Problems 2 (Dimofte) Branches and twists

Review

When G is abelian, the algebra of functions on the Coulomb branch $\mathbb{C}[\mathcal{M}_C]$ is simply given by

$$\mathbb{C}[\varphi \in \mathfrak{t}_{\mathbb{C}}, \{v_a\}_{a \in \operatorname{cochar}(G)}] / \left(v_a v_b = v_{a+b} \prod_{\substack{w \in \operatorname{weights}(V) \\ \langle w, a \rangle \langle w, b \rangle < 0}} \langle w, \varphi \rangle^{\min(|\langle w, a \rangle|, |\langle w, b \rangle|)} \right)$$
(1)

(Recall that "functions of $\varphi \in \mathfrak{t}_{\mathbb{C}}$ " should be interpreted as the polynomial algebra generated by weights $\langle w, \varphi \rangle$, where w runs over a basis of the weight lattice of G.)

(Exercise for the intrepid: prove that the same description arises from the BFN construction!)

Example

Consider G = U(1) and $V = \mathbb{C}_{(1)} \oplus \mathbb{C}_{(1)} \oplus \mathbb{C}_{(1)}$ (three copies of \mathbb{C} on which U(1) acts with weight 1). Then there is a single variable φ (the coordinate on $\mathfrak{t}_{\mathbb{C}} = \mathbb{C}$) and the above description of the Coulomb branch simplifies to

$$\mathbb{C}[\mathcal{M}_C] = \mathbb{C}[\varphi, v_1, v_{-1}] / (v_1 v_{-1} = \varphi^3)$$
(2)

This is the ring of functions on the symplectic singularity $\mathbb{C}^2/\mathbb{Z}_3$. Functions on the Higgs branch are given by the GL(1) invariants of functions of $\vec{X} = (X_1, X_2, X_3) \in \mathbb{C}^3$ and $\vec{Y} = (Y_1, Y_2, Y_3) \in \mathbb{C}^3$ (where GL(1) acts with weight 1 on \vec{X} and weight -1 on \vec{Y}), modulo the complex moment map constraint $\mu_{\mathbb{C}} = \vec{X} \cdot \vec{Y} = 0$,

$$\mathbb{C}[\mathcal{M}_H] = \left(\mathbb{C}[\vec{X}, \vec{Y}]/(\vec{X} \cdot \vec{Y})\right)^{GL(1)}.$$
(3)

The GL(1) invariant functions are generated by bilinears $X_i Y_j$. It is clarifying to assemble them in a matrix

$$m = \begin{pmatrix} X_1 Y_1 & X_1 Y_2 & X_1 Y_3 \\ X_2 Y_1 & X_2 Y_2 & X_2 Y_3 \\ X_3 Y_1 & X_3 Y_2 & X_3 Y_3 \end{pmatrix}.$$
 (4)

The matrix obviously has rank 1; and $\mu_{\mathbb{C}} = 0$ is equivalent to Tr(m) = 0. One can then argue that

$$\mathcal{M}_H = \{ m \in \mathfrak{sl}_3 \, | \, \operatorname{rank}(m) = 1 \} \,, \tag{5}$$

otherwise known as the minimal nilpotent orbit in \mathfrak{sl}_3 . Its resolution is $T^*\mathbb{P}^2$.

1. Consider $G = U(1)^2$ and $V = \mathbb{C}_{(1,0)} \oplus \mathbb{C}_{(-1,1)} \oplus \mathbb{C}_{(0,-1)}$. The subscripts denote the weights of $U(1) \times U(1)$ acting on each factor. Check that the Higgs branch of this theory is $\mathbb{C}^2/\mathbb{Z}_3$ and that the Coulomb branch is the minimal nilpotent orbit of \mathfrak{sl}_3 , consistent with the fact that this theory is 3d-mirror to the one on the previous page.

