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Abstract

Starting with a description of the goals of the analysis and a brief

survey of the chiral anomaly, I will review some basic elements of

the theory of the quantum Hall e↵ect in 2D electron gases. I will

discuss the role of anomalous chiral edge currents and of anomaly

inflow in 2D insulators with explicitly or spontaneously broken

parity and time reversal, i.e., in incompressible Hall fluids and

Chern insulators, respectively. The topological Chern-Simons

actions yielding the correct response equations for the 2D bulk of

such materials will be exhibited.

I will then analyse chiral edge spin-currents and the bulk response

equations in time-reversal invariant 2D topological insulators.

To conclude some open problems and an outlook towards other

related areas of theoretical physics will be presented.

For details see: “Gauge invariance and anomalies in condensed
matter physics,” J. Math. Phys. 64, 031903 (2023)



Introduction: Chiral anomaly and e↵ective actions

Consider an insulator consisting of a 2D electron gas in a neutralising
ionic background. The electrons are confined to a region ⌦ in the plane
R2. The space-time of the system is given by ⇤ = R⇥ ⌦. We suppose
that the electrons are coupled to an external electromagnetic vector
potential A = A0 dt + A1 dx1 + A2 dx2.
Since it is assumed that the material is an insulator, i.e., that the
longitudinal conductance vanishes, it is easy to guess the form of the
quantum-mechanical partition function, Z(A), of this system as a
functional of the external vector potential A in the limiting regime of very
large distances and very low frequencies (scaling limit):

logZ(A) =
1

2

Z

⇤
d3x{"E 2(x)� µ�1

B
2(x)}+

+
�H

2

Z

⇤
A ^ dA+ boundary term (⇤)

where " is the dielectric constant of the insulator, µ is its magnetic
permeability, and the coe�cient, �H , of the topological Chern-Simons
action is the Hall conductivity.



Anomalous boundary action

Disregarding from the magnetic moment of electrons, the motion of
electrons confined to the planar region ⌦ only depends on the in-plane
components, E , of the electric field and the component, B , of the
magnetic induction perpendicular to the plane of the sample!
The Chern-Simons term on the right side of (⇤) is “anomalous”: If A is
subject to a gauge transformation the second term in (⇤) changes by a
boundary term: Let A0 = A+ d�, then

Z

⇤
A
0 ^ dA0 =

Z

⇤
A ^ dA+

Z

@⇤
�dA.

The anomaly (2nd) term on the right side is cancelled by the anomaly of
the chiral e↵ective action on @⇤, which is given by

�@⇤(A) =

Z

@⇤
{A+A� � 2A+

@2
�
⇤ A+}d2u,

where A|@⇤ = A+du+ + A�du�, (“light-cone coordinates”).



Action of conserved currents, TFT, braid statistics

The action �@⇤(A) is the generating function of connected Green
functions of the anomalous chiral current in 1+1 dimensions generating a
chiral current algebra; (with the speed of light traded for the propagation
speed of quasi-particles traveling along the edge, @⌦, of the sample).

In a 3D space-time, a conserved current density, J µ, is dual to a closed
two-form, j . If the topology of the sample space-time ⇤ is trivial then

j = dB ,

where B is a one-form (vector potential) unique up to a gradient, d�.
For an insulator, the field theory of a conserved current is topological:
The action of j = dB is the Chern-Simons action,

S⇤(B ;A) =

Z

⇤

�
��1
H

B ^ dB + A ^ dB
�
+ boundary term

We could now engage in a discussion of Chern-Simons theory, of the role
it plays in the general theory of braid statistics, and of how the latter
may be important for quantum computing, etc. – But let’s not!



The chiral anomaly

Anomalous axial currents (for massless fermions):

In 2D:

@µj
µ
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In 4D:
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1. Anomalous Chiral Edge Currents in Incomp. Hall Fluids

From von Klitzing’s lab journal () 1985 Nobel Prize in Physics):

) 1985 Nobel Prize in Physics



Setup & basic quantities

2D EG confined to ⌦ ⇢ xy - plane , in mag. field ~B0 ? ⌦; ⌫ such that
RL = 0. Response of 2D EG to small perturb. em field, ~Ek⌦, ~B ? ⌦,
with ~B tot = ~B0 + ~B , B := |~B |, E := (E1,E2).

