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Ann. Henri Poincaré 24, 133–178 (2023)

MCQST



2

Outline

1. Haldane Pseudopotentials

I Background
I Main properties and conjectures
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Background: Haldane Pseudopotentials

Haldane pseudopotentials were originally introduced as Hamiltonian models for the
fractional quantum Hall effect for ν = 1/(p + 2) with p ≥ 0 odd.

I Laughlin ’83: Ansatz for many-body ground state wave function Ψp .

I Haldane ’83: Pseudopotential W p ≥ 0 obtained via projection onto lowest
Landau level of repulsive, short-range, radially symmetric pair potential:

W p =
∑
i<j

PLLLvp(zi − zj )PLLL, vp ∝ ∆pδ, z = x + iy

Tailored so Ψp ∈ ker W p .

I Haldane-Rezayi ’85, Trugman-Kivelson ’85, Lee-Papic-Thomale ’17, ...: More
generalized study of various pseudopotentials on different 2D geometries.

I Regnault-Jolicoeur ’04, Cooper ’08,...: Also model rapidly rotating Bose gases (p
even).

I Lewin-Seiringer ’09, Seiringer-Yngvason ’20: Haldane pseudopotentials realized as
scaling limit.

I Johri-Papic-Schmitteckert-Bhatt-Haldane ’12: Properties of pseudopotentials
robust under change of geometry.
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Properties and Conjectures:

Λ = physical space, N = number of particles, ν ≈
N

|Λ|
filling factor

1. Ground States: Zero energy states ψ ∈ GΛ = ker W p
Λ ⊂ ⊕NHN

Λ satisfy ν ≤ ν(p) :=
1

p + 2
.

I E.g. Ψp has maximal filling ν(p).

2. Spectral Rigidity: For states with higher fillings ν > ν(p):

E0(HN
Λ ) = inf

0 6=ψ∈HN
Λ

〈ψ|W p
Λψ〉

‖ψ‖2
∝ |Λ| × increasing function of ν

I Determines Yrast line for Bose gases: Viefers-Hansson-Reimann ’00, Regnault-Jolicoeur
’04, Lewin-Seiringer ’09,...

3. Spectral Gap Conjecture: Haldane ’83, Haldane-Rezayi ’85, Rougerie ’19,...

γ := inf
Λ

gap(W p
Λ ) > 0 where gap(W p

Λ ) = inf
06=ψ∈⊕NH

N
Λ

ψ⊥GΛ

〈ψ|W p
Λψ〉

‖ψ‖2

I The gap also implies the incompressibility of the FQH fluid as E0(HN
Λ ) = 0 for

ν ≤ ν(p) and E0(HN
Λ ) > γ for ν > ν(p) (see, e.g. Rougerie ’19).

4 Anyonic Excitations with Fractional Charge and their topological stability:

Hastings-Michalakis ’15, Haah ’16, Cha-Naaijkens-Nachtergaele ’20,...
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The Haldane Pseudopotential

R

B
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y

magnetic length: `

ratio: α = `/R|ψk (x, y)|2
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1 2 Lα`

Figure: The Landau orbitals. A magnetic flux 2πβ along the cylinder axis shifts the orbitals by βα` (not shown).

In second quantization the ν = 1/3 Haldane pseudopotential acts on the fermionic Fock space

F =
⊕

N≥0 S−(H⊗N
LLL ) generated by the lowest Landau level. In the cylinder geometry:

HLLL = span

{
ψk ∝ exp

(
ik
αy

`

)
exp

(
−

1

2

[
x

`
− kα

]2)
: k ∈ Z

}
.

For ν = 1/3 (i.e. p = 1): W (1) =
∑

s∈Z/2

B∗s Bs , Bs =
∑

k∈s+Z
ke−(αk)2

cs−kcs+k .

We consider the model given from truncating Bs to |k| ≤ 3/2 Jansen ’11, Nakamura-Wang-

Bergholtz ’12. Depending on s, this produces electrostatic and dipole hopping terms:

s ∈ Z : B̃s = 2e−α
2
cs−1cs+1, s ∈ Z +

1

2
: B̃s = e−

α2

4

(
c
s− 1

2
c
s+ 1

2
+ 3e−2α2

c
s− 3

2
c
s+ 3

2

)
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The Finite-Volume Truncated 1/3-Model

R

ψa

a a + 1 b

=⇒
a bk k + 1

q∗k qk

Truncated Hamiltonian (with OBC): Fix λ ∈ C and κ > 0. For any Λ = [a, b] ⊆ Z

HΛ =

b−2∑
k=a

nknk+2 + κ

b−2∑
k=a+1

q∗k qk

nk = c∗k ck , qk = ckck+1 − λck−1ck+2

HΛ = span {|µa, . . . , µb〉 : µk ∈ {0, 1}} , µk = occupation ofψk

Symmetries:

Particle number: NΛ =
∑b

k=a nk , Center of mass: MΛ =
∑b

k=a knk

Physical regime: κ = e3α2/2/4 and λ = −3e−2α2
where α = `

R
.

