differences
when we go to the SUSY case.
In the Standard Model, we write the Higgs potential as

Van = i’ HI? + MH|* = p®(IGTP + [HP) + MG + [HO]?)?,

We usually write HY = %(v + h +iG); the real scalar G and the charged complex Higgs scalar GT

are the would-be goldstone bosons of the broken symmetries and are eaten by the Z and W bosons
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respectively. We can then minimise the potential by taking derivatives; we find

— =v(p” + A7) =0,
oh h=G=0
and then find the Higgs mass to be
2
v
oV > = 1% + 3 % = 2)\0%
Oh h=G=0

The electroweak vev v is not something that we measure directly, but it has a very good proxy:
GF! At tree level, we predict G from the decay of the muon y — ev, v, to be:
1
= 5ot

Hence we can extract the SM quartic coupling A from the measurements of the Higgs mass and G !

Gr (5.1)

At tree level this gives us

2

"y
—2Gp ~0.129. 5.2
Vo (5:2)

A lot of work has gone into refining this calculation to include loop effects over recent years. At loop

A\ =

level, we have a correction to the Higgs mass from the self energy:
m2 =p? 4 3\0? + Iy, (m?) (5.3)

but we also have a correction to the parameter p2! At loop level, we must sit at the minimum of the
effective potential instead of the tree-level potential. There are different ways of dealing with this, but
the conventional one is to take the electroweak vev v to be defined as the value at the minimum of
the full effective potential V + AV. Recall that, at one loop, we have

Ay :@ > (=1)%i(2s; — 1)m} <log gz - ci> (5.4)
i
where s; is the spin of the particle (¢ {0,1/2,1}) and the constants ¢; depend on the spin and
the renormalisation scheme. For MS (“minimal subtraction”) they are {3/2,3/2,5/6}; in DR (“di-
mensional reduction,” where we keep gauge boson/vector Lorentz indices in 4 dimensions) we have
c; = 3/2 for all. We see that DR is well-suited to SUSY theories, respecting the symmetries between
the components of multiplets.

Then we must satisfy

AV
0=(u? + v + ——

= (5.5)

h=0
We can either compute the right-hand term by taking derivatives of the effective potential (think the
Coleman-Weinberg potential at one loop) or diagrammatically as tadpole diagrams. We then solve

this equation as before for p, and obtain

1A
my =2)\0* + I (my) — 1av

_ 2 2
ol =AM (5.6)

h=0
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We can then invert this as before to solve for A. The complication now is that the loops depend on A
and v (and also ;2 ...) so this is usually done iteratively.
The biggest effect is from loops involving the top quark, because it couples very strongly to the

Higgs boson:

LD -y Qs3-HU3 + h.c. D —%(h +v)tptr + h.c. (5.7)

If we take the tree-level values v = 246.22 GeV and use the pole mass of the top quark m; =
172.83+0.28 +£ 0.52 GeV then we obtain 3 = 0.993 but in this case the loop corrections are very large
and we have to be careful about what scheme we use.

The contribution to the effective potential at one loop of the top quark is

: t(h 2(h) 3
AV(tops) O _127/2‘;1;-2) |:10g mt( ) _ :| (58)

where my(h) = %(U +h). A common approximation to the Higgs mass is to ignore the momentum in

the loop. This is justified by the fact that the Higgs quartic is smaller than the top Yukawa coupling

or the strong gauge coupling squared, so we drop terms of order \:

Iy (my) =k, (0) + M1, (0) + ...
0?AV

=———>— 4+ O0(N). 5.9

In the SM it is not necessarily a very good approximation, but it is much better in SUSY theories

where the Higgs mass is much smaller than the heavy SUSY particles. In this case, we have

AM? (tops)Nii 2m21 mig 5.10
( ) ~ 47T2ytmt 0g Q2 . ( . )
Extracting A this gives
\ :ﬁ (AMQ)(tops)
202 202
=Atree + AN (5.11)
If we choose (Q = my, then we find
AXNQ =
)\tree

which is a substantial shift; as a result, since this is the largest effect, we typically choose @ = my, so
the shift from tops is zero (in this approximation). On the other hand, if we were to try to extract A
at, say, 1 TeV — the scale where there might be SUSY partners — we will find an enormous shift in A
of AXN/A = —=50%!

