Adiabatic Deformations of Quantum Hall Droplets

Blagoje Oblak (École Polytechnique)

arXiv:2212.12935 arXiv:2301.01726

with B. Estienne with B. Lapierre, P. Moosavi, J.M. Stéphan, B. Estienne

Adiabatic Deformations of Quantum Hall Droplets

Blagoje Oblak (École Polytechnique)

arXiv:2212.12935 arXiv:2301.01726

with B. Estienne with B. Lapierre, P. Moosavi, J.M. Stéphan, B. Estienne

See also talks by **Per Moosavi** and **Andrea Cappelli**

Intro

Diffeomorphisms (smooth deformations) ubiquitous in phys

Diffeomorphisms (smooth deformations) ubiquitous in phys:

► General relativity

(built-in gauge symmetry)

Diffeomorphisms (smooth deformations) ubiquitous in phys:

- ► General relativity
- ► Hydrodynamics

(built-in gauge symmetry)
(fluid flows)

Diffeomorphisms (smooth deformations) ubiquitous in phys:

- ► General relativity (built-in gauge symmetry)
- ► Hydrodynamics (fluid flows)
- ► Topological phases of matter (emergent gauge symmetry)

Diffeomorphisms (smooth deformations) ubiquitous in phys:

- ► General relativity (built-in gauge symmetry)
- ► Hydrodynamics (fluid flows)
- ► Topological phases of matter (emergent gauge symmetry)

Find **observables** associated with diffeos?

Diffeomorphisms (smooth deformations) ubiquitous in phys:

- ► General relativity (built-in gauge symmetry)
- ► Hydrodynamics (fluid flows)
- ► Topological phases of matter (emergent gauge symmetry)

Find observables associated with diffeos...

...to prove **emergent diffeo invariance** in cond-mat?

Diffeomorphisms (smooth deformations) ubiquitous in phys:

- ► General relativity (built-in gauge symmetry)
- ► Hydrodynamics (fluid flows)
- ► Topological phases of matter (emergent gauge symmetry)

Find observables associated with diffeos...

...to prove emergent diffeo invariance in cond-mat?

► We'll focus on quantum Hall droplets

quantum Hall droplets

quantum Hall droplets

quantum Hall droplets

Diffeos are crucial for **quantum Hall droplets**:

Diffeos are crucial for quantum Hall droplets:

► Incompressible quantum fluids

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

This talk: Berry phases from adiabatic droplet deformations

► Generalize Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

This talk: Berry phases from adiabatic droplet deformations

► Generalize Hall viscosity

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- ► Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

- ► Generalize Hall viscosity
- ► Probe edge modes

Diffeos are crucial for quantum Hall droplets:

- ► Incompressible quantum fluids
- Symmetry under area-preserving diffeos
- ► Linear response gives Hall viscosity

- ► Generalize Hall viscosity
- ► Probe edge modes
- ► Gauge symm in **bulk** but global symm on **edge**?

PLAN

- 1. Berry phases and 1D diffeos
- 2. 2D deformations of metric and potential

[BO, Estienne]

3. 2D deformations of potential alone

[BO, Lapierre, Moosavi, Stéphan, Estienne]

PLAN

- 1. Berry phases and 1D diffeos
- 2. 2D deformations of metric and potential

[BO, Estienne]

3. 2D deformations of potential alone

[BO, Lapierre, Moosavi, Stéphan, Estienne]

PLAN

- 1. Berry phases and 1D diffeos
- 2. 2D deformations of metric and potential

[BO, Estienne]

3. 2D deformations of potential alone

[BO, Lapierre, Moosavi, Stéphan, Estienne]

1. Berry phases from 1D diffeos

A. Reminder on Berry phases

Conclusion

1. Berry phases from 1D diffeos

- A. Reminder on Berry phases
- B. Adiabatic diffeos in 1D

- A. Reminder on Berry phases
- B. Adiabatic diffeos in 1D
- C. Berry phases measure central charges

Reminder on Berry ϕ :

▶ Quantum system depending on parameters *g*

- ▶ Quantum system depending on parameters *g*
- lacktriangle Parameter-dep. energy eigenstates $|\psi(g)\rangle$

- ► Quantum system depending on parameters *g*
- ▶ Parameter-dep. energy eigenstates $|\psi(g)\rangle$
- Vary parameters adiabatically and cyclically

- ▶ Quantum system depending on parameters *g*
- ▶ Parameter-dep. energy eigenstates $|\psi(g)\rangle$
- ▶ Vary parameters adiabatically and cyclically $\Rightarrow g_t$

- ▶ Quantum system depending on parameters *g*
- ightharpoonup Parameter-dep. energy eigenstates $|\psi(g)\rangle$
- ▶ Vary parameters adiabatically and cyclically $\Rightarrow g_t$
- ► Wave function picks phase $\oint dt E i \oint dt \langle \psi(g_t) | \frac{\partial}{\partial t} | \psi(g_t) \rangle$

2D deformed potentials

Berry ϕ in General

Reminder on Berry ϕ :

- ▶ Quantum system depending on parameters *g*
- ▶ Parameter-dep. energy eigenstates $|\psi(g)\rangle$
- ▶ Vary parameters adiabatically and cyclically $\Rightarrow g_t$
- ► Wave function picks phase $\oint_{\text{Dynamical }\phi} dt \, E i \oint_{\text{Dynamical }\phi} dt \, \langle \psi(g_t) | \frac{\partial}{\partial t} | \psi(g_t) \rangle$

Berry ϕ in General

Reminder on Berry ϕ :

- ▶ Quantum system depending on parameters *g*
- ▶ Parameter-dep. energy eigenstates $|\psi(g)\rangle$
- ▶ Vary parameters adiabatically and cyclically $\Rightarrow g_t$
- ► Wave function picks

phase
$$\underbrace{\oint dt E}_{\text{Dynamical } \phi}^{1} - \underbrace{i \oint dt \langle \psi(g_{t}) | \frac{\partial}{\partial t} | \psi(g_{t}) \rangle}_{\text{Berry } \phi}$$

Reminder on Berry ϕ :

- ▶ Quantum system depending on parameters *g*
- ightharpoonup Parameter-dep. energy eigenstates $|\psi(g)\rangle$
- ▶ Vary parameters adiabatically and cyclically $\Rightarrow g_t$
- ▶ Wave function picks

phase
$$\underbrace{\oint dt E}_{\text{Dynamical } \phi} - \underbrace{i \oint dt \left\langle \psi(g_t) \middle| \frac{\partial}{\partial t} \middle| \psi(g_t) \right\rangle}_{\text{Berry } \phi}$$

What Berry phase is produced by sample diffeos?

Particle on circle \Rightarrow position $\varphi \sim \varphi + 2\pi$

▶ Wave function $\psi(\varphi)$ on S^1

- ▶ Wave function $\psi(\varphi)$ on S^1
- ▶ Let $\varphi \mapsto g(\varphi)$ be a **diffeo**

- ▶ Wave function $\psi(\varphi)$ on S^1
- ▶ Let $\varphi \mapsto g(\varphi)$ be a **diffeo**

Particle on circle \Rightarrow position $\varphi \sim \varphi + 2\pi$

- ▶ Wave function $\psi(\varphi)$ on S^1
- ▶ Let $\varphi \mapsto g(\varphi)$ be a **diffeo**

Conclusion

- ▶ Wave function $\psi(\varphi)$ on S^1
- ▶ Let $\varphi \mapsto g(\varphi)$ be a **diffeo**

- ▶ Wave function $\psi(\varphi)$ on S^1
- ▶ Let $\varphi \mapsto g(\varphi)$ be a **diffeo**

- ▶ Wave function $\psi(\varphi)$ on S^1
- ▶ Let $\varphi \mapsto g(\varphi)$ be a **diffeo**

- ▶ Wave function $\psi(\varphi)$ on S^1
- ▶ Let $\varphi \mapsto g(\varphi)$ be a **diffeo**

- ▶ Wave function $\psi(\varphi)$ on S^1
- ▶ Let $\varphi \mapsto g(\varphi)$ be a **diffeo**

- ▶ Wave function $\psi(\varphi)$ on S^1
- ▶ Let $\varphi \mapsto g(\varphi)$ be a **diffeo**
- ▶ Unitary Diff S^1 action : $(\mathcal{U}[g]\psi)(\varphi)$

- ▶ Wave function $\psi(\varphi)$ on S^1
- ▶ Let $\varphi \mapsto g(\varphi)$ be a **diffeo**
- ▶ Unitary Diff S^1 action : $(\mathcal{U}[g]\psi)(\varphi) = \sqrt{(g^{-1})'(\varphi)} \psi(g^{-1}(\varphi))$

- ▶ Wave function $\psi(\varphi)$ on S^1
- ▶ Let $\varphi \mapsto g(\varphi)$ be a **diffeo**
- ▶ Unitary Diff S^1 action : $(\mathcal{U}[g]\psi)(\varphi) = \sqrt{\bar{g}'(\varphi)} \quad \psi(\bar{g}(\varphi))$

Particle on circle \Rightarrow position $\varphi \sim \varphi + 2\pi$

- ▶ Wave function $\psi(\varphi)$ on S^1
- ▶ Let $\varphi \mapsto g(\varphi)$ be a **diffeo**
- ▶ Unitary Diff S^1 action : $(\mathcal{U}[g]\psi)(\varphi) = \sqrt{\bar{g}'(\varphi)} \quad \psi(\bar{g}(\varphi))$

Choose adiabatic, cyclic $g_t(\varphi)$

Conclusion

Particle on circle \Rightarrow position $\varphi \sim \varphi + 2\pi$

- ▶ Wave function $\psi(\varphi)$ on S^1
- ▶ Let $\varphi \mapsto g(\varphi)$ be a **diffeo**
- ▶ Unitary Diff S^1 action : $(\mathcal{U}[g]\psi)(\varphi) = \sqrt{\bar{g}'(\varphi)} \quad \psi(\bar{g}(\varphi))$

Choose adiabatic, cyclic $g_t(\varphi)$

► Assume $\psi(\varphi) \propto e^{ij\varphi}$

Particle on circle \Rightarrow position $\varphi \sim \varphi + 2\pi$

- ▶ Wave function $\psi(\varphi)$ on S^1
- \blacktriangleright Let $\varphi \mapsto g(\varphi)$ be a **diffeo**
- ▶ Unitary Diff S^1 action : $(\mathcal{U}[g]\psi)(\varphi) = \sqrt{\bar{g}'(\varphi)} \quad \psi(\bar{g}(\varphi))$

- ► Assume $\psi(\varphi) \propto e^{ij\varphi}$
- ► Berry phases ?

Particle on circle \Rightarrow position $\varphi \sim \varphi + 2\pi$

- ▶ Wave function $\psi(\varphi)$ on S^1
- ▶ Let $\varphi \mapsto g(\varphi)$ be a **diffeo**
- ▶ Unitary Diff S^1 action : $(\mathcal{U}[g]\psi)(\varphi) = \sqrt{\bar{g}'(\varphi)} \quad \psi(\bar{g}(\varphi))$

- ► Assume $\psi(\varphi) \propto e^{ij\varphi}$
- ► Berry phases ?
- ► Berry = $i \int dt \langle \psi | \mathcal{U}[g_t]^{-1} \frac{\partial}{\partial t} \mathcal{U}[g_t] | \psi \rangle$

Particle on circle \Rightarrow position $\varphi \sim \varphi + 2\pi$

- ▶ Wave function $\psi(\varphi)$ on S^1
- \blacktriangleright Let $\varphi \mapsto g(\varphi)$ be a **diffeo**
- ▶ Unitary Diff S^1 action : $(\mathcal{U}[g]\psi)(\varphi) = \sqrt{\bar{g}'(\varphi)}$ $\psi(\bar{g}(\varphi))$

- ► Assume $\psi(\varphi) \propto e^{ij\varphi}$
- ► Berry phases ?
- ► Berry = $i \int dt \langle \psi | \mathcal{U}[g_t]^{-1} \frac{\partial}{\partial t} \mathcal{U}[g_t] | \psi \rangle = j \int dt d\varphi \frac{\dot{g}}{g'}$

Particle on circle \Rightarrow position $\varphi \sim \varphi + 2\pi$

- ▶ Wave function $\psi(\varphi)$ on S^1
- ▶ Let $\varphi \mapsto g(\varphi)$ be a **diffeo**
- ▶ Unitary Diff S^1 action : $(\mathcal{U}[g]\psi)(\varphi) = \sqrt{\bar{g}'(\varphi)} \quad \psi(\bar{g}(\varphi))$

- ► Assume $\psi(\varphi) \propto e^{i\mathbf{j}\varphi}$
- ► Berry phases ?
- ► Berry = $i \int dt \langle \psi | \mathcal{U}[g_t]^{-1} \frac{\partial}{\partial t} \mathcal{U}[g_t] | \psi \rangle = \mathbf{j} \int dt d\varphi \frac{\dot{g}}{g'}$

Particle on circle \Rightarrow position $\varphi \sim \varphi + 2\pi$

- ▶ Wave function $\psi(\varphi)$ on S^1
- ▶ Let $\varphi \mapsto g(\varphi)$ be a **diffeo**
- ▶ Unitary Diff S^1 action : $(\mathcal{U}[g]\psi)(\varphi) = \sqrt{\bar{g}'(\varphi)} \quad \psi(\bar{g}(\varphi))$

- ► Assume $\psi(\varphi) \propto e^{ij\varphi}$
- ► Berry phases?
- ► Berry = $i \int dt \langle \psi | \mathcal{U}[g_t]^{-1} \frac{\partial}{\partial t} \mathcal{U}[g_t] | \psi \rangle = j \int dt d\varphi \frac{\dot{g}}{g'}$

For 1D quant mech : Berry
$$= \oint dt dx \frac{\dot{g}}{g'} j$$

For 1D quant mech : Berry =
$$\oint dt dx \frac{\dot{g}}{g'} j$$

► Adiabatic deformations of 1D **conformal field theory** ?

