Problems 2 (Dimofte)
Branches and twists

Review

When G is abelian, the algebra of functions on the Coulomb branch $\mathbb{C}\left[\mathcal{M}_{C}\right]$ is simply given by

$$
\mathbb{C}\left[\varphi \in \mathfrak{t}_{\mathbb{C}},\left\{v_{a}\right\}_{a \in \operatorname{cochar}(G)}\right] /\left(v_{a} v_{b}=v_{a+b} \prod_{\substack{w \in \operatorname{weights}(V) \\\langle w, a\rangle\langle w, b\rangle<0}}\langle w, \varphi\rangle^{\min (|\langle w, a\rangle|,\langle w, b\rangle \mid)}\right)
$$

(Recall that "functions of $\varphi \in \mathfrak{t}_{\mathbb{C}}$ " should be interpreted as the polynomial algebra generated by weights $\langle w, \varphi\rangle$, where w runs over a basis of the weight lattice of G.)
(Exercise for the intrepid: prove that the same description arises from the BFN construction!)

Example

Consider $G=U(1)$ and $V=\mathbb{C}_{(1)} \oplus \mathbb{C}_{(1)} \oplus \mathbb{C}_{(1)}$ (three copies of \mathbb{C} on which $U(1)$ acts with weight 1). Then there is a single variable φ (the coordinate on $\mathfrak{t}_{\mathbb{C}}=\mathbb{C}$) and the above description of the Coulomb branch simplifies to

$$
\begin{equation*}
\mathbb{C}\left[\mathcal{M}_{C}\right]=\mathbb{C}\left[\varphi, v_{1}, v_{-1}\right] /\left(v_{1} v_{-1}=\varphi^{3}\right) \tag{2}
\end{equation*}
$$

This is the ring of functions on the symplectic singularity $\mathbb{C}^{2} / \mathbb{Z}_{3}$. Functions on the Higgs branch are given by the $G L(1)$ invariants of functions of $\vec{X}=\left(X_{1}, X_{2}, X_{3}\right) \in \mathbb{C}^{3}$ and $\vec{Y}=$ $\left(Y_{1}, Y_{2}, Y_{3}\right) \in \mathbb{C}^{3}$ (where $G L(1)$ acts with weight 1 on \vec{X} and weight -1 on \vec{Y}), modulo the complex moment map constraint $\mu_{\mathbb{C}}=\vec{X} \cdot \vec{Y}=0$,

$$
\begin{equation*}
\mathbb{C}\left[\mathcal{M}_{H}\right]=(\mathbb{C}[\vec{X}, \vec{Y}] /(\vec{X} \cdot \vec{Y}))^{G L(1)} \tag{3}
\end{equation*}
$$

The $G L(1)$ invariant functions are generated by bilinears $X_{i} Y_{j}$. It is clarifying to assemble them in a matrix

$$
m=\left(\begin{array}{lll}
X_{1} Y_{1} & X_{1} Y_{2} & X_{1} Y_{3} \tag{4}\\
X_{2} Y_{1} & X_{2} Y_{2} & X_{2} Y_{3} \\
X_{3} Y_{1} & X_{3} Y_{2} & X_{3} Y_{3}
\end{array}\right)
$$

The matrix obviously has rank 1 ; and $\mu_{\mathbb{C}}=0$ is equivalent to $\operatorname{Tr}(m)=0$. One can then argue that

$$
\begin{equation*}
\mathcal{M}_{H}=\left\{m \in \mathfrak{s l}_{3} \mid \operatorname{rank}(m)=1\right\} \tag{5}
\end{equation*}
$$

otherwise known as the minimal nilpotent orbit in $\mathfrak{s l}_{3}$. Its resolution is $T^{*} \mathbb{P}^{2}$.

1. Consider $G=U(1)^{2}$ and $V=\mathbb{C}_{(1,0)} \oplus \mathbb{C}_{(-1,1)} \oplus \mathbb{C}_{(0,-1)}$. The subscripts denote the weights of $U(1) \times U(1)$ acting on each factor. Check that the Higgs branch of this theory is $\mathbb{C}^{2} / \mathbb{Z}_{3}$ and that the Coulomb branch is the minimal nilpotent orbit of $\mathfrak{s l}_{3}$, consistent with the fact that this theory is 3 d -mirror to the one on the previous page.