This discussion is very important for the following reasons. Firstly, the very stability of the Higgs

potential is at stake. In figure @] I show how the value of A runs with the renormalisation scale — the
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Figure 4: Running of the Higgs quartic coupling A. Taken from [6], which uses central values from
2019 (m; = 173.1 GeV, mj;, = 125.1 GeV.)

central value is negative at high energies, indicating that the potential is not absolutely stable. It
turns out that it is metastable, although there is still some substantial uncertainty due to the mass of

the top quark.

Some people have tried to turn the requirement of A = 0 (and possibly dlggQ = 0 at high energies

into an axiom of some high-energy theory. This generally is called asymptotic safety. In minimal

SUSY theories, A > 0 is a (tree-level) prediction of the theory at the scale of superpartners, so we
could instead use the point at which A = 0 as an upper limit on the SUSY scale: this generally goes
under the name of high-scale SUSY.

5.2 Higgs masses in supersymmetric models

The observation that the tree-level Higgs mass is too small was already problematic in the early 90s.
Around the early 2000s, LEP placed bounds on the mass of the Higgs to be greater than 114 GeV.
From the perspective of a phenomenologist until the Higgs discovery, supersymmetric partners should
be not far above the electroweak scale in order to preserve naturalness, and then there was a tradeoff
between these two, having heavy enough but not too heavy stops. It was then very important to have
as precise as possible a fixed-order computation of the Higgs mass in SUSY theories. The expectation
was that we would be able to measure the masses of the stops and predict the mass of the Higgs when
it was discovered afterwards!

With what we know now, the colourful superpartners, if present in nature, are very likely somewhat
above a TeV in mass at leas. Although they may yet be light and hiding, we may never see them.
Nonetheless, we can still infer as much as we can from them — and the other SUSY partners — from

their influence on the Higgs, especially its mass. Or alternatively, we can turn the computation around,
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like in the SM, and extract the effective quartic coupling — and infer the SUSY scale!

5.2.1 Traditional one-loop computation of the Higgs mass

The traditional computation involves the loop contributions from the stop squarks and the top quarks,
which dominate at one loop because they couple directly to the Higgs via the top Yukawa coupling.
Generalising the discussion that we had for the SM, in the MSSM (conserving CP for simplicity) we
recall that we have two tadpole equations to solve for two parameters, equation (?7); at loop level we

will need to modify

ree 1 0AV
m%[u — (m%—[u)t - vsin B O,
) 1 8AV
myy, = (m3,)"* - veos B ORT | (5.12)

Hence we have to include these shifts along with the self energies for the Higgs bosons. Note that these
shifts affect not just the masses of the neutral scalar Higgs bosons, but also those of the pseudoscalar
and charged Higgses!

Consider now the effective potential approximation for the MSSM. In the SM, we argued that A
was smaller than y? so we could neglect momenta. In the MSSM this approximation is even better,
because the light Higgs mass is proportional to the Z boson mass — it is thus proportional to the

electroweak gauge couplings only! The effective potential for the stop-top sector at one loop is

STOpPs/Tops 3
AV (1):stops/top =162 {2f(mtgl) + 2fm%2) —4f(m?)
_L o z 3
f(z) =% (log o 5) (5.13)

where () is the renormalisation scale. To obtain the shifts to the neutral scalar masses in this approx-

imation we can write
- tr
2
ﬁstop masses = —( 1} IR )m; ( ;k )
R
12
om? — ( mé +mi 4+ M2(5 — 2s%)cop my (A} — u* cot B) ) .

t my( Ay — pcot 3) mi, +mi + M2 st cop

There are different strategies we can then take; we can rewrite the effective potential in terms of traces
of matrices instead of eigenvalues and differentiate, or we can use the fact that we deal with only 2 x 2

matrices:

N —0 ~
X =y (AH) — pH,), e =y HY,

1 B =
m%hg2 =5 m2Q + m¥; 4 2lm|? £ \/(m% —m#)? +4|X 2| + O(a). (5.14)
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Figure 5: Plot of the Higgs mass using FeynHiggs for left: maximal stop mixing, varying Mg; right:

fixed Mg, varying stop mixing.

