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Background: Haldane Pseudopotentials

Haldane pseudopotentials were originally introduced as Hamiltonian models for the
fractional quantum Hall effect for v = 1/(p + 2) with p > 0 odd.

> Laughlin '83: Ansatz for many-body ground state wave function V.

» Haldane '83: Pseudopotential WP > 0 obtained via projection onto lowest
Landau level of repulsive, short-range, radially symmetric pair potential:

Wp = Z PLLLVp(Zi — Zj)PLLL7 Vp X AP(S, Z=X + iy
i<j

Tailored so W, € ker WP.

» Haldane-Rezayi '85, Trugman-Kivelson '85, Lee-Papic-Thomale '17, ...: More
generalized study of various pseudopotentials on different 2D geometries.

> Regnault-Jolicoeur '04, Cooper '08,.... Also model rapidly rotating Bose gases (p
even).

P> Lewin-Seiringer '09, Seiringer-Yngvason '20: Haldane pseudopotentials realized as
scaling limit.

» Johri-Papic-Schmitteckert-Bhatt-Haldane "12: Properties of pseudopotentials
robust under change of geometry.



Properties and Conjectures:

N
N = physical space, N = number of particles, v ~ — filling factor

Al

1
1. Ground States: Zero energy states 1) € Gy = ker W/{’ C @N'H,’y satisfy v < v(p) := ?
P

> E.g. W, has maximal filling v(p).
2. Spectral Rigidity: For states with higher fillings v > v(p):

(P|WRy)

Eo(Mp) = inf At
M omendy ¥R

o |A] X increasing function of v

P Determines Yrast line for Bose gases: Viefers-Hansson-Reimann '00, Regnault-Jolicoeur
'04, Lewin-Seiringer '09,...

3. Spectral Gap Conjecture: Haldane '83, Haldane-Rezayi '85, Rougerie '19,...

(W)

orpeaynl  1Y]?
$1Gp

~ = ir/\\Fgap(W,'\’) >0 where gap(W)) =

> The gap also implies the incompressibility of the FQH fluid as Ey(H}) = 0 for
v < v(p) and Eo(HY) > « for v > v(p) (see, e.g. Rougerie '19).

4 Anyonic Excitations with Fractional Charge and their topological stability:
Hastings-Michalakis '15, Haah '16, Cha-Naaijkens-Nachtergaele '20,...



The Haldane Pseudopotential
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Figure: The Landau orbitals. A magnetic flux 273 along the cylinder axis shifts the orbitals by Ba£ (not shown).

In second quantization the v = 1/3 Haldane pseudopotential acts on the fermionic Fock space
F =@Bps0S5- (Hﬁy) generated by the lowest Landau level. In the cylinder geometry:

Lay 1 [x 2
Hir = span < Yy o exp IkT exp -3 kaa cke€Zy.

2
For v =1/3 (i.e. p=1): wh = S BB, Bo= > ke M o ioo.
SEL/2 kEs+Z

We consider the model given from truncating Bs to |k| < 3/2 Jansen '11, Nakamura-Wang-
Bergholtz '12. Depending on s, this produces electrostatic and dipole hopping terms:

. 2 1 . 2
sEZ: By =2 co_1Cst1, SsEZ+—-: Bs=e 4 <CS,LC
2

2
> +3e72ac 3cC 3)



The Finite-Volume Truncated 1/3-Model

CEDEORORDIO ==

a k k+1 b

Truncated Hamiltonian (with OBC): Fix A € C and k > 0. For any A =[a,b] C Z

Hp = Z”k”k+2 +kK Z qk 9k

k=a+1
Nk = CiCk, Gk = CkCki1 — ACk—1Ck+2
Ha = span {|ua, - .-, ) * ik € {0,1}}, pk = occupation of ¢y

Symmetries:

Particle number: Ny = ZZZE ng, Center of mass: My = Zfza kny
Physical regime: k = e3(’2/2/4 and A = —3e2" where a = %.

Tao-Thouless limit: A — 0 and k = O(1) as R — 0.

Uniform ground state gap: The model is uniformly gapped if there is L > 0 so that
vi= |[nf] gap(Hp) >0,  gap(Hp) = Ex(Ha) — Eo(Ha) = E1(Ha) >0

a,b],
IA[>L



Uniform Spectral Gap

A) = inf Ha).
v(k, A) I/{‘nZLgap( A)

Nachtergaele-Warzel-Y. 21 (OBC Gap) There is a constant C(A, k) = O(1) so that
forall 0 < [A| < 5.3 and L > 11

gap(Hi1,1)) > C(\, k) k:”gigggap("’[l,k]) o AP

For A = 0: gap(Hp) = min{1,x}.

