SYMPLECTIC DUALITY AND THE AFFINE GRASSMANNIAN: PROBLEM SET 1

All algebraic varieties will be over \mathbb{C} .

1. Recall that for a conical symplectic resolution $\pi : X \to X$ we denote by \mathfrak{s}_X the Cartain algebra of the group of symplectic automorphisms of X (commuting with the \mathbb{C}^* -action) and by \mathfrak{t}_X the vector space $H^2(\widetilde{X}, \mathbb{C})$ (which is supposed to depend only on X). In the following examples of supposedly dual pairs verify that $\mathfrak{s}_X, \mathfrak{t}_X$ are swapped (on the level of dimensions). Verify also that dim $H^*(\widetilde{X}, \mathbb{C}) = \dim H^*(\widetilde{X}^*, \mathbb{C})$ in all of these examples, but they are not necessarily isomorphic as algebras. In all of these examples describe the deformation of X (resp. of X^*) parametrized by \mathfrak{t}_X (resp. by \mathfrak{t}_{X^*}).

a) $\widetilde{X} = T^* \mathbb{P}^{n-1}$ (what is X in this case?), $X^* = \mathbb{C}^2 / \mathbb{Z}_n$, \widetilde{X}^* - its "minimal resolution" (here \mathbb{Z}_n acts on \mathbb{C}^2 "hyperbolically").

b) $X = X^* = Sym^{(\mathbb{C}^2)}, \widetilde{X} = \widetilde{X}^* = Hilb^n(\mathbb{C}^2)$ (the last thing is the Hilbert scheme of points on \mathbb{C}^2 , which classifies ideals of codimension n in $\mathbb{C}[x, y]$).

2. Let $X = T^* \operatorname{Gr}(k, n)$ (the Grassmannian of k-planes in \mathbb{C}^n). Describe X, the spaces $\mathfrak{t}_X, \mathfrak{s}_X$ and the corresponding deformation.

3. Let G = SL(2). Consider the affine Grassmannian $\operatorname{Gr}_G = G((t))/G[[t]]$. For a number $n \geq 0$ let Gr_G^n be the G[[t]] orbit of the element g_n

$$\begin{pmatrix} t^n & 0\\ 0 & t^{-n} \end{pmatrix}$$

Prove by an explicit calculation that dim $\operatorname{Gr}_G^n = 2n$ and the closure of Gr_G^n contains Gr_G^m if and only if $n \ge m$.

4. Show that the cohomology of $\overline{\operatorname{Gr}}_{G}^{n}$ has dimension 2n + 1. Try to prove that in this case cohomology coincides with intersection cohomology. Thus the intersections cohomology of $\overline{\operatorname{Gr}}_{G}^{n}$ looks like the representation of PGL(2) with highest weight 2n.

5. Let us still be in the setting of problem 4. Let $n \ge m$. Let W_m be the orbit of g_m under the group $G[t^{-1}]_1$ - the subgroup of $G[t^{-1}]$ consisting of elements whose value at ∞ is 1. Let W_m^n be the intersection of W_m with Gr_G^n , \overline{W}_m^n - the intersection of W_m with the closure Gr_G^n . Show that this is a transversal slice to Gr_G^m inside $\overline{\operatorname{Gr}}_G^n$. Compute explicitly the surface \overline{W}_{n-2}^n (and show that it is a Kleinian singularity).

6. Let G = GL(n). Describe explicitly the orbits $\operatorname{Gr}_{G}^{\lambda}$ when λ is the *i*-th fundamental weights of GL(n). Show that it is closed and that it is isomorphic to the Grassmannian $\operatorname{Gr}(i, n)$. What does it tell you about the relation between cohomology of this orbit and the corresponding fundamental representation of GL(n)?

7^{*}. Consider the equivalent derived category $D_{\mathbb{C}^*}(\mathbb{C})$. Show (at least by an a not completely formal argument) that it is equivalent to the derived category of the abelian category of \mathbb{C}^* -equivariant perverse sheaves on \mathbb{C} .