For 1D quant mech : Berry =
$$\oint dt dx \frac{\dot{g}}{g'} j$$

- ► Adiabatic deformations of 1D **conformal field theory**?
- ► 1D diffeos acquire central charge

For 1D quant mech : Berry =
$$\oint dt dx \frac{\dot{g}}{g'} j$$

- ► Adiabatic deformations of 1D **conformal field theory**?
- ► 1D diffeos acquire central charge
- **E**xtra term in Berry ϕ :

For 1D quant mech : Berry =
$$\oint dt dx \frac{\dot{g}}{g'} j$$

- ► Adiabatic deformations of 1D **conformal field theory**?
- ► 1D diffeos acquire central charge
- ightharpoonup Extra term in Berry ϕ :

Berry =
$$\oint dt dx \frac{\dot{g}}{g'} \left[j + c \left(\frac{g''}{g'} \right)' \right]$$
 [Alekseev-Shatashvili 1989] [BO 2017]

For 1D quant mech : Berry =
$$\oint dt dx \frac{\dot{g}}{g'} j$$

- ► Adiabatic deformations of 1D **conformal field theory**?
- ► 1D diffeos acquire central charge
- ightharpoonup Extra term in Berry ϕ :

$$\mathrm{Berry} = \oint \mathrm{d}t \, \mathrm{d}x \, \frac{\dot{g}}{g'} \left[j + c \left(\frac{g''}{g'} \right)' \right] \quad \text{[Alekseev-Shatashvili 1989]} \\ \mathrm{[BO 2017]}$$

BERRY ϕ AND CENTRAL CHARGES

For 1D quant mech: Berry = $\oint dt dx \frac{g}{g'} j$

- ► Adiabatic deformations of 1D conformal field theory?
- ► 1D diffeos acquire central charge
- \triangleright Extra term in Berry ϕ :

Berry =
$$\oint dt dx \frac{\dot{g}}{g'} \left[j + c \left(\frac{g''}{g'} \right)' \right]$$

[Alekseev-Shatashvili 1989] [BO 2017]

Ouestions:

► Analogue for **2D electron droplets**?

For 1D quant mech : Berry =
$$\oint dt dx \frac{\dot{g}}{g'} j$$

- ► Adiabatic deformations of 1D **conformal field theory**?
- ► 1D diffeos acquire central charge
- ightharpoonup Extra term in Berry ϕ :

Berry =
$$\oint dt dx \frac{\dot{g}}{g'} \left[j + \frac{c}{g'} \left(\frac{g''}{g'} \right)' \right]$$

[Alekseev-Shatashvili 1989] [BO 2017]

Ouestions:

- ► Analogue for **2D electron droplets**?
- ► Measure edge central charge?

A. Area-preserving diffeos

- A. Area-preserving diffeos
- B. Quantomorphisms

- A. Area-preserving diffeos
- B. Quantomorphisms
- C. Berry ϕ from quantomorphisms

AREA-PRESERVING DIFFEOS

Plane \mathbb{R}^2

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

ightharpoonup Magnetic field $\mathbf{B} = d\mathbf{A}$

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- ightharpoonup Magnetic field $\mathbf{B} = d\mathbf{A}$
- ▶ Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^*\mathbf{B} = \mathbf{B}$

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- ► Magnetic field $\mathbf{B} = d\mathbf{A}$
- ▶ Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ **preserves area** if $g^*\mathbf{B} = \mathbf{B}$

Example:

$$(r^2, \varphi)$$

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- ightharpoonup Magnetic field $\mathbf{B} = d\mathbf{A}$
- ▶ Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ **preserves area** if $g^*\mathbf{B} = \mathbf{B}$

Example:

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- ightharpoonup Magnetic field $\mathbf{B} = d\mathbf{A}$
- ▶ Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ **preserves area** if $g^*\mathbf{B} = \mathbf{B}$

Example:

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, \mathbf{g}(\varphi)\right)$$

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- ightharpoonup Magnetic field $\mathbf{B} = d\mathbf{A}$
- ▶ Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^*\mathbf{B} = \mathbf{B}$

Example:

$$(r^2,\varphi)\longmapsto \left(\frac{r^2}{g'(\varphi)}, \mathbf{g}(\varphi)\right)$$

REA TRESERVING DIFFEOS

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- ► Magnetic field $\mathbf{B} = d\mathbf{A}$
- ▶ Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ **preserves area** if $g^*\mathbf{B} = \mathbf{B}$

Example:

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, \mathbf{g}(\varphi)\right)$$

REA TRESERVING DIFFEOS

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- ► Magnetic field $\mathbf{B} = d\mathbf{A}$
- ▶ Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ **preserves area** if $g^*\mathbf{B} = \mathbf{B}$

Example:

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, \mathbf{g}(\varphi)\right)$$

- ► Magnetic field $\mathbf{B} = d\mathbf{A}$
- ▶ Diffeo $g: x \mapsto g(x)$ preserves area if $g^*B = B$

Example:

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, \mathbf{g}(\varphi)\right)$$

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- ► Magnetic field $\mathbf{B} = d\mathbf{A}$
- ▶ Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^*\mathbf{B} = \mathbf{B}$

Example:

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, \mathbf{g}(\varphi)\right)$$

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- ightharpoonup Magnetic field $\mathbf{B} = d\mathbf{A}$
- ▶ Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ **preserves area** if $g^*\mathbf{B} = \mathbf{B}$

Example:

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, \mathbf{g}(\varphi)\right)$$

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- ightharpoonup Magnetic field $\mathbf{B} = d\mathbf{A}$
- ▶ Diffeo $g: x \mapsto g(x)$ preserves area if $g^*B = B$

Example:

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, \mathbf{g}(\varphi)\right)$$

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- ightharpoonup Magnetic field $\mathbf{B} = d\mathbf{A}$
- ▶ Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ **preserves area** if $g^*\mathbf{B} = \mathbf{B}$

Example:

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, \mathbf{g}(\varphi)\right)$$

- ► Magnetic field $\mathbf{B} = d\mathbf{A}$
- ▶ Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ **preserves area** if $g^*\mathbf{B} = \mathbf{B}$

Example:

$$(r^2,\varphi)\longmapsto \left(\frac{r^2}{g'(\varphi)},\,\mathbf{g}(\varphi)\right)$$

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- ightharpoonup Magnetic field $\mathbf{B} = d\mathbf{A}$
- ▶ Diffeo $g: x \mapsto g(x)$ preserves area if $g^*B = B$

Example:

$$(r^2,\varphi)\longmapsto \left(\frac{r^2}{g'(\varphi)},\,\mathbf{g}(\varphi)\right)$$

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- ightharpoonup Magnetic field $\mathbf{B} = d\mathbf{A}$
- ▶ Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ **preserves area** if $g^*\mathbf{B} = \mathbf{B}$

Example:

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, \mathbf{g}(\varphi)\right)$$

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- ightharpoonup Magnetic field $\mathbf{B} = d\mathbf{A}$
- ▶ Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ **preserves area** if $g^*\mathbf{B} = \mathbf{B}$

Example:

$$(r^2,\varphi)\longmapsto \left(\frac{r^2}{g'(\varphi)},\,\mathbf{g}(\varphi)\right)$$

- ► Magnetic field $\mathbf{B} = d\mathbf{A}$
- ▶ Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ **preserves area** if $g^*\mathbf{B} = \mathbf{B}$

Example:

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, \mathbf{g}(\varphi)\right)$$

- ► Magnetic field $\mathbf{B} = d\mathbf{A}$
- ▶ Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ **preserves area** if $g^*\mathbf{B} = \mathbf{B}$

Example:

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, \mathbf{g}(\varphi)\right)$$

- ► Magnetic field $\mathbf{B} = d\mathbf{A}$
- ▶ Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ **preserves area** if $g^*\mathbf{B} = \mathbf{B}$

Example:

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, \mathbf{g}(\varphi)\right)$$

- ► Magnetic field $\mathbf{B} = d\mathbf{A}$
- ▶ Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ **preserves area** if $g^*\mathbf{B} = \mathbf{B}$

Example:

$$(r^2,\varphi)\longmapsto \left(\frac{r^2}{g'(\varphi)},\mathbf{g}(\varphi)\right)$$

- ► Magnetic field $\mathbf{B} = d\mathbf{A}$
- ▶ Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ **preserves area** if $g^*\mathbf{B} = \mathbf{B}$

Example:

$$(r^2,\varphi)\longmapsto \left(\frac{r^2}{g'(\varphi)}, \mathbf{g}(\varphi)\right)$$

REA TRESERVING DIFFEOS

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- ► Magnetic field $\mathbf{B} = d\mathbf{A}$
- ▶ Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ **preserves area** if $g^*\mathbf{B} = \mathbf{B}$

Example:

$$(r^2,\varphi)\longmapsto \left(\frac{r^2}{g'(\varphi)},\mathbf{g}(\varphi)\right)$$

REA TRESERVING DIFFEOS

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- ► Magnetic field $\mathbf{B} = d\mathbf{A}$
- ▶ Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ **preserves area** if $g^*\mathbf{B} = \mathbf{B}$

Example:

$$(r^2,\varphi)\longmapsto \left(\frac{r^2}{g'(\varphi)},\mathbf{g}(\varphi)\right)$$

- ► Magnetic field $\mathbf{B} = d\mathbf{A}$
- ▶ Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^*\mathbf{B} = \mathbf{B}$

Example:

$$(r^2,\varphi)\longmapsto \left(\frac{r^2}{g'(\varphi)},\mathbf{g}(\varphi)\right)$$

- ightharpoonup Magnetic field $\mathbf{B} = d\mathbf{A}$
- ▶ Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ **preserves area** if $g^*\mathbf{B} = \mathbf{B}$

Example:

$$(r^2,\varphi)\longmapsto \left(\frac{r^2}{g'(\varphi)},\mathbf{g}(\varphi)\right)$$

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- ightharpoonup Magnetic field $\mathbf{B} = d\mathbf{A}$
- ▶ Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ **preserves area** if $g^*\mathbf{B} = \mathbf{B}$

Example:

$$(r^2,\varphi)\longmapsto \left(\frac{r^2}{g'(\varphi)},\mathbf{g}(\varphi)\right)$$

- ► Magnetic field $\mathbf{B} = d\mathbf{A}$
- ▶ Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^*\mathbf{B} = \mathbf{B}$

Example:

$$(r^2,\varphi)\longmapsto \left(\frac{r^2}{g'(\varphi)}, \mathbf{g}(\varphi)\right)$$

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- ightharpoonup Magnetic field $\mathbf{B} = d\mathbf{A}$
- ▶ Diffeo $g: x \mapsto g(x)$ preserves area if $g^*B = B$

Example:

$$(r^2,\varphi)\longmapsto \left(\frac{r^2}{g'(\varphi)},\mathbf{g}(\varphi)\right)$$

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- ightharpoonup Magnetic field $\mathbf{B} = d\mathbf{A}$
- ▶ Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ **preserves area** if $g^*\mathbf{B} = \mathbf{B}$

Example:

$$(r^2,\varphi)\longmapsto \left(\frac{r^2}{g'(\varphi)},\mathbf{g}(\varphi)\right)$$

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- ightharpoonup Magnetic field $\mathbf{B} = d\mathbf{A}$
- ▶ Diffeo $g: x \mapsto g(x)$ preserves area if $g^*B = B$

Example:

$$(r^2,\varphi)\longmapsto \left(\frac{r^2}{g'(\varphi)},\mathbf{g}(\varphi)\right)$$

- ► Magnetic field $\mathbf{B} = d\mathbf{A}$
- ▶ Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^*\mathbf{B} = \mathbf{B}$

Example:

$$(r^2,\varphi)\longmapsto \left(\frac{r^2}{g'(\varphi)},\mathbf{g}(\varphi)\right)$$

- Tane \mathbb{R}^{-} , potential $\mathbf{A} = A_i(\mathbf{x})$ ► Magnetic field $\mathbf{B} = d\mathbf{A}$
- ▶ Diffeo $g: \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^*\mathbf{B} = \mathbf{B}$

Example:

$$(r^2,\varphi)\longmapsto \left(\frac{r^2}{g'(\varphi)},\mathbf{g}(\varphi)\right)$$

- ightharpoonup Magnetic field $\mathbf{B} = d\mathbf{A}$
- ▶ Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^*\mathbf{B} = \mathbf{B}$

Example:

$$(r^2,\varphi)\longmapsto \left(\frac{r^2}{g'(\varphi)},\mathbf{g}(\varphi)\right)$$

- ightharpoonup Magnetic field $\mathbf{B} = d\mathbf{A}$
- ▶ Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^*\mathbf{B} = \mathbf{B}$

Example:

$$(r^2,\varphi)\longmapsto \left(\frac{r^2}{g'(\varphi)},\mathbf{g}(\varphi)\right)$$

AREA-PRESERVING DIFFEOS

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- ightharpoonup Magnetic field $\mathbf{B} = d\mathbf{A}$
- ▶ Diffeo $g: x \mapsto g(x)$ preserves area if $g^*B = B$

Example:

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, \mathbf{g}(\varphi)\right)$$

► Edge diffeos

AREA-PRESERVING DIFFEOS

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- ightharpoonup Magnetic field $\mathbf{B} = d\mathbf{A}$
- ▶ Diffeo $g: x \mapsto g(x)$ preserves area if $g^*B = B$

Example:

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, \mathbf{g}(\varphi)\right)$$

► Edge diffeos

AREA-PRESERVING DIFFEOS

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- ightharpoonup Magnetic field $\mathbf{B} = d\mathbf{A}$
- ▶ Diffeo $g: x \mapsto g(x)$ preserves area if $g^*B = B$

Example:

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, \mathbf{g}(\varphi)\right)$$

► Edge diffeos

Electron in \mathbb{R}^2

► Hilbert space $L^2(\mathbb{R}^2)$

- ► Hilbert space $L^2(\mathbb{R}^2)$
- **▶** Unitary diffeos?

$$(\mathcal{U}[g]\psi)(\mathbf{x})$$

- ▶ Hilbert space $L^2(\mathbb{R}^2)$
- **▶** Unitary diffeos :

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \psi(\bar{g}(\mathbf{x}))$$

Electron in \mathbb{R}^2

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A: (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \qquad \qquad \psi(\bar{g}(\mathbf{x}))$$

Conclusion

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A: (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

Electron in \mathbb{R}^2

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

Action on Hamiltonian?