Example Edge Mode for 0 < |[A| << 1: Lowest eigenvalue of Hp in invariant subspace
span{|1100100...0),[1011000...0)} is £ |A* + O(|A|*).

Figure: Plot (X, E())) of spec Hj;,oj(A) and spec H[T;](A) for 1 = (33/4/4)A73/4.



Uniform Spectral Gap

== inf Ha).
v(k, A) I/{‘nZLgap( A)

Nachtergaele-Warzel-Y. '21 (Bulk Gap) There is a constant C(\, k) = O(1) so that
forall 0 < [A| <5.3and L >11

T 1 1 2
() = COu ) ( iy won(H ) — 1 ) o A

Moreover, for A = 0: gap(Hpx) = min{1, x}.

Edge Modes for 0 < |A| << 1: Lowest eigenvalue of Hy is KL_HMP +O(A*) in
invariant subspace span{|110010...0),|101100...0)}.

Figure: Plot (X, E(X)) of spec H;,0j(A) and spec Hﬁfgr](A) for k= (33/4/4)A /4.



Edge States vs. Uniform Bulk Gaps Estimates

It is an interesting question in its own right to consider a bulk spectral gap in the
presence of edges states, e.g. for studying topological insulators Loring '19, Hege-
Moscolari-Teufel '22.

The main difficulty in producing uniform estimates on the bulk gap comes from the
general approach based on localizing excitations:

A/

= s s 2 C - gap(Hy)
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Main Result: Bulk Spectral Gap

03 Yo7

Figure: Plot of (X, f(|A]2)).

Bulk Gap Result: Warzel-Y. '22 For all A # 0 with f(|A\|?) < 1/3  (ie |A| <5.3...)
2
liminf gap(HP®") > min { P, —— " (1 /3f(|A]2
l;\rmgogap( A°) 2 min {7 ST 2P) ( (1AP)

AP = 1 min {1, K R 5 }
3 k+17 24 2|2

» Bulk gap stays open despite edge states for OBC.
> Analogous result for the v = 1/2 (bosonic) truncated model Warzel-Y. '22.

Remarks:
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Block-Diagonalization Strategy

C}(ll)(:
Gy 0
H# _ gt
T C# 1
O ( A)
Zae e

For both # € {obc, per} decompose Hp = C# &) (C;éﬁ)L so that:
» |nvariant under H;\#: HfC# C C;fE
> Contains ground state space: G} := ker(Hi&) C Cﬁ

> Separates edge states: Edge states satisfy £5P° C (CP¢)* C (CR")~ for all
N CA.

As a consequence:
gap(H;\#) = min {El(Cr), Eq ((C#)L)} where

Bt = nf WO gy g MR

pectngt)L vl pect)t el
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Constructing Invariant Subspaces with Ground States

Since the interaction terms are all nonnegative:

b—2 b—2
ker(Hp) = m ker(ngngs2) N ﬂ ker(qk).-
k=a k=a+1

Observations:
e |1) is a ground state of the electrostatic terms iff py k2 = 0 for all k.
® gk = CkCkt+1 — ACk—1Ck12 acts nontrivially on the sites [k — 1, k + 2]:
ax (]1001) + A[0110)) = 0
Moreover, span{|1001), |0110)} is invariant under the hopping term g} qx.

Starting from |100100...), can construct a set of occupation states that span an
invariant subspace of Hp by replacing ‘1001’ with '0110":

11 00[100[100]100]

011000 00[I00 Un(R) = > NOIT)
% 8 8 g) (]j (1) 8 ? ? é 8 8 Jansen-Lieb-Seiler '08, Jansevzn '11,
011000011000 Nakamura-Wang-Bergholtz '12



BVMD Tiling Spaces (OBC)

More generally, an invariant subspace of Hp is generated by any root tiling R of A
consisting of void, monomer, and boundary tiles:

[@ Left: MT070°0] Right:

Example:

[11000[100[0[100JL0O0JOJLO0O[T1]
11000/(100/00110000f10O0f1
11000[/100[0[100[100]00110
11000/100/001100000110

The Boundary-Void-Monomer-Dimer (BVMD) space generated by a root tiling R is
Ca(R) =span{|T): T < R}.

Lemma: Nachtergaele-Warzel-Y. 21 G§P¢ C CRP¢ := g Ca(R). BVMD spaces
generated by different roots are orthogonal, and each contains a unique ground state:

Ua(R)= D AT

T+R
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VMD Tiling Spaces (PBC)

W A

=]
2 &5 J
%m@ %m &

Analogous construction in the case of periodic boundary conditions:

g/;\)er g c/}\)er — @C}\)er(R), /}ier — Z )\d(T)lT>,
R T+R

where root tilings of the ring only use monomers and voids. Note: C}*" C C{P¢

IA
Properties: 1. dim GY" o v | 2. Maximum filling: NA(R)/|IN| <1/3
A 2
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Isospectral relationship

If N C A, then Ty Inv= Tpr:

[1000[0[T000110
= »U» Root tiling
[11000][0[100[10O0]J1]

\ -y

As a consequence, if [A| > |A’| + 4, then for either # € {obc, per},
spec(HPC [C#) = spec(HYP® TC/C\),bc).