Field tensor: F :=

0

@
0 E1 E2

�E1 0 �B
�E2 B 0

1

A = dA, (A: vector pot.)



Electrodynamics of 2D incompressible e�-gases

Def.:
jµ(x) = hJµ(x)iA, µ = 0, 1, 2.

(1) Hall’s Law

j(x) = �H
�
E (x)

�⇤
, (RL = 0!) ! broken P ,T (1)

(2) Charge conservation

@

@t
⇢(x) +r · j(x) = 0 (2)

(3) Faraday’s induction law

@

@t
B tot

3 +r^ E (x) = 0 (3)

Then
@⇢

@t

(2)
= �r · j (1)

= ��Hr^ E
(3)
= �H

@B

@t
(4)



ED of 2D e�-gases, ctd.

Integrate (4) in t, with integration constants chosen as follows:

j0(x) := ⇢(x) + e · n, B(x) = Btot

3 (x)� B0 )

(4) Chern-Simons Gauss law

j0(x) = �HB(x) (5)

Eqs. (1) and (5) ) jµ(x) = �H "µ⌫� F⌫�(x) (6)

Now

0
(2)
= @µj

µ (3),(6)
= "µ⌫�(@µ�H)F⌫� 6= 0, (7)

wherever �H 6= const., e.g., at @⌦. – Actually, jµ is bulk current
density, (jµ

bulk
), 6= conserved total electric current density:

jµtot = jµ
bulk

+ jµ
edge

, @µj
µ
tot = 0, but @µj

µ
bulk

(7)

6= 0 (8)



Anomalous chiral edge currents

We have that

supp jµ
edge

= supp(r�H) ◆ @⌦, j
edge

? r�H .

“Holography”: On supp(r�H),

@µj
µ
edge

(8)
= �@µjµbulk |supp(r�H)

(6)
= ��HEk|supp(r�H) (9)

Chiral anomaly in 1+1 dimensions!

Edge current, jµ
edge

⌘ jµ5 , is anomalous chiral current in 1 + 1 D: At
edge,

e

c
Btotvk = (rVedge)

⇤, Vedge : confining edge pot.



Skipping orbits, hurricanes, and fractional charges

Analogous phenomenon in classical physics: Hurricanes!

~B ! ~!earth, Lorentz force ! Coriolis force, Vedge ! air pressure.

The chiral anomaly in (1 + 1)D says that

@µj
µ
5 = �

e2

h
(

X

i.e.m., ↵

Q2
↵)Ek

with (9)
) �H =

e2

h

X

↵

Q2
↵, (10)

where eQ↵ is the electric charge of the edge current corresponding to a
clockwise-chiral edge mode ↵; (similar contributions from anti-clockwise
modes, but with reversed sign!) ! Bert Halperin’s edge currents!



Edge- and bulk e↵ective actions

Apparently, if �H /2 e
2

h
Z then there exist fractionally charged

quasi-particles propagating along supp(r�H)!
Chiral edge current d. Jµ

edge
= generator of U(1)- current algebra

(free massless fields!) Green functions of Jµ
edge

obtained from 2D
anomalous e↵ective action �@⌦⇥R(Ak) = · · · , where Ak is
restriction of vector potential, A, to boundary @⌦⇥ R.
Anomaly of �H�@⌦⇥R(Ak) – consequence of fact that Jµ

edge
is not

cons. – is cancelled by the one of bulk e↵ective action, S⌦⇥R(A):

jµ
bulk

(x) = hJµ(x)iA ⌘ �S⌦⇥R(A)

�Aµ(x)
(6)!
= �H"

µ⌫�F⌫�(x), x /2 @⌦⇥ R

) S⌦⇥R(A) =
�H
2

Z

⌦⇥R
A ^ dA+ �H�@⌦⇥R(Ak) (11)

Chern-Simons action on manifold with boundary!