Tao-Thouless limit: λ→ 0 and κ = O(1) as R → 0.

Uniform ground state gap: The model is uniformly gapped if there is L > 0 so that

γ := inf
Λ=[a,b],
|Λ|≥L

gap(HΛ) > 0, gap(HΛ) = E1(HΛ)− E0(HΛ) = E1(HΛ) > 0
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Uniform Spectral Gap

γ(κ, λ) := inf
|Λ|≥L

gap(HΛ).

Nachtergaele-Warzel-Y. ’21 (OBC Gap) There is a constant C(λ, κ) = O(1) so that
for all 0 < |λ| < 5.3 and L ≥ 11

gap(H[1,L]) ≥ C(λ, κ) min
k=7,8,9

gap(H[1,k]) ∝ |λ|2

For λ = 0: gap(HΛ) = min{1, κ}.

Example Edge Mode for 0 < |λ| << 1: Lowest eigenvalue of HΛ in invariant subspace
span{|1100100 . . . 0〉, |1011000 . . . 0〉} is κ

κ+1
|λ|2 +O(|λ|4).

Figure: Plot (λ, E(λ)) of specH[1,9](λ) and specHper
[1,9]

(λ) for κ = (33/4/4)λ−3/4.
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Uniform Spectral Gap

γ(κ, λ) := inf
|Λ|≥L

gap(HΛ).

Nachtergaele-Warzel-Y. ’21 (Bulk Gap) There is a constant C(λ, κ) = O(1) so that
for all 0 < |λ| < 5.3 and L ≥ 11

gap(Hper
[1,L]

) ≥ C(λ, κ)

(
min

k=7,8,9
gap(H[1,k])−

1

L

)
∝ |λ|2

Moreover, for λ = 0: gap(HΛ) = min{1, κ}.

Edge Modes for 0 < |λ| << 1: Lowest eigenvalue of HΛ is κ
κ+1
|λ|2 +O(|λ|4) in

invariant subspace span{|110010 . . . 0〉, |101100 . . . 0〉}.

Figure: Plot (λ, E(λ)) of specH[1,9](λ) and specHper
[1,9]

(λ) for κ = (33/4/4)λ−3/4.
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Edge States vs. Uniform Bulk Gaps Estimates

It is an interesting question in its own right to consider a bulk spectral gap in the
presence of edges states, e.g. for studying topological insulators Loring ’19, Hege-
Moscolari-Teufel ’22.

The main difficulty in producing uniform estimates on the bulk gap comes from the
general approach based on localizing excitations:



10

Main Result: Bulk Spectral Gap

Figure: Plot of (λ, f (|λ|2)).

Bulk Gap Result: Warzel-Y. ’22 For all λ 6= 0 with f (|λ|2) < 1/3 (i.e. |λ| < 5.3...)

lim inf
|Λ|→∞

gap(Hper
Λ ) ≥ min

{
γper,

κ

6(1 + 2|λ|2)

(
1−

√
3f (|λ|2)

)2
}

γper =
1

3
min

{
1,

κ

κ+ 1
,

κ

2 + 2κ|λ|2

}
Remarks:
I Bulk gap stays open despite edge states for OBC.
I Analogous result for the ν = 1/2 (bosonic) truncated model Warzel-Y. ’22.
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Block-Diagonalization Strategy

For both # ∈ {obc, per} decompose HΛ = C#
Λ ⊕ (C#

Λ )⊥ so that:

I Invariant under H#
Λ : H#

Λ C
#
Λ ⊆ C

#
Λ

I Contains ground state space: G#
Λ := ker(H#

Λ ) ⊆ C#
Λ

I Separates edge states: Edge states satisfy Eobc
Λ′ ⊆ (CobcΛ )⊥ ⊆ (CperΛ )⊥ for all

Λ′ ⊆ Λ.