(Problem 1, continued)

Hint H: For the Higgs branch, let $(X_1, X_2, X_3) \in V$ and $(Y_1, Y_2, Y_3) \in V^*$. The complex moment map for $U(1) \times U(1)$ now has two components

$$\mu_{\mathbb{C}} = \left(X_1 Y_1 - X_2 Y_2 \,, \ X_2 Y_2 - X_3 Y_3 \right). \tag{6}$$

Find three $U(1) \times U(1)$ -invariant monomials U, V, W of the X's and Y's that, upon setting $\mu_{\mathbb{C}} = 0$, satisfy

$$UV = W^3. (7)$$

Hint C: Functions on the Coulomb branch turn out to be generated by weights $\langle (1,0), \varphi \rangle =$: φ_1 and $\langle (0,1), \varphi \rangle =: \varphi_2$ together with three pairs of monopole operators $v_{\pm(1,0)}, v_{\pm(1,1)}, v_{\pm(0,1)}$. How do these monopole operators multiply? Show that the following matrix has rank one:

$$\begin{pmatrix} \varphi_1 & v_{(1,0)} & v_{(1,1)} \\ v_{(-1,0)} & -\varphi_1 + \varphi_2 & v_{(0,1)} \\ v_{(-1,-1)} & v_{(0,-1)} & -\varphi_2 \end{pmatrix}$$
(8)

2. Recall that the global symmetry groups of (G, V) gauge theory acting as tri-Hamiltonian isometries of the Higgs and Coulomb branch, called "flavor symmetries," are

$$F_H = N_{USp(T^*V)}(G)/G, \qquad F_C = \text{Hom}(\pi_1(G), U(1))$$
(9)

For this exercise, it suffices to replace $USp(T^*V)$ with the smaller group U(V) of all unitary isometries of V; *i.e.* $F_H = N_{U(V)}(G)/G$.

Find F_H and F_C for the theories with $(G, V) = (U(1), \mathbb{C}^3_{(1)})$ and $(G, V) = (U(1)^2, \mathbb{C}_{(1,0)} \oplus$ $\mathbb{C}_{(-1,1)} \oplus \mathbb{C}_{(0,-1)}$). Assuming that the answer is compatible with 3d mirror symmetry, when and how does F_C get enhanced in the IR to a nonabelian group?

3. The $\mathcal{N} = 4$ SUSY algebra on $\mathbb{R}^3 \simeq \mathbb{C} \times \mathbb{R}$, with coordinates (z, t), is the super-Lie algebra generated as a vector space by three even elements $\partial_z, \partial_{\bar{z}}, \partial_t$ and eight odd elements $Q_{\alpha}^{a\dot{a}}$, for $a, \dot{a}, \alpha \in \{+, -\}$, with super Lie brackets given by

$$\left[Q_{+}^{a\dot{a}}, Q_{+}^{b\dot{b}}\right] = -2\epsilon^{ab}\epsilon^{\dot{a}\dot{b}}\partial_{\bar{z}}, \quad \left[Q_{-}^{a\dot{a}}, Q_{-}^{b\dot{b}}\right] = 2\epsilon^{ab}\epsilon^{\dot{a}\dot{b}}\partial_{z}, \tag{10}$$

$$[Q_{+}^{a\dot{a}}, Q_{-}^{b\dot{b}}] = [Q_{-}^{a\dot{a}}, Q_{+}^{b\dot{b}}] = 2\epsilon^{ab}\epsilon^{\dot{a}\dot{b}}\partial_t$$
(11)

(and all other Lie brackets vanishing), where $\epsilon^{+-} = -\epsilon^{-+} = 1$ and $\epsilon^{++} = \epsilon^{--} = 0$. (Not important for this problem: the Q's are elements of the tensor product of the 2d rep of $SU(2)_C$, the 2d rep of $SU(2)_H$, and the 2d rep of the 3d spin group Spin(3) = SU(2), corresponding to the respective indices a, \dot{a}, α .

Check that $Q_{HT} := Q_{+}^{+\dot{+}}$ is nilpotent, satisfying $[Q_{+}^{+\dot{+}}, Q_{+}^{+\dot{+}}] = 0$; and find the image $\operatorname{im}[Q_{HT}, -]$ in the SUSY algebra.

Check that $Q_A := Q_+^{++} + Q_-^{+-}$ remains nilpotent and find its image. Check that $Q_B := Q_+^{++} + Q_-^{-+}$ also remains nilpotent and find its image.

This problem (hopefully) justifies why Q_{HT} is a holomorphic twist and Q_A, Q_B are topological twists.