If we are interested in the full mass matrix, we can differentiate with respect to H), H g. This technique

was used to compute the gaugeless-limit two-loop corrections in the CP-conserving MSSM, and was

the state-of-theart for a long time.
If we want to just look at the decoupling/alignment limit, we can differentiate with respect to the

vev v! In that case we obtain

3m} MZ o Xp Xt
Am2)l—loor ~ Tt (g 8 4 2L 5.15
(Am) on2? \ "% 2 T a2 T 120 (5:15)
where now
Xi = A; — peot B, M2 = mg mg, . (5.16)

This computation leads to two important conclusions: stop mixing can greatly enhance the Higgs
mass; and there is still an upper bound on the Higgs mass in the MSSM. The maximal mass occurs
for X;/Mg = ++/6; I give some illustrative plots in figure |5, which include all available corrections in
FeynHiggs but still display the behaviour dominated by the above.

In traditional texts, it was argued then that the Higgs mass was bounded from above in SUSY
theories by about 130 to 140 GeV, by putting Mg = 1 TeV or so in the above formula as the maximum
acceptable value from naturalness. Nowadays naturalness is less persuasive — we almost certainly have

a little hierarchy. This then leads to a different reasoning and extra complications.
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5.2.2 EFT computation

We can instead consider the SM as an effective field theory below the scale of heavy superpartners; it
is most reasonable to take this to be the geometric mean of the stop masses. The computation of the
Higgs mass is then equivalent to computing the Higgs quartic coupling in the SM. This is interesting
and very different to most of the recent literature on EFT's, which is chiefly concerned with computing,
or the effects of, higher-dimensional operators: we actually need to compute precision corrections to
renormalisable couplings.

There are different ways that this can be done. The first is to directly compute the relevant
diagrams in the unbroken phase of the theory (with v = 0). In the MSSM at one loop this means box,

penguin and bubble diagrams. Since m? = 2\v? it is straightforward to see that

3mf (XE X}

What about the logarithmic term? That we should reproduce from the running from Mg down to my,

which we take to be the scale at which we compute the Higgs mass in the SM (as we argued above):

dA 3y} 3L 1o M _ B0y M3
1672 ° MZ  4An? m?’

= + ... — )\(mt) :)\(MS) -

dlog@Q? 1672 (5.18)

Putting m% = 2\(my)v? then gives the same result in both approaches.

The advantage of the EFT approach becomes apparent when Mg starts to become large: in the
fixed order calculation, what values should we take for y;, m; etc? In older computations, these were
extracted at Mz or my ... it also led to a large amount of discussion about choices of schemes: whether
we should use the quarks on-shell, and even the stops on-shell (since we were supposed to discover
them). All of these choices are at two-loop order in the fixed order computation, yet can have very
large effects; so we need at least a partial two-loop computation of the Higgs mass in a spectrum
generator.

In the EFT approach, the existing corrections have been “converted” and were used in the code
SUSYHD. I give some examples of the predictions for the Higgs mass in different scenarios in ?7: if we
take a common SUSY scale for all superpartners, we can bound the SUSY scale to be less than about
1012 GeV!

The other approach to EFT computations is sometimes dubbed ‘hybrid’ or ‘pole mass matching’:

we match the pole mass in the high-energy theory with the computation in the SM, and solve
2)\112 :(m%)high energy theory (AM,%)SM (5‘19)

This is complicated by the need to also match the vevs between the two theories, which we can do by

matching the Z boson masses: at one loop we can show

4 .
IV —— o T1eh eneray theory oy _ 158 (0| + O(v*). (5.20)
Y 2
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It can also be shown that this is equivalent to wavefunction renormalisation of the Higgs field in the
v = 0 approach.