This is the key relationship for successfully applying spectral gap techniques
(martingale method and finite size criterion) in the tiling space.
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Edge Tiling Spaces (OBC)

For open boundary conditions, every state with energy O(|\|?) belongs to an invariant
subspace generated from a root tiling consisting of the BVMD-tiles

[0] Left: Right:

and at least one edge boundary tile:

Left: 11100100 Right: 10011

The edge tiling spaces require several other new tiles and replacement rules.
Regardless, these tilings only differ from BVMD tilings at the first and/or last site of A.
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Lower Bound Strategy:

1. Lower bound on El(C/‘\’bc) : Apply martingale method from Nachtergaele-Sims-Y.
'18. Result follows from showing that for Ay = [1, L]:

61— (1= Gp1.y) 6.3 llggoe < sup fa(IAI%) =2 F(INP).
L n>.

Case 1 Case 2
11000100|01105005 110000100|0115000
11000{011000[1:00[0 11000[0/011000{100
11000100|10015000 11000[0[100[100[100

[1,L -3 [1,L —3]

> Case 1: (1 — Gp1,11)Gpa,-3Cn, (R) = {0}
> Case 2 (1 — Gy,1)) G1,.—31Cn, (R) = span{mp, (R)}.

The function

[1—an1(1+71)] r(l—ap_1)?
fa(r) =r _ _
n() QnQp 2( 1+o2r + ap—3 1+r
depends on am = ||¢pm—11?/ll¢ml?, where ¢pm is the ground state on 3m sites

associated generated by m-monomers.
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Lower Bound Strategy:

1. Lower bound on El(C/‘\’bc) : Apply martingale method from Nachtergaele-Sims-Y.
'18. Result follows from showing that for A; = [1, L]:

|G —g,0 (1 — G[I,L])G[I,L—3]||CXZ)C < sup fa(IAP) = F(IAP).

2. Lower bound on E;(CX®") : Apply finite size criterion from Knabe '89 with
isospectral relation.

1 1
gap(Hyy leper) 2 € (gap(”ﬁ?f/ﬂ leper) = Z) =¢ (El(cﬁtff/sl) - z)
3. Lower bound on Eg((CL")1) : Electrostatic estimates via Cauchy-Schwarz. Does

not use OBC Hamiltonian! Setting ex(p) = Zi:a Ik k+2, we produce a bound
of the form

b
WIHRY) = > el@P+ Yo D oslwlad)? > >0 [P

lnygcrer ve{0,1}) k=a |y gcrer

where vP€" is independent of ¢ = Zlu)gc}fer Y(p)|p) € (c/p\mr)l‘
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Conclusion:

Last remarks:

1. Improved spectral gap bounds from Nachtergaele-Warzel-Y. '20 for the truncated
v = 1/3 Haldane pseudopotential to avoid edge excitations.

2. Same approach works to prove bulk gap of truncated v = 1/2 pseudopotential
(bosonic model).

3. Incompressibility is a consequence of the uniform spectral gap and maximal
v = 1/3 filling of the ground state.

4. Nachtergaele-Warzel-Y. '20 Modified tilings used to identify invariant subspaces
we conjecture to contain first and second excited energy states for |A| << 1.

Thank you for your attention!
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Incompressibility

Recall that the truncated FQHE model is particle preserving and set
ER(N) = minspec(HY™" [3,(v)),  HA(N) = { : Natp = Nip}

The maximal ground state filling satisfies N** < |A|/3. Thus, given uniform spectral

gap 7,

=0, N<NP>
>, N> NP

EX(W) {

Thus, at zero temperature and critical filling, i.e. N = NR“‘X, the compressibility
ka(N) vanishes as |A] — oo:
0 0 0
EA+(N) +E; (N) — 2EA(N) - NN

mA(N) = A (2r2)? = (@ri2y?

where At is the volume obtained by increasing/decreasing A by a single site.
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Tiling Spaces and Excited States

Invariant subspaces with bulk excitations can also be identified by adding new tiles
and replacement rules. Conjecture: For |A| small, low-lying excitations belong to tiling
spaces with ‘quasi-hole/quasi-particle’ roots:

Ist Excited Root: [1 0 0]1 0 0]0[1 0 01 0]1 0 0]

2nd Excited Root:[1 0 01 0 0Jo[1 o1 0 o]t 0 0]

Energy Bounds: Nachteragele-Warzel-Y. '21 The minimal energy in these subspaces is
approximated via:

» Upper bound: variational state calculation.
> Lower bound: applying finite volume Hamiltonian associated to region effected by
quasi-hole/quasi-particle.