As a consequence:

gap(H#
Λ ) = min

{
E1(C#

Λ ), E0

(
(C#

Λ )⊥
)}

where

E1(C#
Λ ) := inf

ψ∈C#
Λ
∩(G#

Λ
)⊥

〈ψ|H#
Λ ψ〉

‖ψ‖2
, E0

(
(C#

Λ )⊥
)

:= inf
ϕ∈(C#

Λ
)⊥

〈ϕ|H#
Λ ϕ〉

‖ϕ‖2
.



12

Constructing Invariant Subspaces with Ground States

Since the interaction terms are all nonnegative:

ker(HΛ) =

b−2⋂
k=a

ker(nknk+2) ∩
b−2⋂

k=a+1

ker(qk ).

Observations:

• |µ〉 is a ground state of the electrostatic terms iff µkµk+2 = 0 for all k.

• qk = ckck+1 − λck−1ck+2 acts nontrivially on the sites [k − 1, k + 2]:

qk (|1001〉+ λ|0110〉) = 0

Moreover, span{|1001〉, |0110〉} is invariant under the hopping term q∗k qk .

Starting from |100100...〉, can construct a set of occupation states that span an
invariant subspace of HΛ by replacing ‘1001’ with ’0110’:

ψΛ(R) =
∑
T↔R

λd(T )|T 〉

Jansen-Lieb-Seiler ’08, Jansen ’11,
Nakamura-Wang-Bergholtz ’12
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BVMD Tiling Spaces (OBC)

More generally, an invariant subspace of HΛ is generated by any root tiling R of Λ
consisting of void, monomer, and boundary tiles:

Example:

The Boundary-Void-Monomer-Dimer (BVMD) space generated by a root tiling R is

CΛ(R) = span{|T 〉 : T ↔ R}.

Lemma: Nachtergaele-Warzel-Y. ’21 GobcΛ ⊆ CobcΛ :=
⊕

R CΛ(R). BVMD spaces
generated by different roots are orthogonal, and each contains a unique ground state:

ψΛ(R) =
∑
T↔R

λd(T )|T 〉.
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VMD Tiling Spaces (PBC)

Analogous construction in the case of periodic boundary conditions:

GperΛ ⊆ CperΛ :=
⊕
R

CperΛ (R), ψper
Λ =

∑
T↔R

λd(T )|T 〉,

where root tilings of the ring only use monomers and voids. Note: CperΛ ⊆ CobcΛ

Properties: 1. dimGperΛ ∝
(

1+
√

5
2

)|Λ|
2. Maximum filling: NΛ(R)/|Λ| ≤ 1/3
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Isospectral relationship

If Λ′ ⊂ Λ, then TΛ �Λ′= TΛ′ :

As a consequence, if |Λ| ≥ |Λ′|+ 4, then for either # ∈ {obc, per},

spec(Hobc
Λ′ �C#

Λ

) = spec(Hobc
Λ′ �Cobc

Λ′
).

This is the key relationship for successfully applying spectral gap techniques
(martingale method and finite size criterion) in the tiling space.
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Edge Tiling Spaces (OBC)

For open boundary conditions, every state with energy O(|λ|2) belongs to an invariant
subspace generated from a root tiling consisting of the BVMD-tiles

and at least one edge boundary tile:

The edge tiling spaces require several other new tiles and replacement rules.
Regardless, these tilings only differ from BVMD tilings at the first and/or last site of Λ.
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Lower Bound Strategy:

1. Lower bound on E1(CobcΛ ) : Apply martingale method from Nachtergaele-Sims-Y.
’18. Result follows from showing that for ΛL = [1, L]:

‖G[L−8,L](1l− G[1,L])G[1,L−3]‖Cobc
ΛL

≤ sup
n≥4

fn(|λ|2) =: f (|λ|2).

I Case 1: (1l− G[1,L])G[1,L−3]CΛL
(R) = {0}

I Case 2 (1l− G[1,L])G[1,L−3]CΛL
(R) = span{ηΛL

(R)}.

The function

fn(r) = rαnαn−2

(
[1− αn−1(1 + r)]

1 + 2r
+ αn−3

r(1− αn−1)2

1 + r

)
depends on αm = ‖ϕm−1‖2/‖ϕm‖2, where ϕm is the ground state on 3m sites
associated generated by m-monomers.
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Lower Bound Strategy:

1. Lower bound on E1(CobcΛ ) : Apply martingale method from Nachtergaele-Sims-Y.
’18. Result follows from showing that for ΛL = [1, L]:

‖G[L−8,L](1l− G[1,L])G[1,L−3]‖Cobc
ΛL

≤ sup
n≥4

fn(|λ|2) =: f (|λ|2).