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

Action on
$$H \sim (\mathbf{p} - q\mathbf{A})^2 + V(\mathbf{x})$$
?

Electron in \mathbb{R}^2

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

$$\blacktriangleright \mathcal{U}[g]H\mathcal{U}[g]^{-1} \sim (p_j - qA_j) G^{jk}(\mathbf{x}) (p_k - qA_k) + V(\bar{g}(\mathbf{x}))$$

Electron in \mathbb{R}^2

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

$$\blacktriangleright \mathcal{U}[g]H\mathcal{U}[g]^{-1} \sim (p_j - qA_j) G^{jk}(\mathbf{x}) (p_k - qA_k) + V(\bar{\mathbf{g}}(\mathbf{x}))$$

Electron in \mathbb{R}^2

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

$$U[g]HU[g]^{-1} \sim (p_j - qA_j) G^{jk}(\mathbf{x})(p_k - qA_k) + V(\bar{\mathbf{g}}(\mathbf{x}))$$

Electron in \mathbb{R}^2

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

Action on $H \sim (\mathbf{p} - q\mathbf{A})^2 + V(\mathbf{x})$:

▶ $\mathcal{U}[g]H\mathcal{U}[g]^{-1} \sim (p_j - qA_j) \, \mathbf{G}^{jk}(\mathbf{x})(p_k - qA_k) + V(\bar{\mathbf{g}}(\mathbf{x}))$ with G^{jk} = metric induced by diffeo

Electron in \mathbb{R}^2

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_o^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

- ▶ $\mathcal{U}[g]H\mathcal{U}[g]^{-1} \sim (p_j qA_j) \, \mathbf{G}^{jk}(\mathbf{x})(p_k qA_k) + V(\bar{\mathbf{g}}(\mathbf{x}))$ with G^{jk} = metric induced by diffeo
- ► Deform both metric and potential

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

- ▶ Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

- ▶ Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

- ► Hilbert space $L^2(\mathbb{R}^2)$
- ► Unitary diffeos preserving A = quantomorphisms : (to compare wave functions)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\int_{o}^{\mathbf{x}}(\mathbf{A} - \bar{g}^*\mathbf{A})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

Neutral preliminary

Neutral preliminary : $(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \psi(\bar{g}(\mathbf{x}))$

ightharpoonup Energy eigenstate ψ

- ightharpoonup Energy eigenstate ψ
- ► Apply adiabatic diffeos $g_t(\mathbf{x})$

- ightharpoonup Energy eigenstate ψ
- ► Apply adiabatic diffeos $g_t(\mathbf{x})$

$$\mathrm{Berry} = i \int \! \mathrm{d}t \, \big\langle \psi \big| \, \mathcal{U}[\,g_t]^\dagger \frac{\partial}{\partial t} \, \mathcal{U}[\,g_t] \big| \psi \big\rangle$$

- ightharpoonup Energy eigenstate ψ
- ► Apply adiabatic diffeos $g_t(\mathbf{x})$

Berry =
$$i \int dt \int d^2 \mathbf{x} \ \dot{\bar{g}}(g(\mathbf{x}))^i \psi^*(\mathbf{x}) \partial_i \psi(\mathbf{x})$$

Neutral preliminary : $(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \psi(\bar{g}(\mathbf{x}))$

- ightharpoonup Energy eigenstate ψ
- ightharpoonup Apply adiabatic diffeos $g_t(\mathbf{x})$

Berry =
$$i \int dt \int d^2 \mathbf{x} \ \dot{\bar{g}}(g(\mathbf{x}))^i \psi^*(\mathbf{x}) \partial_i \psi(\mathbf{x})$$

► Measures **current** $\mathbf{j} = \frac{1}{2i} (\psi^* d\psi - \psi d\psi^*)$

Neutral preliminary : $(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \psi(\bar{g}(\mathbf{x}))$

- ightharpoonup Energy eigenstate ψ
- ► Apply adiabatic diffeos $g_t(\mathbf{x})$

Berry =
$$-\int dt \int d^2 \mathbf{x} \ \dot{\bar{g}}(g(\mathbf{x}))^i \mathbf{j}_i$$

► Measures current $\mathbf{j} = \frac{1}{2i}(\psi^* d\psi - \psi d\psi^*)$

- ightharpoonup Energy eigenstate ψ
- ightharpoonup Apply adiabatic diffeos $g_t(\mathbf{x})$

Berry =
$$-\int dt \int d^2 \mathbf{x} \ \dot{\bar{g}}(g(\mathbf{x}))^i \mathbf{j}_i$$

- ► Measures current $\mathbf{j} = \frac{1}{2i} (\psi^* d\psi \psi d\psi^*)$
- ► Involves fluid velocity $\dot{g} \circ g$

- ightharpoonup Energy eigenstate ψ
- ightharpoonup Apply adiabatic diffeos $g_t(\mathbf{x})$

Berry =
$$-\int dt \int d^2 \mathbf{x} \ \dot{\bar{g}}(g(\mathbf{x}))^i \mathbf{j}_i$$

- ► Measures current $\mathbf{j} = \frac{1}{2i} (\psi^* d\psi \psi d\psi^*)$
- ► Involves fluid velocity $\dot{\bar{g}} \circ g \equiv -\bar{g} \dot{g}$

- ightharpoonup Energy eigenstate ψ
- ightharpoonup Apply adiabatic diffeos $g_t(\mathbf{x})$

Berry =
$$\int dt \int d^2 \mathbf{x} \langle \mathbf{j}, \bar{g} \dot{g} \rangle$$

- ► Measures current $\mathbf{j} = \frac{1}{2i} (\psi^* d\psi \psi d\psi^*)$
- ► Involves fluid velocity $\dot{\bar{g}} \circ g \equiv -\bar{g} \dot{g}$

Neutral preliminary : $(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \psi(\bar{g}(\mathbf{x}))$

- ightharpoonup Energy eigenstate ψ
- ightharpoonup Apply adiabatic diffeos $g_t(\mathbf{x})$

Charged version?

Berry =
$$\int dt \int d^2 \mathbf{x} \langle \mathbf{j}, \bar{g} \dot{g} \rangle$$

- ► Measures current $\mathbf{j} = \frac{1}{2i} (\psi^* d\psi \psi d\psi^*)$
- ► Involves fluid velocity $\dot{\bar{g}} \circ g \equiv -\bar{g} \dot{g}$

Neutral preliminary : $(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \psi(\bar{g}(\mathbf{x}))$

- ightharpoonup Energy eigenstate ψ
- ightharpoonup Apply adiabatic diffeos $g_t(\mathbf{x})$

Charged version?

Berry =
$$\int dt \int d^2 \mathbf{x} \langle \mathbf{j}, \bar{g} \dot{g} \rangle$$

- ► Gauge-inv. **current** $\mathbf{j} = \frac{1}{2i} (\psi^* d\psi \psi d\psi^*) q|\psi|^2 \mathbf{A}$
- ► Involves fluid velocity $\dot{\bar{g}} \circ g \equiv -\bar{g} \dot{g}$

Neutral preliminary : $(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \psi(\bar{g}(\mathbf{x}))$

- ightharpoonup Energy eigenstate ψ
- ► Apply adiabatic diffeos $g_t(\mathbf{x})$

Charged version?

Berry =
$$\int dt \int d^2 \mathbf{x} \langle \mathbf{j}, \bar{g} \dot{g} \rangle$$

- ► Gauge-inv. **current** $\mathbf{j} = \frac{1}{2i} (\psi^* d\psi \psi d\psi^*) q|\psi|^2 \mathbf{A}$
- ► Involves **fluid velocity** $\dot{\bar{g}} \circ g \equiv -\bar{g} \dot{g}$
- \blacktriangleright ...and **Aharonov-Bohm** ϕ

Neutral preliminary : $(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \psi(\bar{g}(\mathbf{x}))$

- ightharpoonup Energy eigenstate ψ
- ► Apply adiabatic diffeos $g_t(\mathbf{x})$

Charged version:

Berry =
$$\int dt \int d^2 \mathbf{x} \langle \mathbf{j}, \bar{g} \dot{g} \rangle + q \int d^2 \mathbf{x} |\psi(\mathbf{x})|^2 \oint_{g_t(\mathbf{x})} \mathbf{A}$$

- ► Gauge-inv. **current** $\mathbf{j} = \frac{1}{2i}(\psi^* d\psi \psi d\psi^*) q|\psi|^2 \mathbf{A}$
- ► Involves **fluid velocity** $\dot{\bar{g}} \circ g \equiv -\bar{g} \dot{g}$
- \blacktriangleright ...and **Aharonov-Bohm** ϕ

 $Berry = Current \times Velocity + Density \times Aharonov-Bohm$

► Applies to any wave function!

 $Berry = Current \times Velocity + Density \times Aharonov-Bohm$

- ► Applies to any wave function!
- ► For isotropic Hall droplet :

 $Berry = Current \times Velocity + Density \times Aharonov-Bohm$

- ► Applies to any wave function!
- ► For isotropic Hall droplet :

- ► Applies to any wave function!
- ► For isotropic Hall droplet :

Conclusion

- ► Applies to any wave function!
- ► For isotropic Hall droplet :

Conclusion

- ► Applies to any wave function!
- ► For isotropic Hall droplet :
- ▶ Density $\rho(r)$

 $Berry = Current \times Velocity + Density \times Aharonov-Bohm$

Conclusion

- ► Applies to any wave function!
- ► For isotropic Hall droplet :
- ▶ Density $\rho(r)$

- ► Applies to any wave function!
- ► For isotropic Hall droplet :
- ▶ Density $\rho(r)$

 $Berry = Current \times Velocity + Density \times Aharonov-Bohm$

Conclusion

- ► Applies to any wave function!
- ► For isotropic Hall droplet :
- ▶ Density $\rho(r)$
- ► Current $J(r)d\varphi$

- ► Applies to any wave function!
- ► For isotropic Hall droplet :
- ▶ Density $\rho(r)$
- ightharpoonup Current $J(r)d\varphi$

- ► Applies to any wave function!
- ► For isotropic Hall droplet :
- ▶ Density $\rho(r)$
- ► Current $J(r)d\varphi$

- ► Applies to any wave function!
- ► For isotropic Hall droplet :
- ▶ Density $\rho(r)$
- ightharpoonup Current $J(r)d\varphi$

2D deformed potentials

Berry =
$$\int dt d^2 \mathbf{x} \left[J(r) (\bar{g} \dot{g})^{\varphi} + \rho(r) \frac{(g^r(\mathbf{x}))^2}{2\ell^2} \dot{g}^{\varphi}(\mathbf{x}) \right]$$

- ► Applies to any wave function!
- ► For isotropic Hall droplet :
- ▶ Density $\rho(r)$

- ightharpoonup Current $J(r) d\varphi$
- ▶ Edge diffeos $g(r^2, \varphi) = \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$:

Berry =
$$\int dt d^2 \mathbf{x} \left[J(r) (\bar{g} \dot{g})^{\varphi} + \rho(r) \frac{(g^r(\mathbf{x}))^2}{2\ell^2} \dot{g}^{\varphi}(\mathbf{x}) \right]$$

- ► Applies to any wave function!
- ► For isotropic Hall droplet :
- ▶ Density $\rho(r)$

- ightharpoonup Current $J(r) d\varphi$
- ► Edge diffeos $g(r^2, \varphi) = \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$:

Berry =
$$\int r dr \left[J + \rho \frac{r^2}{2\ell^2} \right] \int dt d\varphi \frac{\dot{g}}{g'}$$

- ► Applies to any wave function!
- ► For isotropic Hall droplet :
- ▶ Density $\rho(r)$

- ► Current $J(r)d\varphi$
- ▶ Edge diffeos $g(r^2, \varphi) = \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$:

Berry =
$$\int r dr \left[J + \rho \frac{r^2}{2\ell^2} \right] \int dt d\varphi \frac{\dot{g}}{g'}$$

- ► Applies to any wave function!
- ► For isotropic Hall droplet :
- ▶ Density $\rho(r)$

- ► Current $J(r)d\varphi$
- ▶ Edge diffeos $g(r^2, \varphi) = \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$:

Berry =
$$\int r dr \left[J + \rho \frac{r^2}{2\ell^2} \right] \int dt d\varphi \frac{\dot{g}}{g'}$$
 as in 1D!