In recent years the state of the art of the fixed-order compuation has advanced so that in princi-
ple all two-loop scalar self-energies are known for generic theories. However, in spectrum generators
only the gaugeless limit effective potential computation is available; the difference is now that hybrid
approaches can take advantage of them to obtain a much more precise result for heavy SUSY. In prin-
ciple, this is available for any theory (SUSY or non SUSY) in SARAH (via a diagrammatic calculation),

although there is still much work to be done to improve the compuations there.

5.3 Prediction for the W mass

In the SM, the W mass is a prediction from measurable quantities. The fundamental parameters in
the lagrangian are A, gy, g2, g3, the Yukawa couplings, and either the Higgs mass-squared parameter
1?2 or the expectation value v. Of these, it is most logical to take v due to its relationship with Gf.

These should all be obtained from observations; clearly the Yukawa couplings, once diagonalised,
are in one to one correspondence with the fermion mases. The strong gauge coupling is extracted from
many different measurements independent from the electroweak sector. We saw that A and the Higgs
mass are interchangeable. But for gy, g2,v we can use Gp, Mz, My and «(0), the electromagnetic
coupling meausured at low energies. Of these, Gp, Mz, a(0) are very precisely measured, so everything
else can be taken as a prediction of the SM, including the W mass.

We have

a(0) =1/137.035999084(21)
G =1.1663788(6) x 107°(GeV) ™2
My =91.1876(21) GeV. (5.21)

On the other hand, for the mass of the W there is now a dispute! The SM prediction is
My (SM) =80352 + 6 MeV (5.22)

where the largest uncertainty is from the top quark mass. But with the latest measurement from
CDF, we have:

My (Tevatron + LEP) =80424.2 4+ 8.7 MeV. (5.23)

This contrasts with the LHC measurement from ATLAS of 80370 £ 19 MeV, closer to the SM but
with larger uncertainty.

At loop level, there are different schemes we can employ; we can either treat the parameters above
as MS or “on-shell” with counterterms that have finite parts. Earlier on, the two-loop computations

in the SM were only available in an on-shell scheme, and this strongly influenced — and complicated
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— matters for SUSY theories, for which the DR scheme is most appropriate. However, recently the
calculations have been done in the SM in MS [6].
Of these, the simplest is

[95(Mz) + g3 (Mz)]v?
4

M7 = — Hzz(M7). (5.24)

However, we typically instead trade the couplings for the electromagnetic gauge coupling and sin 8y =

sw,cos By = ew, so we put

ra(Mz)v?
M2 :% —Mzz(M3). (5.25)
Swew
In SUSY theories we actually use this to extract v!

For the electromagnetic coupling, we can write

_ g3(Mz)g} (Myg) A(B)
= 2 2 1= Aoyaq
4m(gs(Mz) + gy (Mz)]

a(0) (Mz) — Aopert | = a(Mz)[1 — Ad] (5.26)
Of these, Aapers is the perturbative contribution from integrating out the heavy SM fields and running
down to the masses of the leptons; it is sometimes computed including RG running. On the other hand,
Aaflz)d involves the contributions of all the hadrons, which unfortunately include non-perturbative
effects. In fact, these are very closely related to the same non-perturbative effects which are currently
under scrutiny for the muon anomalous magnetic moment: lattice computations and experimentally-

extracted ones disagree about their size. The R-ratio method defines it as
M2 o0 dq2
Ao (M :—Z/ ———Ruaa(¢’ 5.27
ahad( Z) 3T 42 q2(q2 — M%) had(q )7 ( )
where

5. _o(eTe™ — hadrons)

The total value of Aa ~ 0.059.