2K
Eipprox = 1= ——= [\ + O(I\")

(2) K 2 4
Eapprox =1 — ——| A+ O(|A
o AP+ o(AY

Figure: Plot of (X, spec Hfj%),) for 1 = 2.648 with EQ) on-



Tiling Spaces and Excited States

Invariant subspaces with bulk excitations can also be identified by adding new tiles
and replacement rules. Conjecture: For |A| small, low-lying excitations belong to tiling
spaces with ‘quasi-hole/quasi-particle’ roots:

1st Excited Root: [1 0 01 0 0]J0[1 0 o1 0o]1 0 0]

2nd Excited Root: [1 0 0]1 0 0Jo[1 o1 0 0]1 0 0]

2k
Efporox = 1= ——= AP + O(1A1")

2 K
Efforox = 1= ——|AP + O(A1")

Many-body Scars: Exact mid and high energy states with low Schmidt rank created
using voids as domain walls. E.g.:

¢ =[ »r JoJ1 0o]1 0 0Jo[ ¢r

Figure: Exact energy state with E = 1.
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Bounding Eo((CX*)*)

Partition non-BVMD tiling configurations Sy = { : |u) ¢ CR"} as
_ s r _ A
SN =SpUSp, Sg= {}LENO .e/\(,u)>0}

where we introduce the electrostatic energy ex(p) = Zfza Lk fok42-

Goal: For any v = 3= s ¥(p)|p) € (CX°")*, bound

WIHRYY) = > ea()lv(W)P+ > an Wla)> =P > ()P

HESE ve{0,1}A k=a HESA

Strategy: Clearly, (Y|HN""9) > 30, c s, [¥(n)]? since en(u) > 1.

Choose individual (v, k,.) for each p € Sp and apply CS to show that a similar lower
bound holds for sum over x € Sp. Combining the two estimates produces the desired
result.
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Bounding Eo((CX*)*)

Example: p = (11001000...0) € Sp (edge state configuration).

e

——O0—O0——0—0—0—0 O—O0——O0——(O0——0——0—e

a a+4 b a

at4

For PBC: Choosing k, = a with v, = (000010...0) produces:

(ulaw, )2 = [(r) = Mp(m)? > (1 = 8y (w)|

1-46
2 ARl

2
for any 0 < § < 1 where n = (001010...01). Picking § = % yields,
2 2 K 2
ex(my (I + kl{vulaw, ¥)|1° > WW(NN

Partitioning Sp appropriately and similarly estimating shows:

2 HPer > mi _ k& K
(WIHR ¢>—m'n{2+zn|,\\2’n+1

from which the result follows.

D WP

HESD

b
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Gap Methods for Quantum Spin Models AL

As AL

> For dim(#Ha) < oo and frustration-free model: Gpr = ker(Hy ® a\pr) YA CA.
> Requires a covering of A by a sequence of smaller intervals with OBC.

n—k+1
y=infgap(Hy),  T=suplApll,  Aax= |J A
! i=k

e Martingale Method: If € :=sup,, ||Gp,,, (1 — Gp,,; 1) GA, 41l < 1/V/%, then
gap(Hp) > %(1 — V).
e Finite Size Criterion: For any n such that |A, x| < |A] for all k:

HPery > yn
gap(Hy™') > T

(n—1)

r
inf gap(Hp ) — —
inf gap(Hp, , ) -
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Bounding E1(C{>°)

A3 A

Ny

A

T00011000[0011000@00[T00[0[0] A
A3z

A4

We apply the martingale method to the Hilbert space CR° and Hamiltonians
H/E\;/VMD = (H/\/ %4 ]l/\\/\/) [C/(\’bc VA CA

where the overlap intervals are chosen so that £ =3 and |A,| =9 for all n.

Calculations using isospectrality and orthogonality of the BVMD states/spaces gives
BVMD

= H, = H obc ) =
v =gap(Hj; ") = gap(H1 g fc[ﬁg]) K

€ = sup [ GRY P (1 GEY)GRYYP | < /F(APR)

where GRVMP = ker(HEVMP) C CP°. This produces the final estimate:

E(CR™) > 3 (1 - \/3f(w2))2.



Bounding E1(CR%")

We apply Knabe's finite size criteria to the Hilbert space CY*" and Hamiltonians

H/p\)er {C/]\)er and H/\n,k TC}\)er

where A, o = U;’L}’k A; chosen so |A;| =5,6. Another isospectral argument shows
IH; Teper || = £(1+2A%) and  gap(Ha, , [cper) = EL(CRYS)

This yields:

per n obey  R(L+21A)
B2 6 gy (B - 00