- ► Applies to any wave function!
- ► For isotropic Hall droplet :
- ▶ Density $\rho(r)$

- ightharpoonup Current $J(r) d\varphi$
- ▶ Edge diffeos $g(r^2, \varphi) = \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$:

Berry =
$$\int r dr \left[J + \rho \frac{r^2}{2\ell^2} \right] \int dt d\varphi \frac{\dot{g}}{g'}$$
 as in 1D!

- ► Applies to any wave function!
- ► For isotropic Hall droplet :
- ▶ Density $\rho(r)$
- ► Current $J(r)d\varphi$

► Edge diffeos
$$g(r^2, \varphi) = \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$
:

Berry =
$$\int r \, dr \left[\int_{-\infty}^{\infty} + \rho \, \frac{r^2}{2\ell^2} \right] \int dt \, d\varphi \, \frac{\dot{g}}{g'} \text{ as in 1D !}$$

$$\propto \text{Hall viscosity}$$

- ► Applies to any wave function!
- ► For isotropic Hall droplet :
- ▶ Density $\rho(r)$
- ► Current $J(r)d\varphi$

► Edge diffeos
$$g(r^2, \varphi) = \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$
:

Berry =
$$\int r \, dr \left[\int_{-\infty}^{\infty} + \rho \, \frac{r^2}{2\ell^2} \right] \int dt \, d\varphi \, \frac{\dot{g}}{g'} \text{ as in 1D !}$$

$$\propto \text{Hall viscosity}$$

- ► Applies to any wave function!
- ► For isotropic Hall droplet :
- ▶ Density $\rho(r)$
- ► Current $J(r)d\varphi$

► Edge diffeos
$$g(r^2, \varphi) = \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$
:

Berry =
$$\int r \, dr \left[\int_{-\infty}^{\infty} + \rho \, \frac{r^2}{2\ell^2} \right] \int dt \, d\varphi \, \frac{\dot{g}}{g'} \text{ as in 1D !}$$

$$\propto \text{Hall viscosity}$$

- ► Applies to any wave function!
- ► For isotropic Hall droplet :
- ▶ Density $\rho(r)$
- ► Current $J(r)d\varphi$

▶ Edge diffeos
$$g(r^2, \varphi) = \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$
:

Berry =
$$\int r \, dr \left[\int_{\phi} r \, dr \left[\int_{\phi} r^{2} \, dr \, d\varphi \, \frac{\dot{g}}{g'} \right] \right] \int dt \, d\varphi \, \frac{\dot{g}}{g'} \text{ as in 1D !}$$

$$\propto \text{Hall viscosity}$$

- ► Applies to any wave function!
- ► For isotropic Hall droplet :
- ▶ Density $\rho(r)$
- ► Current $J(r)d\varphi$

► Edge diffeos
$$g(r^2, \varphi) = \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$
:

Berry =
$$\int r \, dr \left[\int_{-\infty}^{\infty} + \rho \, \frac{r^2}{2\ell^2} \right] \int dt \, d\varphi \, \frac{\dot{g}}{g'} \text{ as in 1D !}$$

$$\propto \text{Hall viscosity}$$

- ► Applies to any wave function!
- ► For isotropic Hall droplet :
- ▶ Density $\rho(r)$
- ► Current $J(r)d\varphi$

▶ Edge diffeos
$$g(r^2, \varphi) = \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$
:

Berry =
$$\int r \, dr \left[\int_{\phi} r \, dr \left[\int_{\phi} r^{2} \, dr \, d\varphi \, \frac{\dot{g}}{g'} \right] \right] \int dt \, d\varphi \, \frac{\dot{g}}{g'} \text{ as in 1D !}$$

$$\propto \text{Hall viscosity}$$

- ► Applies to any wave function!
- ► For isotropic Hall droplet :
- ▶ Density $\rho(r)$
- ► Current $J(r)d\varphi$

► Edge diffeos
$$g(r^2, \varphi) = \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$
:

Berry =
$$\int r \, dr \left[\int_{-\infty}^{\infty} + \rho \, \frac{r^2}{2\ell^2} \right] \int dt \, d\varphi \, \frac{\dot{g}}{g'} \text{ as in 1D !}$$

$$\propto \text{Hall viscosity}$$

- ► Applies to any wave function!
- ► For isotropic Hall droplet :
- ▶ Density $\rho(r)$
- ► Current $J(r)d\varphi$

▶ Edge diffeos
$$g(r^2, \varphi) = \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$
:

Berry =
$$\int r \, dr \left[\int_{\phi} r \, dr \left[\int_{\phi} r^{2} \, dr \, d\varphi \, \frac{\dot{g}}{g'} \right] \right] \int dt \, d\varphi \, \frac{\dot{g}}{g'} \text{ as in 1D !}$$

$$\propto \text{Hall viscosity}$$

- ► Applies to any wave function!
- ► For isotropic Hall droplet :
- ▶ Density $\rho(r)$
- ► Current $J(r)d\varphi$

► Edge diffeos
$$g(r^2, \varphi) = \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$
:

Berry =
$$\int r \, dr \left[\int_{-\infty}^{\infty} + \rho \, \frac{r^2}{2\ell^2} \right] \int dt \, d\varphi \, \frac{\dot{g}}{g'} \text{ as in 1D !}$$

$$\propto \text{Hall viscosity}$$

- ► Applies to any wave function!
- ► For isotropic Hall droplet :
- ▶ Density $\rho(r)$
- ► Current $J(r)d\varphi$

▶ Edge diffeos
$$g(r^2, \varphi) = \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$
:

Berry =
$$\int r \, dr \left[\int_{\phi} r \, dr \left[\int_{\phi} r^{2} \, dr \, d\varphi \, \frac{\dot{g}}{g'} \right] \right] \int dt \, d\varphi \, \frac{\dot{g}}{g'} \text{ as in 1D !}$$

$$\propto \text{Hall viscosity}$$

- ► Applies to any wave function!
- ► For isotropic Hall droplet :
- ▶ Density $\rho(r)$
- ► Current $J(r)d\varphi$

► Edge diffeos
$$g(r^2, \varphi) = \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$
:

Berry =
$$\int r \, dr \left[\int_{-\infty}^{\infty} + \rho \, \frac{r^2}{2\ell^2} \right] \int dt \, d\varphi \, \frac{\dot{g}}{g'} \text{ as in 1D !}$$

$$\propto \text{Hall viscosity}$$

- ► Applies to any wave function!
- ► For isotropic Hall droplet :
- ▶ Density $\rho(r)$
- ► Current $J(r)d\varphi$

▶ Edge diffeos
$$g(r^2, \varphi) = \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$
:

Berry =
$$\int r \, dr \left[\int_{\phi} r \, dr \left[\int_{\phi} r^{2} \, dr \, d\varphi \, \frac{\dot{g}}{g'} \right] \right] \int dt \, d\varphi \, \frac{\dot{g}}{g'} \text{ as in 1D !}$$

$$\propto \text{Hall viscosity}$$

- ► Applies to any wave function!
- ► For isotropic Hall droplet :
- ▶ Density $\rho(r)$
- ► Current $J(r)d\varphi$

► Edge diffeos
$$g(r^2, \varphi) = \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$
:

Berry =
$$\int r \, dr \left[\int_{-\infty}^{\infty} + \rho \, \frac{r^2}{2\ell^2} \right] \int dt \, d\varphi \, \frac{\dot{g}}{g'} \text{ as in 1D !}$$

$$\propto \text{Hall viscosity}$$

- ► Applies to any wave function!
- ► For isotropic Hall droplet :
- ▶ Density $\rho(r)$
- ► Current $J(r)d\varphi$

▶ Edge diffeos
$$g(r^2, \varphi) = \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$
:

Berry =
$$\int r \, dr \left[\int_{\phi} r \, dr \left[\int_{\phi} r^{2} \, dr \, d\varphi \, \frac{\dot{g}}{g'} \right] \right] \int dt \, d\varphi \, \frac{\dot{g}}{g'} \text{ as in 1D !}$$

$$\propto \text{Hall viscosity}$$

- ► Applies to any wave function!
- ► For isotropic Hall droplet :
- ▶ Density $\rho(r)$
- ► Current $J(r)d\varphi$

▶ Edge diffeos
$$g(r^2, \varphi) = \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$
:

Berry =
$$\int r \, dr \left[\int_{\phi} r \, dr \left[\int_{\phi} r^{2} \, dr \, d\varphi \, \frac{\dot{g}}{g'} \right] \right] \int dt \, d\varphi \, \frac{\dot{g}}{g'} \text{ as in 1D !}$$

$$\propto \text{Hall viscosity}$$

- ► Applies to any wave function!
- ► For isotropic Hall droplet :
- ▶ Density $\rho(r)$
- ► Current $J(r)d\varphi$

▶ Edge diffeos
$$g(r^2, \varphi) = \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$
:

Berry =
$$\int r \, dr \left[\int_{\phi} r \, dr \left[\int_{\phi} r^{2} \, dr \, d\varphi \, \frac{\dot{g}}{g'} \right] \right] \int dt \, d\varphi \, \frac{\dot{g}}{g'} \text{ as in 1D !}$$

$$\propto \text{Hall viscosity}$$

- ► Applies to any wave function!
- ► For isotropic Hall droplet :
- ▶ Density $\rho(r)$
- ► Current $J(r)d\varphi$

▶ Edge diffeos
$$g(r^2, \varphi) = \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$
:

Berry =
$$\int r \, dr \left[\int_{\phi} r \, dr \left[\int_{\phi} r^{2} \, dr \, d\varphi \, \frac{\dot{g}}{g'} \right] \right] \int dt \, d\varphi \, \frac{\dot{g}}{g'} \text{ as in 1D !}$$

$$\propto \text{Hall viscosity}$$

- ► Applies to any wave function!
- ► For isotropic Hall droplet :
- ▶ Density $\rho(r)$
- ► Current $J(r)d\varphi$

▶ Edge diffeos
$$g(r^2, \varphi) = \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$
:

Berry =
$$\int r \, dr \left[\int_{\phi} r \, dr \left[\int_{\phi} r^{2} \, dr \, d\varphi \, \frac{\dot{g}}{g'} \right] \right] \int dt \, d\varphi \, \frac{\dot{g}}{g'} \text{ as in 1D !}$$

$$\propto \text{Hall viscosity}$$

- ► Applies to any wave function!
- ► For isotropic Hall droplet :
- ▶ Density $\rho(r)$
- ► Current $J(r)d\varphi$

▶ Edge diffeos
$$g(r^2, \varphi) = \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$
:

Berry =
$$\int r \, dr \left[\int_{-\infty}^{\infty} + \rho \, \frac{r^2}{2\ell^2} \right] \int dt \, d\varphi \, \frac{\dot{g}}{g'} \text{ as in 1D !}$$

$$\propto \text{Hall viscosity from edge !}$$

3. Berry phases from deformed potentials

3. Berry phases from deformed potentials

A. Deformed potentials

3. Berry phases from deformed potentials

- A. Deformed potentials
- B. Semiclassical wave functions

- A. Deformed potentials
- B. Semiclassical wave functions
- C. Berry phases and edge central charge?

[in progress]

 $Setup: Electrons\ in\ 2D\ plane + magnetic\ field$

 $Setup: Electrons\ in\ 2D\ plane + magnetic\ field$

Setup : Electrons in 2D plane + magnetic field

► Hamiltonian $H \sim V(\mathbf{x}) + (\mathbf{p} - q\mathbf{A})^2$

Conclusion

Setup: Electrons in 2D plane + magnetic field

- ► Hamiltonian $H \sim V(\mathbf{x}) + (\mathbf{p} q\mathbf{A})^2$
- ► How to deform droplet?

Setup : Electrons in 2D plane + magnetic field

- ► Hamiltonian $H \sim V(\mathbf{x}) + (\mathbf{p} q\mathbf{A})^2$
- ► How to deform droplet?
- ► Quantomorphisms

Setup: Electrons in 2D plane + magnetic field

- ► Hamiltonian $H \sim V(\mathbf{x}) + (\mathbf{p} q\mathbf{A})^2$
- ► How to deform droplet?
- Quantomorphisms: $H_g \sim V(\bar{g}(\mathbf{x})) + G^{-1}(\mathbf{p} q\mathbf{A}, \mathbf{p} q\mathbf{A})$

Setup: Electrons in 2D plane + magnetic field

- ► Hamiltonian $H \sim V(\mathbf{x}) + (\mathbf{p} q\mathbf{A})^2$
- ► How to deform droplet?