Finally, we can define

Gr = (1+ A7), (5.30)

1
V202
when we define v to be the minimum of the full loop-corrected potential. We typically the corrections
at one loop into the contribution from modifying the W propagator, which is

N 1 N 1 b Hww(0) - Tww (M)
g3v? /4 —Tww(0)  ME + Hww(M3,) — Iww(0) M3, M3, M3,
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and vertex/box diagram contributions dyp. But now we prefer to eliminate v from the right hand

side. Let us put

s, = 95(Mz)
95(Mz) + gy (Mz)’
then
W(X(Mz) R
Gr =——" (14 Arwy),
ma(0) .
= (1+Aa+ A7
ﬁMvzvS%v( w)
Myw(0)  Myww (Mg,)
Ary = — + v B.
My, Mg,
However, an alternative formulation is to use
2 :SIQ/VCIQ/VM%(l N HZZ(M%))
wa(Myg) M2
to write
7T04(Mz) sz(M%) wa(O)
Gr = 1- - +6
PR T M g, TP
0 Iz, (M2 I 0
= 1Oy pg - T2z Twwl0) 5
\/iswcwMZ MZ MW

Finally this allows us to extract s%,v:

zz(MZ) | Hyw(0)
M Mg,

2 2 ma(0)
St/ C = (1 —+ AO& —
W \/iGFMg(

Using

we have the tree-level value

=0.21215
and
2, =0 (50938 Mev)?
W \/EGFE%V
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(5.31)

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)



which are both a very long way away from the correct values! Clearly precision corrections here are
very important.

Instead, puting 512/‘/ = EIQ/V + 55124/’ we can compute

§(scy)
2 wW~Ww
Osiv = 1 2 9
2¢/1 — swew
2 2 2
S1i7C HZZ M 11 0
= WW (14 Aa— A; 2) V]VWVZ( ) ). (5.39)
Cw — Sw Z w
We can also invert the relations above to obtain M%V:
9 wa(0) §s2,
=———(1+Aa+ Ary — -+
w ﬂGFE%V( w 312/[/ )
2 My [
SM3, zczwivg L Ap — Ary — Aa (5.40)

w — Sw LSw
where we define
2
- My,
=72 /2
CWMZ

lzz(MZ)  ww (M)

-1= A,Otree + )
M7 M,

(5.41)

Typically in BSM theories Ap is the largest contribution to the shift in the mass of the W (while A«
is the largest in the SM). It is also closely related to the Peskin-Takeuchi T parameter:

Ap =~ a(Mz)T. (5.42)

The fact that electroweak fits and many general expressions are expressed in terms of S,T, U is why
so many papers focussed on those observables as proxies following the CDF result.

In the SM and MSSM, Aptree = 0, but in any theory with additional non-doublet fields that have
expectation values — for example SU(2) triplets in Dirac Gaugino models — its value is small and
non-zero. Or in models with additional W’ or Z’ gauge bosons the mixing with their SM counterparts
will modify the tree-level relations.

The loop-level contributions to Ap arise from electroweak multiplets whose masses are split. In the
SM there is an approximate custodial symmetry that prevents large corrections to Ap. The leading
corrections must be either proportional to the gauge couplings, the difference of quark/lepton masses

between members of each generation, and indeed we find from the top/bottom quarks

3 3mj}
tb __ 2 002\ ~ it
Ap —167T21)2F(mt,mb) = W = 0009,
2

F(z,y) =x+y— i log E, (5.43)

=Yy Yy

and from the W/H sector

3g? m?
ApWVH "2V og —h ), A4
P 5123 198 313 0.0005 (5.44)
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which is actually comparable to the experimental uncertainty. If we put these two contributions
together with Aa ~ 0.059 then we get a more respectable value of My, ~ 80600 MeV, which is more
respectable but still some way off.

In any BSM theory where there is a hierarchy between BSM and SM fields so that we can write
the SM as an effective theory, then the BSM contributions to the shift in M3, must be of order
v*/M?, since the terms of order v? are just the SM. This means that the corrections in SUSY theories
compared to the SM are typically small.