2. Lower bound on E1(CperΛ ) : Apply finite size criterion from Knabe ’89 with
isospectral relation.

gap(Hper
[1,L]
�Cper

Λ
) ≥ C

(
gap(Hobc

[1,L/3] �Cper
Λ

)−
1

L

)
= C

(
E1(Cobc[1,L/3])−

1

L

)
3. Lower bound on E0((CperΛ )⊥) : Electrostatic estimates via Cauchy-Schwarz. Does

not use OBC Hamiltonian! Setting eΛ(µ) =
∑b

k=a µkµk+2, we produce a bound
of the form

〈ψ|Hper
Λ ψ〉 =

∑
|µ〉/∈Cper

Λ

eΛ(µ)|ψ(µ)|2+
∑

ν∈{0,1}Λ

b∑
k=a

κ|〈ν|qkψ〉|2 ≥ γper
∑

|µ〉/∈Cper
Λ

|ψ(µ)|2.

where γper is independent of ψ =
∑
|µ〉/∈Cper

Λ
ψ(µ)|µ〉 ∈ (CperΛ )⊥.
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Conclusion:

Last remarks:

1. Improved spectral gap bounds from Nachtergaele-Warzel-Y. ’20 for the truncated
ν = 1/3 Haldane pseudopotential to avoid edge excitations.

2. Same approach works to prove bulk gap of truncated ν = 1/2 pseudopotential
(bosonic model).

3. Incompressibility is a consequence of the uniform spectral gap and maximal
ν = 1/3 filling of the ground state.

4. Nachtergaele-Warzel-Y. ’20 Modified tilings used to identify invariant subspaces
we conjecture to contain first and second excited energy states for |λ| << 1.

Thank you for your attention!
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Incompressibility

Recall that the truncated FQHE model is particle preserving and set

E0
Λ(N) = min spec(Hper

Λ �HΛ(N)), HΛ(N) = {ψ : NΛψ = Nψ}

The maximal ground state filling satisfies Nmax
Λ ≤ |Λ|/3. Thus, given uniform spectral

gap γ,

E0
Λ(N)

{
= 0, N ≤ Nmax

Λ

> γ, N > Nmax
Λ

Thus, at zero temperature and critical filling, i.e. N = Nmax
Λ , the compressibility

κΛ(N) vanishes as |Λ| → ∞:

κΛ(N)−1 := |Λ| ·
E0

Λ+
(N) + E0

Λ−
(N)− 2E0

Λ(N)

(2π`2)2
≥

γ|Λ|
(2π`2)2

where Λ± is the volume obtained by increasing/decreasing Λ by a single site.
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Tiling Spaces and Excited States

Invariant subspaces with bulk excitations can also be identified by adding new tiles
and replacement rules. Conjecture: For |λ| small, low-lying excitations belong to tiling
spaces with ‘quasi-hole/quasi-particle’ roots:

Energy Bounds: Nachteragele-Warzel-Y. ’21 The minimal energy in these subspaces is
approximated via:

I Upper bound: variational state calculation.
I Lower bound: applying finite volume Hamiltonian associated to region effected by

quasi-hole/quasi-particle.

E
(1)
approx = 1−

2κ

κ− 1
|λ|2 +O(|λ|4)

E
(2)
approx = 1−

κ

κ− 1
|λ|2 +O(|λ|4)

Figure: Plot of (λ, specHper
[1,12]

) for κ = 2.648 with E (1)
approx.
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Tiling Spaces and Excited States

Invariant subspaces with bulk excitations can also be identified by adding new tiles
and replacement rules. Conjecture: For |λ| small, low-lying excitations belong to tiling
spaces with ‘quasi-hole/quasi-particle’ roots:

E
(1)
approx = 1−

2κ

κ− 1
|λ|2 +O(|λ|4)

E
(2)
approx = 1−

κ

κ− 1
|λ|2 +O(|λ|4)

Many-body Scars: Exact mid and high energy states with low Schmidt rank created
using voids as domain walls. E.g.:

Figure: Exact energy state with E = 1.
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Bounding E0

(
(Cper

Λ )⊥
)

Partition non-BVMD tiling configurations SΛ = {µ : |µ〉 /∈ CperΛ } as

SΛ = SE ∪̇ SD , SE =
{
µ ∈ NΛ

0 : eΛ(µ) > 0
}

where we introduce the electrostatic energy eΛ(µ) =
∑b

k=a µkµk+2.

