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» To be continued :-)
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» LLL-projected potential deformations are neat
but require more work

Numerous follow-ups :

» Plasma analogy in anisotropic droplets ?

» Nonlinear edge waves as time-dep deformations ?
» Anisotropic Laughlin states ?

[with Beauvillain, Estienne, Goldman, Lapierre, Moosavi, Petropoulos, Stéphan,...

...Stay tuned !]
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