Conclusion

Setup : Electrons in 2D plane + magnetic field

- ► Hamiltonian $H \sim V(\mathbf{x}) + (\mathbf{p} q\mathbf{A})^2$
- ► How to deform droplet?
- **▶** Deform potential

Setup: Electrons in 2D plane + magnetic field

- ► Hamiltonian $H \sim V(\mathbf{x}) + (\mathbf{p} q\mathbf{A})^2$
- ► How to deform droplet?

Setup: Electrons in 2D plane + magnetic field

- ► Hamiltonian $H \sim V(\mathbf{x}) + (\mathbf{p} q\mathbf{A})^2$
- ► How to deform droplet?

Eigenstates of deformed Hamiltonian?

Setup: Electrons in 2D plane + magnetic field

- ► Hamiltonian $H \sim V(\mathbf{x}) + (\mathbf{p} q\mathbf{A})^2$
- ► How to deform droplet?
- ▶ **Deform potential** : $H_g \sim V(\bar{g}(\mathbf{x})) + (\mathbf{p} q\mathbf{A})^2$

Eigenstates of deformed Hamiltonian? No exact sol

Setup: Electrons in 2D plane + magnetic field

- ► Hamiltonian $H \sim V(\mathbf{x}) + (\mathbf{p} q\mathbf{A})^2$
- ► How to deform droplet?

Eigenstates of deformed Hamiltonian? No exact sol \Rightarrow simplif assumptions :

Setup: Electrons in 2D plane + magnetic field

- ► Hamiltonian $H \sim V(\mathbf{x}) + (\mathbf{p} q\mathbf{A})^2$
- ► How to deform droplet?

Eigenstates of deformed Hamiltonian? No exact sol \Rightarrow simplif assumptions :

Setup: Electrons in 2D plane + magnetic field

- ► Hamiltonian $H \sim V(\mathbf{x}) + (\mathbf{p} q\mathbf{A})^2$
- ► How to deform droplet?

Eigenstates of deformed Hamiltonian? No exact sol \Rightarrow simplif assumptions :

Setup: Electrons in 2D plane + magnetic field

- ► Hamiltonian $H \sim V(\mathbf{x}) + (\mathbf{p} q\mathbf{A})^2$
- ► How to deform droplet?

Eigenstates of deformed Hamiltonian? No exact sol \Rightarrow simplif assumptions :

Setup: Electrons in 2D plane + magnetic field

- ► Hamiltonian $H \sim V(\mathbf{x}) + (\mathbf{p} q\mathbf{A})^2$
- ► How to deform droplet?
- ▶ **Deform potential**: $H_g \sim V(\bar{g}(\mathbf{x})) + (\mathbf{p} q\mathbf{A})^2$

Eigenstates of deformed Hamiltonian? No exact sol \Rightarrow simplif assumptions :

Setup: Electrons in 2D plane + magnetic field

- ► Hamiltonian $H \sim V(\mathbf{x}) + (\mathbf{p} q\mathbf{A})^2$
- ► How to deform droplet?
- **▶ Deform potential**: $H_g \sim V(\bar{g}(\mathbf{x})) + (\mathbf{p} q\mathbf{A})^2$

Eigenstates of deformed Hamiltonian? No exact sol \Rightarrow simplif assumptions :

- $ightharpoonup V(\bar{g}(\mathbf{x}))$ monotonous
- ▶ Strong $B \gg$ weak V

Setup: Electrons in 2D plane + magnetic field

- ► Hamiltonian $H \sim V(\mathbf{x}) + (\mathbf{p} q\mathbf{A})^2$
- ► How to deform droplet?
- **▶ Deform potential**: $H_g \sim V(\bar{g}(\mathbf{x})) + (\mathbf{p} q\mathbf{A})^2$

Eigenstates of deformed Hamiltonian? No exact sol \Rightarrow simplif assumptions :

- $ightharpoonup V(\bar{g}(\mathbf{x}))$ monotonous
- ► Strong $B \gg$ weak V
 - ⇒ work in lowest Landau level!

Lowest Landau level (LLL) : lowest *E* eigenspace of $(\mathbf{p} - q\mathbf{A})^2$

Lowest Landau level (LLL) : lowest *E* eigenspace of $(\mathbf{p} - q\mathbf{A})^2$ $\blacktriangleright \text{ Basis } \phi_m(\mathbf{x}) \propto z^m e^{-|z|^2/2} \qquad \qquad z = \sqrt{\frac{qB}{\hbar}} \frac{x+iy}{\sqrt{2}}$

$$ightharpoonup$$
 Basis $\phi_m(\mathbf{x}) \propto z^m e^{-|z|^2/2}$

$$z = \sqrt{\frac{qB}{\hbar}} \frac{x + iy}{\sqrt{2}}$$

Lowest Landau level (LLL) : lowest *E* eigenspace of $(\mathbf{p} - q\mathbf{A})^2$

► Basis
$$\phi_m(\mathbf{x}) \propto z^m e^{-|z|^2/2}$$

$$z = \frac{1}{\ell} \frac{x + iy}{\sqrt{2}}$$

Conclusion

Lowest Landau level (LLL): lowest *E* eigenspace of $(\mathbf{p} - q\mathbf{A})^2$

► Basis
$$\phi_m(\mathbf{x}) \propto z^m e^{-|z|^2/2}$$

$$z = \frac{1}{\ell} \frac{x + iy}{\sqrt{2}}$$

► LLL projector
$$P = \sum_{m=0}^{\infty} |\phi_m\rangle\langle\phi_m|$$

 $z = \frac{1}{\ell} \frac{x + iy}{\sqrt{2}}$

APPROXIMATE EIGENSTATES

Lowest Landau level (LLL) : lowest *E* eigenspace of $(\mathbf{p} - q\mathbf{A})^2$

► Basis
$$\phi_m(\mathbf{x}) \propto z^m e^{-|z|^2/2}$$

- ► LLL projector $P = \sum_{m=0}^{\infty} |\phi_m\rangle\langle\phi_m|$
- ► Non-commutative space $[PxP, PyP] = i\ell^2$

Lowest Landau level (LLL) : lowest *E* eigenspace of $(\mathbf{p} - q\mathbf{A})^2$

► Basis
$$\phi_m(\mathbf{x}) \propto z^m e^{-|z|^2/2}$$
 $z = \frac{1}{\ell} \frac{x+iy}{\sqrt{2}}$

- ► LLL projector $P = \sum_{m=0}^{\infty} |\phi_m\rangle\langle\phi_m|$
- ▶ Non-commutative space $[PxP, PyP] = i\ell^2$

Projected Schrödinger for $H_g \sim V(\bar{g}(\mathbf{x})) + (\mathbf{p} - q\mathbf{A})^2$

Lowest Landau level (LLL): lowest *E* eigenspace of $(\mathbf{p} - q\mathbf{A})^2$

► Basis
$$\phi_m(\mathbf{x}) \propto z^m e^{-|z|^2/2}$$
 $z = \frac{1}{\ell} \frac{x+iy}{\sqrt{2}}$

- ► LLL projector $P = \sum_{m=0}^{\infty} |\phi_m\rangle\langle\phi_m|$
- ► Non-commutative space $[PxP, PyP] = i\ell^2$

Projected Schrödinger for
$$H_g \sim V(\bar{g}(\mathbf{x})) + (\mathbf{p} - q\mathbf{A})^2$$
: $PH_gP|\psi\rangle = PV(\bar{g}(\mathbf{x}))P|\psi\rangle = E|\psi\rangle \in LLL$

Lowest Landau level (LLL) : lowest *E* eigenspace of $(\mathbf{p} - q\mathbf{A})^2$

► Basis
$$\phi_m(\mathbf{x}) \propto z^m e^{-|z|^2/2}$$

$$z = \frac{1}{\ell} \frac{x+iy}{\sqrt{2}}$$

- ► LLL projector $P = \sum_{m=0}^{\infty} |\phi_m\rangle\langle\phi_m|$
- ► Non-commutative space $[PxP, PyP] = i\ell^2$

$$PV(\bar{g}(\mathbf{x}))P|\psi\rangle = E|\psi\rangle \in LLL$$

Lowest Landau level (LLL): lowest *E* eigenspace of $(\mathbf{p} - q\mathbf{A})^2$

► Basis
$$\phi_m(\mathbf{x}) \propto z^m e^{-|z|^2/2}$$

$$z = \frac{1}{\ell} \frac{x+iy}{\sqrt{2}}$$

- ► LLL projector $P = \sum_{m=0}^{\infty} |\phi_m\rangle\langle\phi_m|$
- ► Non-commutative space $[PxP, PyP] = i\ell^2$

Projected Schrödinger:

$$PV(\bar{g}(\mathbf{x}))P|\psi\rangle = E|\psi\rangle \in LLL$$

► Potential = effective Hamiltonian

Lowest Landau level (LLL): lowest *E* eigenspace of $(\mathbf{p} - q\mathbf{A})^2$

► Basis
$$\phi_m(\mathbf{x}) \propto z^m e^{-|z|^2/2}$$
 $z = \frac{1}{\ell} \frac{x+iy}{\sqrt{2}}$

- ► LLL projector $P = \sum_{m=0}^{\infty} |\phi_m\rangle\langle\phi_m|$
- ▶ Non-commutative space $[PxP, PyP] = i\ell^2 \cong \text{phase space }!$

Projected Schrödinger:

$$PV(\bar{g}(\mathbf{x}))P|\psi\rangle = E|\psi\rangle \in LLL$$

► Potential = effective Hamiltonian

Lowest Landau level (LLL) : lowest *E* eigenspace of $(\mathbf{p} - q\mathbf{A})^2$

► Basis
$$\phi_m(\mathbf{x}) \propto z^m e^{-|z|^2/2}$$

$$z = \frac{1}{\ell} \frac{x+iy}{\sqrt{2}}$$

- ► LLL projector $P = \sum_{m=0}^{\infty} |\phi_m\rangle\langle\phi_m|$
- ▶ Non-commutative space $[PxP, PyP] = i\ell^2 \cong \text{phase space }!$

$$PV(\bar{g}(\mathbf{x}))P|\psi\rangle = E|\psi\rangle \in LLL$$

- ► Potential = effective Hamiltonian
- $\blacktriangleright |\psi\rangle = |\phi_m\rangle$ for isotropic trap

Lowest Landau level (LLL) : lowest *E* eigenspace of $(\mathbf{p} - q\mathbf{A})^2$

► Basis
$$\phi_m(\mathbf{x}) \propto z^m e^{-|z|^2/2}$$

$$z = \frac{1}{\ell} \frac{x+iy}{\sqrt{2}}$$

- ► LLL projector $P = \sum_{m=0}^{\infty} |\phi_m\rangle\langle\phi_m|$
- ▶ Non-commutative space $[PxP, PyP] = i\ell^2 \cong \text{phase space }!$

$$PV(\bar{g}(\mathbf{x}))P|\psi\rangle = E|\psi\rangle \in LLL$$

- ► Potential = effective Hamiltonian
- $\blacktriangleright |\psi\rangle = |\phi_m\rangle$ for isotropic trap

Lowest Landau level (LLL) : lowest *E* eigenspace of $(\mathbf{p} - q\mathbf{A})^2$

► Basis
$$\phi_m(\mathbf{x}) \propto z^m e^{-|z|^2/2}$$

$$z = \frac{1}{\ell} \frac{x+iy}{\sqrt{2}}$$

- ► LLL projector $P = \sum_{m=0}^{\infty} |\phi_m\rangle\langle\phi_m|$
- ► Non-commutative space $[PxP, PyP] = i\ell^2 \cong \text{phase space }!$

$$PV(\bar{g}(\mathbf{x}))P|\psi\rangle = E|\psi\rangle \in LLL$$

- ► Potential = effective Hamiltonian
- $\blacktriangleright |\psi\rangle = |\phi_m\rangle$ for isotropic trap

Lowest Landau level (LLL) : lowest *E* eigenspace of $(\mathbf{p} - q\mathbf{A})^2$

► Basis
$$\phi_m(\mathbf{x}) \propto z^m e^{-|z|^2/2}$$

$$z = \frac{1}{\ell} \frac{x+iy}{\sqrt{2}}$$

- ► LLL projector $P = \sum_{m=0}^{\infty} |\phi_m\rangle\langle\phi_m|$
- ▶ Non-commutative space $[PxP, PyP] = i\ell^2 \cong \text{phase space }!$

$$PV(\bar{g}(\mathbf{x}))P|\psi\rangle = E|\psi\rangle \in LLL$$

- ► Potential = effective Hamiltonian
- $\blacktriangleright |\psi\rangle = |\phi_m\rangle$ for isotropic trap

Lowest Landau level (LLL) : lowest *E* eigenspace of $(\mathbf{p} - q\mathbf{A})^2$