Goal: For any ψ =
∑
µ∈SΛ

ψ(µ)|µ〉 ∈ (CperΛ )⊥, bound

〈ψ|Hper
Λ ψ〉 =

∑
µ∈SE

eΛ(µ)|ψ(µ)|2 +
∑

ν∈{0,1}Λ

b∑
k=a

κ|〈ν|qkψ〉|2 ≥ γper
∑
µ∈SΛ

|ψ(µ)|2.

Strategy: Clearly, 〈ψ|Hper
Λ ψ〉 ≥

∑
µ∈SE |ψ(µ)|2 since eΛ(µ) ≥ 1.

Choose individual (νµ, kµ) for each µ ∈ SD and apply CS to show that a similar lower
bound holds for sum over µ ∈ SD . Combining the two estimates produces the desired
result.
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Bounding E0

(
(Cper

Λ )⊥
)

Example: µ = (11001000 . . . 0) ∈ SD (edge state configuration).

a ba + 4 a ba + 4

For PBC: Choosing kµ = a with νµ = (000010 . . . 0) produces:

|〈νµ|qkµψ〉|
2 = |ψ(µ)− λψ(η)|2 ≥ (1− δ)|ψ(µ)|2 −

1− δ
δ
|λ|2|ψ(η)|2

for any 0 < δ < 1 where η = (001010 . . . 01). Picking δ = κ|λ|2
1+κ|λ|2 yields,

eΛ(η)|ψ(η)|2 + κ|〈νµ|qkµψ〉|
2 ≥

κ

1 + κ|λ|2
|ψ(µ)|2

Partitioning SD appropriately and similarly estimating shows:

2〈ψ|Hper
Λ ψ〉 ≥ min

{
κ

2 + 2κ|λ|2
,

κ

κ+ 1

} ∑
µ∈SD

|ψ(µ)|2

from which the result follows.
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Gap Methods for Quantum Spin Models

I For dim(HΛ) <∞ and frustration-free model: GΛ′ ≡ ker(HΛ′ ⊗ 1lΛ\Λ′ ) ∀Λ′ ⊆ Λ.

I Requires a covering of Λ by a sequence of smaller intervals with OBC.

γ = inf
i
gap(HΛi

), Γ = sup
i
‖HΛi
‖, Λn,k =

n−k+1⋃
i=k

Λi

• Martingale Method: If ε := supn ‖GΛn+1
(1l− GΛn+1,1

)GΛn,1
‖ < 1/

√
`, then

gap(HΛ) ≥
γ

`
(1− ε

√
`)2.

• Finite Size Criterion: For any n such that |Λn,k | < |Λ| for all k:

gap(Hper
Λ ) ≥

γn

`Γ(n − 1)

[
inf
k

gap(HΛn,k
)−

Γ

n

]
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Bounding E1(Cobc
Λ )

We apply the martingale method to the Hilbert space C∞Λ and Hamiltonians

HBVMD
Λ′ := (HΛ′ ⊗ 1lΛ\Λ′ ) �Cobc

Λ
∀Λ′ ⊆ Λ

where the overlap intervals are chosen so that ` = 3 and |Λn| = 9 for all n.

Calculations using isospectrality and orthogonality of the BVMD states/spaces gives

γ = gap(HBVMD
[1,9] ) = gap(H[1,9] �Cobc

[1,9]
) = κ

ε = sup
n
‖GBVMD

Λn
(1l− GBVMD

Λn,1
)GBVMD

Λn−1,1
‖ ≤

√
f (|λ|2)

where GBVMD
Λ′ = ker(HBVMD

Λ′ ) ⊆ CobcΛ . This produces the final estimate:

E1(CobcΛ ) ≥
κ

3

(
1−

√
3f (|λ|2)

)2

.
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Bounding E1(Cper
Λ )

We apply Knabe’s finite size criteria to the Hilbert space CperΛ and Hamiltonians

Hper
Λ �Cper

Λ
and HΛn,k

�Cper
Λ

where Λn,k =
⋃n+1−k

i=k Λi chosen so |Λi | = 5, 6. Another isospectral argument shows

‖HΛi
�Cper

Λ
‖ = κ(1 + 2|λ|2) and gap(HΛn,k

�Cper
Λ

) = E1(CobcΛn,k
)

This yields:

E1(CperΛ ) ≥
n

2(n − 1)(1 + 2|λ|2)

(
E1(CobcΛn,k

)−
κ(1 + 2|λ|2)

n

)