(Problem 1, continued)

Hint H: For the Higgs branch, let $\left(X_{1}, X_{2}, X_{3}\right) \in V$ and $\left(Y_{1}, Y_{2}, Y_{3}\right) \in V^{*}$. The complex moment map for $U(1) \times U(1)$ now has two components

$$
\begin{equation*}
\mu_{\mathbb{C}}=\left(X_{1} Y_{1}-X_{2} Y_{2}, X_{2} Y_{2}-X_{3} Y_{3}\right) \tag{6}
\end{equation*}
$$

Find three $U(1) \times U(1)$-invariant monomials U, V, W of the X 's and Y 's that, upon setting $\mu_{\mathbb{C}}=0$, satisfy

$$
\begin{equation*}
U V=W^{3} \tag{7}
\end{equation*}
$$

Hint C: Functions on the Coulomb branch turn out to be generated by weights $\langle(1,0), \varphi\rangle=$: φ_{1} and $\langle(0,1), \varphi\rangle=: \varphi_{2}$ together with three pairs of monopole operators $v_{ \pm(1,0)}, v_{ \pm(1,1)}, v_{ \pm(0,1)}$. How do these monopole operators multiply? Show that the following matrix has rank one:

$$
\left(\begin{array}{ccc}
\varphi_{1} & v_{(1,0)} & v_{(1,1)} \tag{8}\\
v_{(-1,0)} & -\varphi_{1}+\varphi_{2} & v_{(0,1)} \\
v_{(-1,-1)} & v_{(0,-1)} & -\varphi_{2}
\end{array}\right)
$$

2. Recall that the global symmetry groups of (G, V) gauge theory acting as tri-Hamiltonian isometries of the Higgs and Coulomb branch, called "flavor symmetries," are

$$
\begin{equation*}
F_{H}=N_{U S p\left(T^{*} V\right)}(G) / G, \quad F_{C}=\operatorname{Hom}\left(\pi_{1}(G), U(1)\right) \tag{9}
\end{equation*}
$$

For this exercise, it suffices to replace $U S p\left(T^{*} V\right)$ with the smaller group $U(V)$ of all unitary isometries of V; i.e. $F_{H}=N_{U(V)}(G) / G$.
Find F_{H} and F_{C} for the theories with $(G, V)=\left(U(1), \mathbb{C}_{(1)}^{3}\right)$ and $(G, V)=\left(U(1)^{2}, \mathbb{C}_{(1,0)} \oplus\right.$ $\left.\mathbb{C}_{(-1,1)} \oplus \mathbb{C}_{(0,-1)}\right)$. Assuming that the answer is compatible with 3d mirror symmetry, when and how does F_{C} get enhanced in the IR to a nonabelian group?
3. The $\mathcal{N}=4$ SUSY algebra on $\mathbb{R}^{3} \simeq \mathbb{C} \times \mathbb{R}$, with coordinates (z, t), is the super-Lie algebra generated as a vector space by three even elements $\partial_{z}, \partial_{\bar{z}}, \partial_{t}$ and eight odd elements $Q_{\alpha}^{a \dot{a}}$, for $a, \dot{a}, \alpha \in\{+,-\}$, with super Lie brackets given by

$$
\begin{gather*}
{\left[Q_{+}^{a \dot{a}}, Q_{+}^{b \dot{b}}\right]=-2 \epsilon^{a b} \epsilon^{\dot{\epsilon} \dot{b}} \partial_{\bar{z}}, \quad\left[Q_{-}^{a \dot{a}}, Q_{-}^{b \dot{b}}\right]=2 \epsilon^{a b} \epsilon^{\dot{a} \dot{b}} \partial_{z}} \tag{10}\\
{\left[Q_{+}^{a \dot{a}}, Q_{-}^{b \dot{b}}\right]=\left[Q_{-}^{a \dot{a}}, Q_{+}^{b \dot{b}}\right]=2 \epsilon^{a b} \epsilon^{\dot{b} \dot{b}} \partial_{t}} \tag{11}
\end{gather*}
$$

(and all other Lie brackets vanishing), where $\epsilon^{+-}=-\epsilon^{-+}=1$ and $\epsilon^{++}=\epsilon^{--}=0$. (Not important for this problem: the Q 's are elements of the tensor product of the 2 d rep of $S U(2)_{C}$, the 2d rep of $S U(2)_{H}$, and the 2d rep of the 3d spin group $\operatorname{Spin}(3)=S U(2)$, corresponding to the respective indices a, \dot{a}, α.
Check that $Q_{H T}:=Q_{+}^{+\dot{+}}$ is nilpotent, satisfying $\left[Q_{+}^{+\dot{+}}, Q_{+}^{+\dot{+}}\right]=0$; and find the image $\operatorname{im}\left[Q_{H T},-\right]$ in the SUSY algebra.
Check that $Q_{A}:=Q_{+}^{+\dot{+}}+Q_{-}^{+-}$remains nilpotent and find its image.
Check that $Q_{B}:=Q_{+}^{+\dot{+}}+Q_{-}^{-\dot{+}}$ also remains nilpotent and find its image.
This problem (hopefully) justifies why $Q_{H T}$ is a holomorphic twist and Q_{A}, Q_{B} are topological twists.