► Basis
$$\phi_m(\mathbf{x}) \propto z^m e^{-|z|^2/2}$$

$$z = \frac{1}{\ell} \frac{x+iy}{\sqrt{2}}$$

- ► LLL projector $P = \sum_{m=0}^{\infty} |\phi_m\rangle\langle\phi_m|$
- ▶ Non-commutative space $[PxP, PyP] = i\ell^2 \cong \text{phase space }!$

$$PV(\bar{g}(\mathbf{x}))P|\psi\rangle = E|\psi\rangle \in LLL$$

- ► Potential = effective Hamiltonian
- $\blacktriangleright |\psi\rangle = |\phi_m\rangle$ for isotropic trap

Lowest Landau level (LLL) : lowest *E* eigenspace of $(\mathbf{p} - q\mathbf{A})^2$

► Basis $\phi_m(\mathbf{x}) \propto z^m e^{-|z|^2/2}$

$$z = \frac{1}{\ell} \frac{x + iy}{\sqrt{2}}$$

- ► LLL projector $P = \sum_{m=0}^{\infty} |\phi_m\rangle\langle\phi_m|$
- ▶ Non-commutative space $[PxP, PyP] = i\ell^2 \cong \text{phase space }!$

$$PV(\bar{g}(\mathbf{x}))P|\psi\rangle = E|\psi\rangle \in LLL$$

- ► Potential = effective Hamiltonian
- $\blacktriangleright |\psi\rangle = |\phi_m\rangle$ for isotropic trap

Lowest Landau level (LLL) : lowest *E* eigenspace of $(\mathbf{p} - q\mathbf{A})^2$

► Basis
$$\phi_m(\mathbf{x}) \propto z^m e^{-|z|^2/2}$$

$$z = \frac{1}{\ell} \frac{x+iy}{\sqrt{2}}$$

- ► LLL projector $P = \sum_{m=0}^{\infty} |\phi_m\rangle\langle\phi_m|$
- ▶ Non-commutative space $[PxP, PyP] = i\ell^2 \cong \text{phase space }!$

$$PV(\bar{g}(\mathbf{x}))P|\psi\rangle = E|\psi\rangle \in LLL$$

- ► Potential = effective Hamiltonian
- $\blacktriangleright |\psi\rangle = |\phi_m\rangle$ for isotropic trap

Lowest Landau level (LLL) : lowest *E* eigenspace of $(\mathbf{p} - q\mathbf{A})^2$

► Basis
$$\phi_m(\mathbf{x}) \propto z^m e^{-|z|^2/2}$$

$$z = \frac{1}{\ell} \frac{x+iy}{\sqrt{2}}$$

- ► LLL projector $P = \sum_{m=0}^{\infty} |\phi_m\rangle\langle\phi_m|$
- ▶ Non-commutative space $[PxP, PyP] = i\ell^2 \cong \text{phase space }!$

$$PV(\bar{g}(\mathbf{x}))P|\psi\rangle = E|\psi\rangle \in LLL$$

- ► Potential = effective Hamiltonian
- $\blacktriangleright |\psi\rangle = |\phi_m\rangle$ for isotropic trap

 $z = \frac{1}{\ell} \frac{x + iy}{\sqrt{2}}$

APPROXIMATE EIGENSTATES

Lowest Landau level (LLL) : lowest *E* eigenspace of $(\mathbf{p} - q\mathbf{A})^2$

$$ightharpoonup$$
 Basis $\phi_m(\mathbf{x}) \propto z^m e^{-|z|^2/2}$

- ► LLL projector $P = \sum_{m=0}^{\infty} |\phi_m\rangle\langle\phi_m|$
- ▶ Non-commutative space $[PxP, PyP] = i\ell^2 \cong \text{phase space }!$

$$PV(\bar{g}(\mathbf{x}))P|\psi\rangle = E|\psi\rangle \in LLL$$

- ► Potential = effective Hamiltonian
- $\blacktriangleright |\psi\rangle = |\phi_m\rangle$ for isotropic trap

Lowest Landau level (LLL) : lowest *E* eigenspace of $(\mathbf{p} - q\mathbf{A})^2$

► Basis
$$\phi_m(\mathbf{x}) \propto z^m e^{-|z|^2/2}$$

$$z = \frac{1}{\ell} \frac{x+iy}{\sqrt{2}}$$

- ► LLL projector $P = \sum_{m=0}^{\infty} |\phi_m\rangle\langle\phi_m|$
- ▶ Non-commutative space $[PxP, PyP] = i\ell^2 \cong \text{phase space }!$

$$PV(\bar{g}(\mathbf{x}))P|\psi\rangle = E|\psi\rangle \in LLL$$

- ► Potential = effective Hamiltonian
- $\blacktriangleright |\psi\rangle = |\phi_m\rangle$ for isotropic trap

Lowest Landau level (LLL) : lowest *E* eigenspace of $(\mathbf{p} - q\mathbf{A})^2$

► Basis
$$\phi_m(\mathbf{x}) \propto z^m e^{-|z|^2/2}$$

$$z = \frac{1}{\ell} \frac{x+iy}{\sqrt{2}}$$

- ► LLL projector $P = \sum_{m=0}^{\infty} |\phi_m\rangle\langle\phi_m|$
- ► Non-commutative space $[PxP, PyP] = i\ell^2 \cong \text{phase space }!$

$$PV(\bar{g}(\mathbf{x}))P|\psi\rangle = E|\psi\rangle \in LLL$$

- ► Potential = effective Hamiltonian
- $\blacktriangleright |\psi\rangle = |\phi_m\rangle$ for isotropic trap

Lowest Landau level (LLL) : lowest *E* eigenspace of $(\mathbf{p} - q\mathbf{A})^2$

► Basis
$$\phi_m(\mathbf{x}) \propto z^m e^{-|z|^2/2}$$

$$z = \frac{1}{\ell} \frac{x+iy}{\sqrt{2}}$$

- ► LLL projector $P = \sum_{m=0}^{\infty} |\phi_m\rangle\langle\phi_m|$
- ▶ Non-commutative space $[PxP, PyP] = i\ell^2 \cong \text{phase space }!$

$$PV(\bar{g}(\mathbf{x}))P|\psi\rangle = E|\psi\rangle \in LLL$$

- ► Potential = effective Hamiltonian
- $\blacktriangleright |\psi\rangle = |\phi_m\rangle$ for isotropic trap
- ► Eigenstates trace equipotentials with quantized area $2\pi m\ell^2$

Lowest Landau level (LLL): lowest *E* eigenspace of $(\mathbf{p} - q\mathbf{A})^2$

► Basis
$$\phi_m(\mathbf{x}) \propto z^m e^{-|z|^2/2}$$
 $z = \frac{1}{\ell} \frac{x+iy}{\sqrt{2}}$

- ► LLL projector $P = \sum_{m=0}^{\infty} |\phi_m\rangle\langle\phi_m|$
- ► Non-commutative space $[PxP, PyP] = i\ell^2 \cong \text{phase space }!$

$$PV(\bar{g}(\mathbf{x}))P|\psi\rangle = E|\psi\rangle \in LLL$$

- ► Potential = effective Hamiltonian
- $\blacktriangleright |\psi\rangle \neq |\phi_m\rangle$ for anisotropic trap
- ► Eigenstates trace equipotentials with quantized area $2\pi m\ell^2$

Lowest Landau level (LLL): lowest E eigenspace of $(\mathbf{p} - q\mathbf{A})^2$

► Basis
$$\phi_m(\mathbf{x}) \propto z^m e^{-|z|^2/2}$$

$$z = \frac{1}{\ell} \frac{x+iy}{\sqrt{2}}$$

- ► LLL projector $P = \sum_{m=0}^{\infty} |\phi_m\rangle\langle\phi_m|$
- Non-commutative space $[PxP, PyP] = i\ell^2 \cong \text{phase space }!$

$$PV(\bar{g}(\mathbf{x}))P|\psi\rangle = E|\psi\rangle \in LLL$$

- ► Potential = effective Hamiltonian
- $\blacktriangleright |\psi\rangle \neq |\phi_m\rangle$ for anisotropic trap
- ► Eigenstates trace equipotentials with quantized area $2\pi m\ell^2$

Lowest Landau level (LLL) : lowest *E* eigenspace of $(\mathbf{p} - q\mathbf{A})^2$

► Basis
$$\phi_m(\mathbf{x}) \propto z^m e^{-|z|^2/2}$$

$$z = \frac{1}{\ell} \frac{x+iy}{\sqrt{2}}$$

- ► LLL projector $P = \sum_{m=0}^{\infty} |\phi_m\rangle\langle\phi_m|$
- ▶ Non-commutative space $[PxP, PyP] = i\ell^2 \cong \text{phase space }!$

$$PV(\bar{g}(\mathbf{x}))P|\psi\rangle = E|\psi\rangle \in LLL$$

- ► Potential = effective Hamiltonian
- $\blacktriangleright |\psi\rangle \neq |\phi_m\rangle$ for anisotropic trap
- ► Eigenstates trace equipotentials with quantized area $2\pi m\ell^2$

Lowest Landau level (LLL) : lowest *E* eigenspace of $(\mathbf{p} - q\mathbf{A})^2$

► Basis
$$\phi_m(\mathbf{x}) \propto z^m e^{-|z|^2/2}$$

$$z = \frac{1}{\ell} \frac{x+iy}{\sqrt{2}}$$

- ► LLL projector $P = \sum_{m=0}^{\infty} |\phi_m\rangle\langle\phi_m|$
- ▶ Non-commutative space $[PxP, PyP] = i\ell^2 \cong \text{phase space }!$

$$PV(\bar{g}(\mathbf{x}))P|\psi\rangle = E|\psi\rangle \in LLL$$

- ► Potential = effective Hamiltonian
- $\blacktriangleright |\psi\rangle \neq |\phi_m\rangle$ for anisotropic trap
- ► Eigenstates trace equipotentials with quantized area $2\pi m\ell^2$

Lowest Landau level (LLL) : lowest *E* eigenspace of $(\mathbf{p} - q\mathbf{A})^2$

► Basis
$$\phi_m(\mathbf{x}) \propto z^m e^{-|z|^2/2}$$

$$z = \frac{1}{\ell} \frac{x+iy}{\sqrt{2}}$$

- ► LLL projector $P = \sum_{m=0}^{\infty} |\phi_m\rangle\langle\phi_m|$
- ▶ Non-commutative space $[PxP, PyP] = i\ell^2 \cong \text{phase space }!$

$$PV(\bar{g}(\mathbf{x}))P|\psi\rangle = E|\psi\rangle \in LLL$$

- ► Potential = effective Hamiltonian
- $\blacktriangleright |\psi\rangle \neq |\phi_m\rangle$ for anisotropic trap
- ► Eigenstates trace equipotentials with quantized area $2\pi m\ell^2$

Lowest Landau level (LLL) : lowest *E* eigenspace of $(\mathbf{p} - q\mathbf{A})^2$

► Basis
$$\phi_m(\mathbf{x}) \propto z^m e^{-|z|^2/2}$$

$$z = \frac{1}{\ell} \frac{x+iy}{\sqrt{2}}$$

- ► LLL projector $P = \sum_{m=0}^{\infty} |\phi_m\rangle\langle\phi_m|$
- ▶ Non-commutative space $[PxP, PyP] = i\ell^2 \cong \text{phase space }!$

$$PV(\bar{g}(\mathbf{x}))P|\psi\rangle = E|\psi\rangle \in LLL$$

- ► Potential = effective Hamiltonian
- $\blacktriangleright |\psi\rangle \neq |\phi_m\rangle$ for anisotropic trap
- ► Eigenstates trace equipotentials with quantized area $2\pi m\ell^2$

Lowest Landau level (LLL): lowest *E* eigenspace of $(\mathbf{p} - q\mathbf{A})^2$

► Basis
$$\phi_m(\mathbf{x}) \propto z^m e^{-|z|^2/2}$$

$$z = \frac{1}{\ell} \frac{x+iy}{\sqrt{2}}$$

- ► LLL projector $P = \sum_{m=0}^{\infty} |\phi_m\rangle\langle\phi_m|$
- ▶ Non-commutative space $[PxP, PyP] = i\ell^2 \cong \text{phase space }!$

$$PV(\bar{g}(\mathbf{x}))P|\psi\rangle = E|\psi\rangle \in LLL$$

- ► Potential = effective Hamiltonian
- $\blacktriangleright |\psi\rangle \neq |\phi_m\rangle$ for anisotropic trap
- ► Eigenstates trace equipotentials with quantized area $2\pi m\ell^2$

Lowest Landau level (LLL) : lowest *E* eigenspace of $(\mathbf{p} - q\mathbf{A})^2$

► Basis
$$\phi_m(\mathbf{x}) \propto z^m e^{-|z|^2/2}$$

$$z = \frac{1}{\ell} \frac{x+iy}{\sqrt{2}}$$

- ► LLL projector $P = \sum_{m=0}^{\infty} |\phi_m\rangle\langle\phi_m|$
- ▶ Non-commutative space $[PxP, PyP] = i\ell^2 \cong \text{phase space }!$

$$PV(\bar{g}(\mathbf{x}))P|\psi\rangle = E|\psi\rangle \in LLL$$

- ► Potential = effective Hamiltonian
- $\blacktriangleright |\psi\rangle \neq |\phi_m\rangle$ for anisotropic trap
- ► Eigenstates trace equipotentials with quantized area $2\pi m\ell^2$