Edge- and bulk e↵ective actions – ctd.

The 2D anomalous e↵ective action is given by

�@⌦⇥R(a) :=
Z

@⌦⇥R

⇥
a+a� � 2a±

@2
⌥

⇤ a±
⇤
d2u,

where a = a+du+ + a�du� ⌘ Ak (“light-cone coordinates”). Exercise:
Check that the anomaly of the (bulk) Chern-Simons action, which is a
boundary term, is cancelled by the one of �@⌦⇥R(Ak).

Whatever we have said about 2D electron gases in a homogeneous
external magnetic field exhibiting the QHE can be extended to so-called
Chern insulators, which have the property that Parity and Time Reversal
are broken even in the absence of an external magnetic field, (e.g.,
because of magnetic impurities in the bulk). The low-energy physics of
quasi-particles in the bulk of a Chern insulator resembles the one of
two-component relativistic Dirac fermions coupled to the electromagnetic
vector potential, with an e↵ective action given by (11), with A = Atot,
and �H = e2/2h (= Chern class of a certain vector bundle of Dirac
fermion wave functions over Brillouin zone T2).



Classification of “abelian” Hall fluids & Chern insulators

Next, I sketch a general classification of 2D insulators with broken T and
P in topologically protected states exhibiting quasi-particles with abelian
braid statistics; (“non-abelian states” discussed elsewhere).

As above, J denotes the total electric current density (bulk + edge),
which is conserved, ie., @µJµ = 0. We consider a general ansatz for J:

J =
NX

↵=1

Q↵J↵,

where the J↵ are separately conserved current densities corresp. to
di↵erent quasi-particle species, and the coe↵s. Q↵ 2 R are “charges”.
On a 3D space-time ⇤ = ⌦⇥ R, a conserved current density J can be
derived from a vector potential: If j denotes the 2-form dual to J then
conservation of J implies that dj = 0, and hence

j = dB ,

where the 1-form B is the vector potential of j and is determined up to a
gradient of a scalar function �; i.e., B and B + d� yield the same j .



Chern-Simons e↵ective action of conserved currents

Henceforth we use units where e
2

h
= 1. For a 2D insulator, the field

theory of the conserved currents
�
J↵
�N
↵=1

in the limit of very large
distances and low frequencies must be topological: If P and T are broken
the “most relevant” term in the action is the Chern-Simons action

S⇤(B ,A) :=
NX

↵=1

Z

⇤
{
1

2
B↵ ^ dB↵ + A ^ Q↵dB↵}+ boundary terms, (⇤)

where A is the electromagnetic vector potential, and the boundary terms
must be added to cancel the anomalies under the gauge transformations,
B ! B + d� and A ! A+ d�, of the Chern-Simons action (1st term on
right side).
Carrying out the Gaussian functional integral, we find that

Z
exp
�
iS⇤(B ,A)

� NY

↵=1

DB↵ = exp
�
i
�H

2

Z

⇤
A ^ dA+ �H�⇤(Ak)

�
, (⇤⇤)

where �H =
P

N

↵=1 Q
2
↵.



Classification of 2D “abelian” topological insulators with

broken P and T – bulk degrees of freedom

Physical states of the topological field theory with action given by (⇤) can
be constructed by inserting Wilson lines into the Gaussian functional
integral on the left side of (⇤⇤). The operator measuring the electric
charge contained in a region O of the sample space ⌦ is given by

QO =

Z

O

J0d2x =
NX

↵=1

Q↵

Z

@O
B↵.