In the MSSM the largest contributions were long considered to be stops, because of the multiplicity
(colours) and because it was assumed they would be light for reasons of naturalness. If we write the
stop/sbottom mixing matrices in terms of mixing angles cos ; = ¢, cos; = ¢, etc then we have the

dominant contribution from

T

Aptt ~ 16202 — sjciF(mZ ,m? ) — s{c;F(m? ) + ctch(m m?)

t b1

— 83 c?F( ? ) — s; ctzF( ) +c ch(m mg )| (5.45)

The mass splitting between mj, and mj depends on the vev because both are dominated by m% As

an example, suppose we take a common SUSY scale Mg, then we find

1

AP o
P T60m202 MG

(mIX}? —miXp)? ~ O(v?/M?). (5.46)
The electroweak corrections in SUSY theories are of course much more complicated than in the SM,
so even for the MSSM only partial two loop results are available (see e.g. [10,/11]) and for models
beyond the MSSM the complete one-loop computation exists only. However, since they contribute at
subleading order in an expansion in v/M, the precision required for corrections to even moderately

heavy SUSY theories is not as great as that for the Higgs mass.

6 Beyond the MSSM

6.1 Non-minimal models of low-energy SUSY

The MSSM is just the simplest choice that we can make to supersymmetrise our Standard Model,;
indeed, since we need such large loop corrections to the Higgs mass, it is natural to ask if this is always

the case, and we find that it is not.

6.1.1 The NMSSM

The most popular extension of the MSSM is the NMSSM, the Next-to-Minimal Supersymmetric
Standard Model. There we just add a new gauge singlet chiral superfield S. We then change the

superpotential to

k
W = \¢SH, - Hj + 553 + Wy wkawa-
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We also add soft terms:
1
— Lot ggAKS?’ + AgSH, - Hy + h.c. + m%|S|*. (6.1)

We could also add other terms but we usually take just these ones under the hypothesis of a Zj
discrete symmetry. This prevents a 11/ B, term — but allows them to be dynamically generated by the
expectation value of S! Putting (S) = %vs, we have

1 1 1
,u,eff =—M\gvg, BZH = —wvsAg + 5]{/\*5’1)%. (6.2)

V2 V2

While we add a scalar and pseudoscalar to the theory, and the associated neutral fermion (which mixes
with the neutralinos), we also obtain a boost to the Higgs mass at tree level; we can see this if we look

at the F-term potential, and go to the heavy My limit where H, = %(v +h)sg, Hg = %(v + h)cg,

and take the scalar S to be heavy:
1
Ve D |AsH, - Hy + kS?|?> — Z’As‘z(v + h)'chsh (6.3)
which increases the Higgs quartic coupling! We therefore find in this limit
1

We can therefore find M}, ~ 125 GeV for small tan 8 2 1 and Ag ~ 0.7.

6.1.2 Dirac gauginos

One other possibility is that the gauginos have a Dirac mass rather than a Majorana one! This would
mean adding an extra chiral multiplet in the adjoint representation for each gauge group. This has

several advantages:

e We have the same \g coupling as in the NMSSM, but now also have a W D v2ArH,, - THy for
the SU(2) triplet T'; now in the decoupling limit

1
M? = M%cgﬁ + 5()\% + )\2T)v25§5.

e The Dirac gaugino mass is supersoft — makes only finite corrections to stop and Higgs masses.
e Can therefore have a heavy gluino compared to stops.

e Lack of chirality-flip processes weakens bounds on light squarks and alleviates flavour constraints!

6.2 Split SUSY

Finally, one rather radical idea is to abandon the hierarchy problem: imagine that all of the SUSY
scalars except for the SM Higgs are at a scale Mg, but keep the gauginos and higgsinos light, at the

weak — TeV scale. This does barely affects the prediction of unification of gauge couplings! This is
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because the scalars are in complete GUT multiplets except for the Higgs, and the Higgs contributes
very little to the RGEs.