Lowest Landau level (LLL) : lowest *E* eigenspace of $(\mathbf{p} - q\mathbf{A})^2$

► Basis
$$\phi_m(\mathbf{x}) \propto z^m e^{-|z|^2/2}$$

$$z = \frac{1}{\ell} \frac{x+iy}{\sqrt{2}}$$

- ► LLL projector $P = \sum_{m=0}^{\infty} |\phi_m\rangle\langle\phi_m|$
- ▶ Non-commutative space $[PxP, PyP] = i\ell^2 \cong \text{phase space }!$

$$PV(\bar{g}(\mathbf{x}))P|\psi\rangle = E|\psi\rangle \in LLL$$

- ► Potential = effective Hamiltonian
- $\blacktriangleright |\psi\rangle \neq |\phi_m\rangle$ for anisotropic trap
- ► Eigenstates trace equipotentials with quantized area $2\pi m\ell^2$

Lowest Landau level (LLL) : lowest *E* eigenspace of $(\mathbf{p} - q\mathbf{A})^2$

► Basis
$$\phi_m(\mathbf{x}) \propto z^m e^{-|z|^2/2}$$

$$z = \frac{1}{\ell} \frac{x+iy}{\sqrt{2}}$$

- ► LLL projector $P = \sum_{m=0}^{\infty} |\phi_m\rangle\langle\phi_m|$
- ▶ Non-commutative space $[PxP, PyP] = i\ell^2 \cong \text{phase space }!$

$$PV(\bar{g}(\mathbf{x}))P|\psi\rangle = E|\psi\rangle \in LLL$$

- ► Potential = effective Hamiltonian
- $\blacktriangleright |\psi\rangle \neq |\phi_m\rangle$ for anisotropic trap
- ► Eigenstates trace equipotentials with quantized area $2\pi m\ell^2$

Lowest Landau level (LLL) : lowest *E* eigenspace of $(\mathbf{p} - q\mathbf{A})^2$

► Basis
$$\phi_m(\mathbf{x}) \propto z^m e^{-|z|^2/2}$$

$$z = \frac{1}{\ell} \frac{x+iy}{\sqrt{2}}$$

- ► LLL projector $P = \sum_{m=0}^{\infty} |\phi_m\rangle\langle\phi_m|$
- ▶ Non-commutative space $[PxP, PyP] = i\ell^2 \cong \text{phase space }!$

$$PV(\bar{g}(\mathbf{x}))P|\psi\rangle = E|\psi\rangle \in LLL$$

- ► Potential = effective Hamiltonian
- $\blacktriangleright |\psi\rangle \neq |\phi_m\rangle$ for anisotropic trap
- ► Eigenstates trace equipotentials with quantized area $2\pi m\ell^2$

Lowest Landau level (LLL): lowest *E* eigenspace of $(\mathbf{p} - q\mathbf{A})^2$

► Basis
$$\phi_m(\mathbf{x}) \propto z^m e^{-|z|^2/2}$$

$$z = \frac{1}{\ell} \frac{x+iy}{\sqrt{2}}$$

Conclusion

- ► LLL projector $P = \sum_{m=0}^{\infty} |\phi_m\rangle\langle\phi_m|$
- ▶ Non-commutative space $[PxP, PyP] = i\ell^2 \cong \text{phase space }!$

Projected Schrödinger:

$$PV(\bar{g}(\mathbf{x}))P|\psi\rangle = E|\psi\rangle \in LLL$$

- ► Potential = effective Hamiltonian
- $\blacktriangleright |\psi\rangle \neq |\phi_m\rangle$ for anisotropic trap
- ► Eigenstates trace equipotentials with quantized area $2\pi m\ell^2$

Build localized eigenfunctions in semiclassical regime

Lowest Landau level (LLL): lowest *E* eigenspace of $(\mathbf{p} - q\mathbf{A})^2$

► Basis
$$\phi_m(\mathbf{x}) \propto z^m e^{-|z|^2/2}$$

$$z = \frac{1}{\ell} \frac{x+iy}{\sqrt{2}}$$

Conclusion

- ► LLL projector $P = \sum_{m=0}^{\infty} |\phi_m\rangle\langle\phi_m|$
- ▶ Non-commutative space $[PxP, PyP] = i\ell^2 \cong \text{phase space }!$

Projected Schrödinger:

$$PV(\bar{g}(\mathbf{x}))P|\psi\rangle = E|\psi\rangle \in LLL$$

- ► Potential = effective Hamiltonian
- $\blacktriangleright |\psi\rangle \neq |\phi_m\rangle$ for anisotropic trap
- ► Eigenstates trace equipotentials with quantized area $2\pi m\ell^2$

Build localized eigenfunctions at small ℓ , large m

WKB ansatz for ψ_m :

► Pick equipotential

WKB ansatz for ψ_m :

Intro

► Pick equipotential

WKB ansatz for ψ_m :

Pick equipotential with area $2\pi m\ell^2$

WKB ansatz for ψ_m :

► Pick equipotential with area $2\pi m\ell^2$

WKB ansatz for ψ_m :

Pick equipotential with area $2\pi m\ell^2$

WKB ansatz for ψ_m :

Pick equipotential with area $2\pi m\ell^2$

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta \, e^{im\theta} \, n(\theta) \, |\mathbf{x}_{m,\theta}\rangle$

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta \, e^{im\theta} \, n(\theta) \, |\mathbf{x}_{m,\theta}\rangle$

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta \, e^{im\theta} \, n(\theta) \, |\mathbf{x}_{m,\theta}\rangle$

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$

00000

APPROXIMATE EIGENSTATES

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$

00000

APPROXIMATE EIGENSTATES

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$

00000

APPROXIMATE EIGENSTATES

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$

APPROXIMATE EIGENSTATES

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$

APPROXIMATE EIGENSTATES

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$

APPROXIMATE EIGENSTATES

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$

APPROXIMATE EIGENSTATES

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$

APPROXIMATE EIGENSTATES

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$

APPROXIMATE EIGENSTATES

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$

APPROXIMATE EIGENSTATES

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$

APPROXIMATE EIGENSTATES

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$

APPROXIMATE EIGENSTATES

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$

APPROXIMATE EIGENSTATES

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$

APPROXIMATE EIGENSTATES

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta \, e^{im\theta} \, n(\theta) \, |\mathbf{x}_{m,\theta}\rangle$

APPROXIMATE EIGENSTATES

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta \, e^{im\theta} \, \mathbf{n}(\boldsymbol{\theta}) \, |\mathbf{x}_{m,\theta}\rangle$

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = \mathbf{P} \oint d\theta \, e^{im\theta} \, n(\theta) \, |\mathbf{x}_{m,\theta}\rangle$

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = \mathbf{P} \oint d\theta \, e^{im\theta} \, n(\theta) \, |\mathbf{x}_{m,\theta}\rangle$

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta \, e^{im\theta} \, n(\theta) \, |\mathbf{x}_{m,\theta}\rangle$

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ► Schrödinger gives eqn for $n(\theta)$

WKB ansatz for ψ_m :

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta \, e^{im\theta} \, n(\theta) \, |\mathbf{x}_{m,\theta}\rangle$
- ► Schrödinger gives eqn for $n(\theta)$

WKB ansatz for ψ_m :

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

$$(r^2,\varphi)\mapsto \left(\frac{r^2}{g'(\varphi)},\,g(\varphi)\right)$$

WKB ansatz for ψ_m :

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta \, e^{im\theta} \, n(\theta) \, |\mathbf{x}_{m,\theta}\rangle$
- ► Schrödinger gives eqn for $n(\theta)$

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

WKB ansatz for ψ_m :

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ► Schrödinger gives eqn for $n(\theta)$

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

WKB ansatz for ψ_m :

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

WKB ansatz for ψ_m :

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

WKB ansatz for ψ_m :

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

2D deformed potentials

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

2D deformed potentials

APPROXIMATE EIGENSTATES

WKB ansatz for ψ_m :

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|\mathbf{z}| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

WKB ansatz for ψ_m :

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

2D deformed potentials

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\mathbf{\varphi}) + i\Phi(\mathbf{\varphi})}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

WKB ansatz for ψ_m :

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi)+i\Phi(\varphi)}}{\left(\frac{1}{g'}\left[1+\frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z|-\sqrt{mg'})^2}{1-i\frac{g''}{2g'}}\right]$$

WKB ansatz for ψ_m :

- ▶ Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{\left(|\mathbf{z}| - \sqrt{mg'}\right)^2}{1 - i\frac{g''}{2g'}}\right]$$

WKB ansatz for ψ_m :

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = \mathbf{P} \oint \mathbf{d}\theta \, e^{im\theta} \, n(\theta) \, |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[\mathbf{1} + \frac{g''^2}{4g'^2} \right] \right)^{1/4}} \exp \left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}} \right]$$

WKB ansatz for ψ_m :

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

WKB ansatz for ψ_m :

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

WKB ansatz for ψ_m :

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

WKB ansatz for ψ_m :

► Pick equipotential with area $2\pi m\ell^2$

2D quantomorphisms

- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

WKB ansatz for ψ_m :

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

WKB ansatz for ψ_m :

► Pick equipotential with area $2\pi m\ell^2$

2D quantomorphisms

- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

WKB ansatz for ψ_m :

► Pick equipotential with area $2\pi m\ell^2$

2D quantomorphisms

- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

WKB ansatz for ψ_m :

► Pick equipotential with area $2\pi m\ell^2$

2D quantomorphisms

- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

WKB ansatz for ψ_m :

► Pick equipotential with area $2\pi m\ell^2$

2D quantomorphisms

- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

WKB ansatz for ψ_m :

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

► Pick equipotential with area $2\pi m\ell^2$

2D quantomorphisms

- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

WKB ansatz for ψ_m :

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

WKB ansatz for ψ_m :

► Pick equipotential with area $2\pi m\ell^2$

2D quantomorphisms

- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

WKB ansatz for ψ_m :

► Pick equipotential with area $2\pi m\ell^2$

2D quantomorphisms

- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

WKB ansatz for ψ_m :

► Pick equipotential with area $2\pi m\ell^2$

2D quantomorphisms

- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

WKB ansatz for ψ_m :

► Pick equipotential with area $2\pi m\ell^2$

2D quantomorphisms

- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

WKB ansatz for ψ_m :

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

WKB ansatz for ψ_m :

► Pick equipotential with area $2\pi m\ell^2$

2D quantomorphisms

- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

WKB ansatz for ψ_m :

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

WKB ansatz for ψ_m :

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

WKB ansatz for ψ_m :

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

WKB ansatz for ψ_m :

► Pick equipotential with area $2\pi m\ell^2$

2D quantomorphisms

- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

WKB ansatz for ψ_m :

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

WKB ansatz for ψ_m :

► Pick equipotential with area $2\pi m\ell^2$

2D quantomorphisms

- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

WKB ansatz for ψ_m :

► Pick equipotential with area $2\pi m\ell^2$

2D quantomorphisms

- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

WKB ansatz for ψ_m :

► Pick equipotential with area $2\pi m\ell^2$

2D quantomorphisms

- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

WKB ansatz for ψ_m :

► Pick equipotential with area $2\pi m\ell^2$

2D quantomorphisms

- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

WKB ansatz for ψ_m :

- ► Pick equipotential with area $2\pi m\ell^2$
- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

► Pick equipotential with area $2\pi m\ell^2$

2D quantomorphisms

- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

► Pick equipotential with area $2\pi m\ell^2$

2D quantomorphisms

- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

► Pick equipotential with area $2\pi m\ell^2$

2D quantomorphisms

- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

WKB ansatz for ψ_m :

► Pick equipotential with area $2\pi m\ell^2$

2D quantomorphisms

- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

► Near-Gaussian states:

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

WKB ansatz for ψ_m :

► Pick equipotential with area $2\pi m\ell^2$

2D quantomorphisms

- ► Let $|\psi_m\rangle = P \oint d\theta e^{im\theta} n(\theta) |\mathbf{x}_{m,\theta}\rangle$
- ightharpoonup Schrödinger gives eqn for $n(\theta)$

Example: Edge-deformed traps

$$(r^2, \varphi) \mapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right), V(r, \varphi) = F\left(\frac{r^2}{2g'(\varphi)}\right)$$

► Near-Gaussian states:

$$\psi_m(\mathbf{x}) \sim \frac{e^{img(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{g'} \left[1 + \frac{g''^2}{4g'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{mg'})^2}{1 - i\frac{g''}{2g'}}\right]$$

Change potential adiabatically:

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\bar{\mathbf{g}}_t'(\varphi)}\right)$$

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\bar{\mathbf{g}}_t'(\varphi)}\right)$$

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\bar{\mathbf{g}}_t'(\varphi)}\right)$$

Berry ϕ and central charge?