If a Wilson line is supposed to create a state describing n electrons or
holes contained in O from the ground state of the insulator then its
electric charge, as measured by QO, is �n + 2k , k = 1, . . . , n. If n is odd
the statistics of this excitation is Fermi-Dirac statistics, if n is even it is
Bose-Einstein statistics. This relation between the electric charge of an
excitation and its statistics implies that the charge quantum numbers of
Wilson lines creating multi-electron-hole excitations must belong to an
odd-integral lattice, �, of rank N, and that Q := (Q1, . . . ,QN) 2 �⇤.
Hence �H =

P
↵=1,...,N Q2

↵ is a rational number!



Classification, ctd. – edge degrees of freedom

Chiral anomaly (10) ) several (N) species of gapless quasi-particles
propagating along edge $ described by N chiral scalar Bose fields
{'↵

}
N

↵=1 with propagation speeds {v↵}N↵=1, such that

1. Chiral electric edge current operator & Hall conductivity

Jµ
edge

= e
NX

↵=1

Q↵ @µ'↵, Q = (Q1, . . . ,QN), �H =
e2

h
Q · QT

2. Multi-electron/hole states loc. along edge created by vertex ops.

: exp i

 
NX

↵=1

qj↵'
↵

!
: , qj =

0

B@
qj1
...
qj
N

1

CA 2 �, j = 1, . . . ,N. (12)

Charge $ Statistics ) � an odd-integral lattice of rank N. Hence:

3. Classifying data are

{ � ; Q 2 �⇤ : “visible”; (qj↵)
N

j,↵=1 : ⇠ CKM matrix ; v = (v↵)
N

↵=1 }

! quasi-particles w. abelian braid statistics!



Success of classification – comparison with data

� = odd-integral lattice, Q 2 �⇤ ) ( e
2

h
)�1�H 2 Q (!) ,. . .



2. Chiral Spin Currents in Planar Topological Insulators

So far, we have not paid attention to electron spin, although there
are 2D EG exhibiting the fractional quantum Hall e↵ect where spin
plays an important role. Won’t study these systems, today.
Instead, we consider time-reversal-invariant 2d topological
insulators (2D TI) exhibiting chiral spin currents.
Pauli Eq. for a spinning electron:

i~Do t = � ~2
2m

g�1/2Dk

�
g1/2gkl

�
Dl t , (13)

where m is the mass of an electron, (gkl) = metric of sample,

 t(x) =

 
 "
t (x)

 #
t (x)

!
2 L2(R3)⌦C2 : 2-component Pauli spinor

i~D0 = i~@t + e'� ~W0 · ~�| {z }
Zeeman coupling

, ~W0 = µc2~B +
~
4
~r^ ~V (14)



U(1)em ⇥ SU(2)spin-gauge invariance

~
i
Dk =

~
i
@k + eAk �m0Vk � ~Wk · ~�, (15)

where ~A is em vector potential, ~V is velocity field describing mean
motion (flow) of sample, (~r · ~V = 0),

~Wk · ~� := [(�µ̃~E +
~
c2

~̇V ) ^ ~�]k
| {z }

spin-orbit interactions

,

and µ̃ = µ+ e~
4mc2

( Thomas precession).
Note that the Pauli equation (13) respects U(1)em ⇥ SU(2)spin -
gauge invariance.
We now consider an interacting 2D gas of electrons confined to a
region ⌦ of the xy - plane, with ~B ? ⌦ and ~E , ~V k⌦. Then the
SU(2) - conn., ~Wµ, is given by W 3

µ · �3, (WM = 0, for M = 1, 2).



E↵ective action of a 2D TI

Thus the connection for parallel transport of the component  " of
 is given by a+w , while parallel transport of  # is determined by
a�w , where aµ = �eAµ +mVµ,wµ = W 3

µ . These connections are
abelian, (phase transformations). Under time reversal,

a0 ! a0, ak ! �ak , but w0 ! �w0, wk ! wk . (16)

The dominant term in the e↵ective action of a 2D insulator is a
Chern-Simons term. If there were only the gauge field a, with
w ⌘ 0, or only the gauge field w , with a ⌘ 0, a Chern-Simons
term would not be invariant under time reversal, and the dominant
term would be given by

S(a) =

Z
dtd2x {"E 2 � µ�1B2} (17)

But, in the presence of two gauge fields, a and w , satisfying (16):



E↵ective action of a 2D TI, ctd.