To do this, we require an approximate R-symmetry to protect the gaugino masses against large
corrections. We must also invoke anthropic tuning of the electroweak scale. This might not be so

crazy, since only one parameter must be adjusted in the Higgs mass matrix:

2

2

m -B

det Ha Fl ~0—my qud :Bi.
—-B, my, “

We now define 8 to be the mixing angle between the fields in this limit, so

()0 o)) o
A —sg ¢z H,

ho [ s —sp h

)= ) () o0

and so, since the mass matrix has a zero eigenvalue for h,

de
mrp ’

m%}dclg — Busg=0—tanf =

Some advantages are:

e Still have neutralino dark matter!

e Greatly ameliorate the flavour problem!

e Makes a prediction for the Higgs mass! The SM Higgs quartic coupling at the SUSY scale becomes

AMs) = 1(° + (9')) cos’ 26 + .

A Custodial symmetry

Before EWSB the (pure) Higgs potential is only a function of |H|?; writing H in terms of real scalars

as

1 <¢1+i¢2

— ¢3+¢¢4>_>|H|2:¢%+¢3+¢§+¢3‘ (A1)

V2

This is invariant under global SO(4) ~ SU(2)r, x SU(2)r rotations:

H

1( b3 —ids  ¢1+idy

— — (eHT )
V2 \ —(61 i) ¢3+2¢4> (H, B) (4-2)
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Figure 6: Prediction for the Higgs mass against supersymmetry scale in different SUSY scenarios.
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then transforms as
H — ULHU},. (A.3)

There is one fly in the ointment already at this stage: the kinetic terms |D”|2 do not respect this
symmetry (because the gauge group is not SU(2)y x SU(2)g with identical gauge couplings), which
means that it will be violated at the quantum level. However, it remains exact even in the quantum
theory when we take the limit gy — g2 — 0. This seems like we throw the baby out with the bathwater

but we will see how it is useful in a moment.

After EWSB we say ¢3 obtains a vev, so then (H) = % ( Y ) which is still invariant under the
v
diagonal SU(2)y ~ SO(3).

This symmetry can be extended to include the quarks
LD y,Q - Hup — ygQHdR + h.c. (A.4)

so in the case that y, = yq = y we can put

L5 ylur, dr)e(eH H) < Zg ) . (A.5)

So we see that the custodial symmetry is nothing but isospin (if we only include one generation) or a
copy of isospin for each generation! For the leptons, we can have the same symmetry by turning off
the Yukawa couplings. After EWSB, to preseve the diagonal subgroup we would need to set m, = my
and the lepton masses to zero.

In the end we see that custodial symmetry is violated at loop level by corrections proportional to
the gauge couplings and also proportional to the differences between left /right quarks. How can this
tell us something about Ap? If we compute

My | _Tzz(M7)  Tww (M)
¢y M7 M M,

¥ (A.6)

we see that in the limit of vanishing gauge couplings we still have the associated currents:

LD

A %%
Z" WH 4+ h. A.
p—— J7ZM + gl + h.c] (A7)

and so we can replace the self energies by correlators of these currents:
2

Uyzz € Z 12 7 12
MZ T 2,52, M2 i) 3> ﬁu Iy (8.8

and similarly for the W mass term. Now what the custodial symmetry tells us is that in the limit
of equal up and down quark masses, the lowest order contributions in « from Ilzz and Ilyyw to Ap

must cancel. But we also know that

Mzz(M3) ~v*,  Thww(M§,) ~ v (A.9)

33



since they must vanish when electroweak symmetry is restored. This means that we must have

Mzz(Mz)  Thww(Mg,) ~ (mg —m3)

li —0
1m « M% MI%V 1)2

. (A.10)

This can potentially be large.

References

[1] S. P. Martin, A Supersymmetry primer. arXiv:hep-ph/9709356 [hep-ph]. [Adv. Ser. Direct.
High Energy Phys.18,1(1998)].

[2] A. Djouadi, The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the
standard model. Phys. Rept. 457 (2008) 1-216, arXiv:hep-ph/0503172.

[3] A. Djouadi, The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the
minimal supersymmetric model. Phys. Rept. 459 (2008) 1-241, |arXiv:hep-ph/0503173.

[4) LHC Higgs Cross Section Working Group Collaboration, D. de Florian et al., Handbook
of LHC' Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector.
arXiv:1610.07922 [hep-ph].