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\bar{\mathbf{g}}_t'(\varphi)}\right)$$

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\bar{\mathbf{g}}_t'(\varphi)}\right)$$

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\bar{\mathbf{g}}_t'(\varphi)}\right)$$

Change potential adiabatically:

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\bar{\mathbf{g}}_t'(\varphi)}\right)$$

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\bar{\mathbf{g}}_t'(\varphi)}\right)$$

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\overline{\mathbf{g}}_t'(\varphi)}\right)$$

Change potential adiabatically:

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\,\overline{\mathbf{g}}_{\mathbf{f}}'(\varphi)}\right)$$

Change potential adiabatically:

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\bar{\mathbf{g}}_t'(\varphi)}\right)$$

Change potential adiabatically:

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\bar{\mathbf{g}}_t'(\varphi)}\right)$$

Change potential adiabatically:

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\,\overline{\mathbf{g}}_{\mathbf{f}}'(\varphi)}\right)$$

Change potential adiabatically:

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\bar{\mathbf{g}}_t'(\varphi)}\right)$$

Change potential adiabatically:

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\bar{\mathbf{g}}_t'(\varphi)}\right)$$

Change potential adiabatically:

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\,\overline{\mathbf{g}}_{\mathbf{f}}'(\varphi)}\right)$$

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\overline{\mathbf{g}}_t'(\varphi)}\right)$$

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\bar{\mathbf{g}}_t'(\varphi)}\right)$$

Change potential adiabatically:

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\bar{\mathbf{g}}_t'(\varphi)}\right)$$

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\bar{\mathbf{g}}_t'(\varphi)}\right)$$

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\bar{\mathbf{g}}_t'(\varphi)}\right)$$

Berry ϕ and central charge?

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\bar{\mathbf{g}}_t'(\varphi)}\right)$$

Berry ϕ and central charge?

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\bar{\mathbf{g}}_t'(\varphi)}\right)$$

Berry ϕ and central charge?

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\bar{\mathbf{g}}_t'(\varphi)}\right)$$

Change potential adiabatically:

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\bar{\mathbf{g}}_t'(\varphi)}\right)$$

Change potential adiabatically:

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\,\bar{\mathbf{g}}_t'(\varphi)}\right)$$

Change potential adiabatically:

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\bar{\mathbf{g}}_t'(\varphi)}\right)$$

Change potential adiabatically:

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\,\overline{\mathbf{g}}_{\mathbf{f}}'(\varphi)}\right)$$

- $V(\mathbf{x}) = F\left(\frac{r^2}{2\overline{g}_t'(\varphi)}\right)$
- ► Berry phase?

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\bar{\mathbf{g}}_t'(\varphi)}\right)$$

► Berry =
$$i \oint dt \langle \psi_g | \partial_t | \psi_g \rangle$$

00000

Berry ϕ and central charge ?

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\bar{\mathbf{g}}_t'(\varphi)}\right)$$

► Berry =
$$i \oint dt \langle \psi_g | \partial_t | \psi_g \rangle$$

$$\blacktriangleright \ \psi_g \sim \frac{e^{im\bar{g}(\varphi)+i\Phi(\varphi)}}{\left(\frac{1}{\bar{g}'}\left[1+\frac{\bar{g}''^2}{4\bar{g}'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z|-\sqrt{m\bar{g}'})^2}{1-i\frac{\bar{g}''}{2\bar{g}'}}\right]$$

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\overline{\mathbf{g}}_t'(\varphi)}\right)$$

► Berry =
$$i \oint dt \langle \psi_g | \partial_t | \psi_g \rangle$$

$$\blacktriangleright \ \psi_{g} \sim \frac{e^{im\overline{g}(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{\overline{g}'}\left[1 + \frac{\overline{g}''2}{4\overline{g}'2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{m\overline{g}'})^{2}}{1 - i\frac{\overline{g}''}{2\overline{g}'}}\right]$$

00000

Berry ϕ and central charge ?

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\bar{\mathbf{g}}_t'(\varphi)}\right)$$

► Berry =
$$i \oint dt \langle \psi_g | \partial_t | \psi_g \rangle$$

$$\blacktriangleright \ \psi_{g} \sim \frac{e^{\mathrm{i} m \overline{g}(\varphi) + i \Phi(\varphi)}}{\left(\frac{1}{\overline{g}'} \left[1 + \frac{\overline{g}''^{2}}{4\overline{g}'^{2}}\right]\right)^{1/4}} \exp \left[-\frac{(|z| - \sqrt{m \overline{g}'})^{2}}{1 - i \frac{\overline{g}''}{2\overline{g}'}} \right]$$

Berry =
$$\oint dt d\varphi \frac{\dot{g}}{g'} m$$

Change potential adiabatically:

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\bar{\mathbf{g}}_t'(\varphi)}\right)$$

► Berry =
$$i \oint dt \langle \psi_g | \partial_t | \psi_g \rangle$$

$$\blacktriangleright \ \psi_{g} \sim \frac{e^{im\overline{g}(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{\overline{g}'}\left[1 + \frac{\overline{g}''^{2}}{4\overline{g}'^{2}}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{m\overline{g}'})^{2}}{1 - i\frac{\overline{g}''}{2\overline{g}'}}\right]$$

Berry =
$$\oint dt d\varphi \frac{\dot{g}}{g'} m$$

► Aharonov-Bohm phase!

Change potential adiabatically:

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\bar{\mathbf{g}}_t'(\varphi)}\right)$$

► Berry =
$$i \oint dt \langle \psi_g | \partial_t | \psi_g \rangle$$

$$\qquad \qquad \psi_g \sim \frac{e^{im\bar{g}(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{\bar{g}'}\left[1 + \frac{\bar{g}''^2}{4\bar{g}'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{m\bar{g}'})^2}{1 - i\frac{\bar{g}''}{2\bar{g}'}}\right]$$

Berry =
$$\oint dt d\varphi \frac{\dot{g}}{g'} m$$

Change potential adiabatically:

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\bar{\mathbf{g}}_t'(\varphi)}\right)$$

► Berry =
$$i \oint dt \langle \psi_g | \partial_t | \psi_g \rangle$$

$$\blacktriangleright \ \psi_g \sim \frac{e^{im\bar{g}(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{\bar{g}'}\left[1 + \frac{\bar{g}''^2}{4\bar{g}'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{m\bar{g}'})^2}{1 - i\frac{\bar{g}''}{2\bar{g}'}}\right]$$

Berry =
$$\oint dt d\varphi \frac{\dot{g}}{g'} m$$

Change potential adiabatically:

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\bar{\mathbf{g}}_t'(\varphi)}\right)$$

► Berry =
$$i \oint dt \langle \psi_g | \partial_t | \psi_g \rangle$$

$$\blacktriangleright \ \psi_g \sim \frac{e^{im\bar{g}(\varphi)+i\Phi(\varphi)}}{\left(\frac{1}{\bar{g}'}\left[1+\frac{\bar{g}''^2}{4\bar{g}'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z|-\sqrt{m\bar{g}'})^2}{1-i\frac{\bar{g}''}{2\bar{g}'}}\right]$$

Berry =
$$\oint dt d\varphi \frac{\dot{g}}{g'} m$$

Change potential adiabatically:

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\bar{\mathbf{g}}_t'(\varphi)}\right)$$

► Berry =
$$i \oint dt \langle \psi_g | \partial_t | \psi_g \rangle$$

$$\blacktriangleright \ \psi_g \sim \frac{e^{im\bar{g}(\varphi)+i\Phi(\varphi)}}{\left(\frac{1}{\bar{g}'}\left[1+\frac{\bar{g}''^2}{4\bar{g}'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z|-\sqrt{m\bar{g}'})^2}{1-i\frac{\bar{g}''}{2\bar{g}'}}\right]$$

Berry =
$$\oint dt d\varphi \frac{\dot{g}}{g'} \left[m + \frac{1}{4} \left(\frac{g''}{g'} \right)' \right]$$

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\bar{\mathbf{g}}_t'(\varphi)}\right)$$

► Berry =
$$i \oint dt \langle \psi_g | \partial_t | \psi_g \rangle$$

$$\blacktriangleright \ \psi_g \sim \frac{e^{im\bar{g}(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{\bar{g}'}\left[1 + \frac{\bar{g}''^2}{4\bar{g}'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{m\bar{g}'})^2}{1 - i\frac{\bar{g}''}{2\bar{g}'}}\right]$$

Berry =
$$\oint dt d\varphi \frac{\dot{g}}{g'} \left[m + \frac{1}{4} \left(\frac{g''}{g'} \right)' \right]$$

- ► Aharonov-Bohm phase as in quantomorphisms
- ► Central term reminiscent of CFT!

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\bar{\mathbf{g}}_t'(\varphi)}\right)$$

► Berry =
$$i \oint dt \langle \psi_g | \partial_t | \psi_g \rangle$$

$$\blacktriangleright \ \psi_g \sim \frac{e^{im\bar{g}(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{\bar{g}'}\left[1 + \frac{\bar{g}''^2}{4\bar{g}'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{m\bar{g}'})^2}{1 - i\frac{\bar{g}''}{2\bar{g}'}}\right]$$

Berry =
$$\oint dt d\varphi \frac{\dot{\mathbf{g}}}{\mathbf{g}'} \left[m + \frac{1}{4} \left(\frac{\mathbf{g}''}{\mathbf{g}'} \right)' \right]$$

- ► Aharonov-Bohm phase as in quantomorphisms
- ► Central term reminiscent of CFT!

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\bar{\mathbf{g}}_t'(\varphi)}\right)$$

► Berry =
$$i \oint dt \langle \psi_g | \partial_t | \psi_g \rangle$$

$$\blacktriangleright \ \psi_g \sim \frac{e^{im\bar{g}(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{\bar{g}'}\left[1 + \frac{\bar{g}''^2}{4\bar{g}'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{m\bar{g}'})^2}{1 - i\frac{\bar{g}''}{2\bar{g}'}}\right]$$

Berry =
$$\oint dt d\varphi \frac{\dot{g}}{g'} \left[m + \frac{1}{4} \left(\frac{g''}{g'} \right)' \right] + \text{ many other terms :-(}$$

- ► Aharonov-Bohm phase as in quantomorphisms
- ► Central term **reminiscent of CFT**!

$$V(\mathbf{x}) = F\left(\frac{r^2}{2\bar{\mathbf{g}}_t'(\varphi)}\right)$$

► Berry =
$$i \oint dt \langle \psi_g | \partial_t | \psi_g \rangle$$

$$\blacktriangleright \ \psi_g \sim \frac{e^{im\bar{g}(\varphi) + i\Phi(\varphi)}}{\left(\frac{1}{\bar{g}'}\left[1 + \frac{\bar{g}''^2}{4\bar{g}'^2}\right]\right)^{1/4}} \exp\left[-\frac{(|z| - \sqrt{m\bar{g}'})^2}{1 - i\frac{\bar{g}''}{2\bar{g}'}}\right]$$

Berry =
$$\oint dt d\varphi \frac{\dot{g}}{g'} \left[m + \frac{1}{4} \left(\frac{g''}{g'} \right)' \right] + \text{ many other terms :-(}$$

- ► Aharonov-Bohm phase as in quantomorphisms
- ► Central term reminiscent of CFT!
- ► To be continued :-)

Study topological invariance through smooth deformations

ightharpoonup Find Berry ϕ due to two kinds of "deformations"

- Find Berry ϕ due to two kinds of "deformations"
- ▶ Quantomorphisms under control, contain Hall viscosity

- Find Berry ϕ due to two kinds of "deformations"
- ▶ Quantomorphisms under control, contain Hall viscosity
- ► LLL-projected potential deformations are neat

- Find Berry ϕ due to two kinds of "deformations"
- ▶ Quantomorphisms under control, contain Hall viscosity
- ► LLL-projected potential deformations are neat but require more work

Study topological invariance through smooth deformations

- ightharpoonup Find Berry ϕ due to two kinds of "deformations"
- ▶ Quantomorphisms under control, contain Hall viscosity
- ► LLL-projected potential deformations are neat but require more work

Numerous follow-ups

Study topological invariance through smooth deformations

- Find Berry ϕ due to two kinds of "deformations"
- ▶ Quantomorphisms under control, contain Hall viscosity
- ► LLL-projected potential deformations are neat but require more work

Numerous follow-ups:

► Plasma analogy in anisotropic droplets?

Study topological invariance through smooth deformations

- Find Berry ϕ due to two kinds of "deformations"
- ▶ Quantomorphisms under control, contain Hall viscosity
- ► LLL-projected potential deformations are neat but require more work

Numerous follow-ups:

- ► Plasma analogy in anisotropic droplets?
- ▶ Nonlinear edge waves as time-dep deformations?

Study topological invariance through smooth deformations

- Find Berry ϕ due to two kinds of "deformations"
- ▶ Quantomorphisms under control, contain Hall viscosity
- ► LLL-projected potential deformations are neat but require more work

Numerous follow-ups:

- ► Plasma analogy in anisotropic droplets?
- ▶ Nonlinear edge waves as time-dep deformations?
- ► Anisotropic Laughlin states?

Study topological invariance through smooth deformations

- Find Berry ϕ due to two kinds of "deformations"
- ▶ Quantomorphisms under control, contain Hall viscosity
- ► LLL-projected potential deformations are neat but require more work

Numerous follow-ups:

- ► Plasma analogy in anisotropic droplets?
- ► Nonlinear edge waves as time-dep deformations?
- ► Anisotropic Laughlin states?

[with Beauvillain, Estienne, Goldman, Lapierre, Moosavi, Petropoulos, Stéphan,...

...Stay tuned !]