Combination of two Chern-Simons terms is time-reversal invariant:

S(a,w) =
�

2

Z
{(a+ w) ^ d(a+ w)� (a� w) ^ d(a� w)}

= �

Z
{a ^ dw + w ^ da}

This reproduces (17) for phys. choice of w ! (% J.F., Les Houches
’94!) – The gauge fields a and w transform independently under
gauge transformations, and the Chern-Simons action is anomalous
under these gauge trsfs. on a 2D sample space-time ⇤ = ⌦⇥ R
with a non-empty boundary, @⇤. The anomalous chiral boundary
actions,

±��
�
(a± w)|k

�
,

cancel anomaly of bulk action! Are generating functionals of conn.
Green functions of two counter-propagating chiral edge currents:



Edge degrees of freedom: Spin currents

One of the two counter propagating edge currents has “spin-up”
(in +3-direction, ? ⌦), the other one has “spin down”. Thus, a
net chiral spin current, s3

edge
, can be excited to propagate along the

edge; but there is no net electric edge current!
Response Equations, (2 oppositely (spin-)polarized bands):

j(x) = 2�(rB)⇤, and

sµ3 (x) =
�S(a,w)

�wµ(x)
= 2�"µ⌫�F⌫�(x) (18)

) edge spin current – as in (7)!

We should ask what kinds of quasi-particles may produce the
(bulk) Chern-Simons terms

S±(a± w) = ±�
2

Z
{(a± w) ^ d(a± w),



where, apparently + stands for “spin-up” and � stands for “spin-down”.
Well, it has been known ever since the seventies 1 that a two-component
relativistic Dirac fermion with mass M > 0 (M < 0), coupled to an
abelian gauge field A, breaks parity and time-reversal invariance and
induces a Chern-Simons term

+
(�)

1

2⇡

Z
A ^ d A

We thus argue that a 2D time-reversal invariant topological insulator with
chiral edge spin-current exhibits two species of charged quasi-particles in
the bulk, with one species (spin-up) related to the other one (spin-down)
by time reversal, and each species has two degenerate states per wave
vector mimicking a 2-component Dirac fermion (at small wave vectors).

1
the first published account of this observation – originally due to Magnen,

Sénéor and myself – appears in a paper by Deser, Jackiw and Templeton of 1982



Conclusions

• Physics in 2D is surprisingly rich and has considerable potential for

important technological applications. Interesting mathematical

techniques – ranging from abstract algebra over the topology of fibre

bundles all the way to hard analysis – find applications in the solution

of problems of 2D Physics.

• 2D electron gases, Bose gases and magnetic materials are fascinating

play grounds for experimentalists and theorists alike, not least because

general principles of quantum theory, such as braid statistics, fractional

spin & fractional electric charges, anomalies and their cancellation,

current algebra, holography, two-comp. Dirac-like and Majorana fermions,

etc., appear to manifest themselves in the physics of various 2D systems.

• It is interesting to consider higher-dimensional cousins of the QHE and

of time-reversal invariant topological insulators. Some of them are likely

to be relevant, e.g., in cosmology – in connection with the generation of

primordial magnetic fields in the Universe, Dark Matter & Dark Energy.

These matters are discussed on other occasions.

I thank you for your attention!



“Survivre et Vivre” – 47 years later

For those of you who understand some written French:

... depuis fin juillet 1970 je consacre la plus grande partie de mon

temps en militant pour le mouvement ’Survivre’, fondé en juillet à

Montréal. Son but est la lutte pour la survie de l’espèce humaine,

et même de la vie tout court, menacée par le déséquilibre

écologique croissant causé par une utilisation indiscriminée de la

science et de la technologie et par des mécanismes sociaux

suicidaires, et menacée également par des conflits militaires liés à

la prolifération des appareils militaires et des industries

d’armements. ...

Alexandre Grothendieck

!