[5] P. Slavich et al., Higgs-mass predictions in the MSSM and beyond. Eur. Phys. J. C 81 (2021)
no. 5, 450, arXiv:2012.15629 [hep-phl].

[6] S. P. Martin and D. G. Robertson, Standard model parameters in the tadpole-free pure MS
scheme. Phys. Rev. D 100 (2019) no. 7, 073004, arXiv:1907.02500 [hep-phl].

[7] ATLAS Collaboration, G. Aad et al., Search for invisible Higgs-boson decays in events with
vector-boson fusion signatures using 139 fo=1 of proton-proton data recorded by the ATLAS
experiment. arXiv:2202.07953 [hep-ex].

[8] E. Bagnaschi et al., MSSM Higgs Boson Searches at the LHC: Benchmark Scenarios for Run 2
and Beyond. Eur. Phys. J. C 79 (2019) no. 7, 617, arXiv:1808.07542 [hep-phl].

[9] M. Misiak and M. Steinhauser, Weak radiative decays of the B meson and bounds on My« in the
Two-Higgs-Doublet Model. Eur. Phys. J. C77 (2017) no. 3, 201, arXiv:1702.04571 [hep-ph].

[10] S. Heinemeyer, W. Hollik, and G. Weiglein, Electroweak precision observables in the minimal
supersymmetric standard model. Phys. Rept. 425 (2006) 265-368, arXiv:hep-ph/0412214.

[11] S. Heinemeyer, W. Hollik, G. Weiglein, and L. Zeune, Implications of LHC search results on the
W boson mass prediction in the MSSM. JHEP 12 (2013) 084, arXiv:1311.1663 [hep-phl].

[12] K. Benakli, L. Darmé, M. D. Goodsell, and P. Slavich, A Fake Split Supersymmetry Model for
the 126 GeV Higgs. JHEP 05 (2014) 113, arXiv:1312.5220 [hep-ph].

34


http://arxiv.org/abs/hep-ph/9709356
http://dx.doi.org/10.1016/j.physrep.2007.10.004
http://arxiv.org/abs/hep-ph/0503172
http://dx.doi.org/10.1016/j.physrep.2007.10.005
http://arxiv.org/abs/hep-ph/0503173
http://arxiv.org/abs/1610.07922
http://dx.doi.org/10.1140/epjc/s10052-021-09198-2
http://dx.doi.org/10.1140/epjc/s10052-021-09198-2
http://arxiv.org/abs/2012.15629
http://dx.doi.org/10.1103/PhysRevD.100.073004
http://arxiv.org/abs/1907.02500
http://arxiv.org/abs/2202.07953
http://dx.doi.org/10.1140/epjc/s10052-019-7114-8
http://arxiv.org/abs/1808.07542
http://dx.doi.org/10.1140/epjc/s10052-017-4776-y
http://arxiv.org/abs/1702.04571
http://dx.doi.org/10.1016/j.physrep.2005.12.002
http://arxiv.org/abs/hep-ph/0412214
http://dx.doi.org/10.1007/JHEP12(2013)084
http://arxiv.org/abs/1311.1663
http://dx.doi.org/10.1007/JHEP05(2014)113
http://arxiv.org/abs/1312.5220

	Introduction
	The Higgs bosons in the MSSM at tree level
	Potential
	Goldstones and fields

	Minimum condition and mass matrices
	CP violation

	Higgs boson couplings
	Gauge boson couplings
	Fermion couplings

	Production and decays
	Couplings of the SM-like Higgs
	Diphotons and digluons
	Higgs production
	Searches for Heavy Higgs bosons
	The hMSSM
	Remark on rare decays


	Precision corrections
	The Higgs potential in the SM
	Higgs masses in supersymmetric models
	Traditional one-loop computation of the Higgs mass
	EFT computation

	Prediction for the W mass

	Beyond the MSSM
	Non-minimal models of low-energy SUSY
	The NMSSM
	Dirac gauginos

	Split SUSY

	Custodial symmetry

