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Outline

Key References: 

• Exact Landau level description of geometry and interaction in a flatband                                     Jie Wang, Cano, Millis, Liu and Yang (PRL, 2021); 

• Hierarchy of ideal flatband in chiral twisted multilayer graphene models                                                          Jie Wang and Zhao Liu (PRL, 2022); 

• Origin of model fractional Chern insulators in all topological ideal flatbands                                      Jie Wang, Klevtsov and Zhao Liu (PRR, 2022).

Related on similar topics (partial list): Bergholtz, Cano, Crepel, Estienne, Fu, Kruchkov, Ozawa, Mera, Mora, Repellin, Vishwanath.

• Fractional Chern insulators 

• motivation, stability (Girvin-MacDonald-Platzmann or W-  algebra) 

• Common lore: no exact GMP algebra in flat band (lattice) systems 
• Concrete models that violates it 

• Ideal flatbands: 
• Quantum geometry 

• Universal wavefunction 

• Emergent exact GMP algebra 

• Implications to real materials 
• moire graphene, moire TMD

∞
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Introduction to Chern bands and fractional Chern insulators
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Fractional quantum Hall effect
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Fractional quantum Hall effect

Chiral edge modes 
Anyon excitation

Fractionally quantized Hall plateau

Laughlin state 

 σxy = − σyx =
1
3

e2

h

Applications: 
Topological quantum computation
Clarke, Alicea, Stengel (2012) 
See also A. Stern et al; M. Cheng; others

Superconductivity is not compatible 
with magnetic field.
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Fractional Chern insulator in Chern band

Landau level Chern band

B

C=+1

C=-1

FCI = partial filling + interaction ? 

Not guaranteed! Competing phases (Fermi liquid, CDW), geometry important!

Haldane (88)

σH = e2 /h σH = e2 /h
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Comparing Landau level and flatband

Landau levels: 

• Zero dispersion 

• Uniform, continuous translation symmetry 

• Chern number C=1 

• Holomorphic LLL wave function

Flat Chern bands: 

• Dispersive 

• Lattice translation symmetry 

• Chern number C=0,1,2,…, 

• Non-holomorphic wave function

Landau level

B
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Comparing Landau level and flatband

Landau levels: 

• Zero dispersion 

• Uniform, continuous translation symmetry 

• Chern number C=1 

• Holomorphic LLL wave function

Flat Chern bands: 

• Dispersive 

• Lattice translation symmetry 

• Chern number C=0,1,2,…, 

• Non-holomorphic wave function

Landau level

B

Exact zero energy ground state for model interactions 

(W-  algebra, Haldane-pseudopotential)∞
Usually interacting ground state is not exact. 

(Ideal flatbands are exceptions)
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Guiding 
center

[Ra, R̄b] = 0 [Rx, Ry] = − [R̄x, R̄y] = l2
B

Landau 
orbital

r = R R̄+

Review of Landau level: guiding center

Lowest Landau level 
(n=0)

n=1

R

R̄

Haldane (83) 
Girvin, MacDonald, Platzmann (86) 
A. Cappelli, Trugenberger, Zemba  (92)
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Guiding 
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[Ra, R̄b] = 0 [Rx, Ry] = − [R̄x, R̄y] = l2
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orbital

r = R R̄+

Review of Landau level: guiding center

Lowest Landau level 
(n=0)

n=1

R

R̄

This non-commutativity implies fruitful results, including:

H = ∑
q

vqρqρ†
q [ρq, ρq′ ] = 2i sin(

q × q′ 
2

l2
B) ⋅ ρq+q′ 

• Girvin-MacDonald-Plazman ( ) algebraW − ∞

Pij
m = 2∫

dq2l2
B

2π
Lm(q2)e− 1

2 q2eiq(Ri−Rj)

• Pseudopotential projectors
Exact ground state 

(crucial for stability)

Haldane (83) 
Girvin, MacDonald, Platzmann (86) 
A. Cappelli, Trugenberger, Zemba  (92)
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Common lore for Chern bands

Common lore: 
• Only Landau level has exact GMP algebra 

• It’s destroyed by Berry curvature fluctuation

Formalism of Band Theory. E. Blount (62)
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Common lore for Chern bands

Reasoning is in below: 
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k , [Rb

k , Rc
k ]] ∼ ∂kΩk + . . .

Common lore: 
• Only Landau level has exact GMP algebra 

• It’s destroyed by Berry curvature fluctuation

There are a large class of flat bands 
(ideal flatbands) that disprove this 

common lore, allowing exact 
interacting ground states with 

arbitrary amount of  fluctuation.Ωk
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Spectrum
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Quantum geometry

Quantum geometric tensor: 𝒬ab
k ≡ ⟨Da

kuk |Db
kuk⟩

Covariant derivative: |Da
kuk⟩ = (∂a

k − i Aa
k) |uk⟩, ⟨uk |Da

kuk⟩ = 0.

Berry connection: Aa(k) ≡ − ⟨uk | i∂a
kuk⟩

𝒬ab
k = gab

k +
i
2

ϵabΩk

Quantum geometric tensor:

Fubini-Study metric Berry curvature

k1 k2

Berry curvature (phase) Fubini-Study metric (amplitude)

k1 k2
k1 k2

|⟨uk |uk+δk⟩ | ≈ 1 − gab
k δ kaδkb

= exp(i∬ Ωkd2k)

 can be expressed by band projectors:  where . 

So it is positive semi-definite with two eigenvalues .

𝒬ab
k 𝒬ab = 2⟨∂a

ku | (𝕀 − Pk) |∂b
ku⟩ Pk = |uk⟩⟨uk |

λ′ k ≥ λk ≥ 0



10

Exceptions: concrete models and common feature
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General introduction to moire system

Criteria for “strong correlation”: | t /U | ≪ 1

Energy

Large kinetic energy

Large 
bandwidth

Energy

Small kinetic energy

small 
bandwidth
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General introduction to moire system

Criteria for “strong correlation”: | t /U | ≪ 1

Energy

Large kinetic energy

Large 
bandwidth

Energy

Small kinetic energy

small 
bandwidth

Moire pattern of twisted bilayer graphene

A novel route (2018) to create and control “strong correlation”

Santos, Peres, Neto (07); Bistritzer, MacDonald (11)

New length scale/ energy scale: 

moire superlattice

Twisting —> reduces bandwidth
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Band structure of twisted bilayer graphene

Moire (mini) Brillouin zone

Valley 1

Valley 2
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Band structure of twisted bilayer graphene

Moire (mini) Brillouin zone

Important bands

Valley 1

Valley 2
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Exception I: chiral twisted bilayer graphene models (C=1)

Valley 1

Valley 2

Grigory, Kruchkov, Vishwanath, PRL (19); Simon Becker et al (21); Ledwith et.al PRR (20); Cecil, Sentil (20).
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Exception I: chiral twisted bilayer graphene models (C=1)

Valley 1

Valley 2

H = (
−iv0σ+θ/2 ⋅ ∇ T(r)

T†(r) −iv0σ−θ/2 ⋅ ∇)
Bottom layer

Top layer

A/A

B/B

A/B

B/A

σ x,y
±θ/2 = e∓ iθ

4 σzσ x,ye± iθ
4 σz Dirac cone (rotated frame)

Grigory, Kruchkov, Vishwanath, PRL (19); Simon Becker et al (21); Ledwith et.al PRR (20); Cecil, Sentil (20).
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Fill  and turn on short-
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ν = 1/3

Generalized 
Laughlin state!

Trgk = Ωk

Grigory, Kruchkov, Vishwanath, PRL (19); Simon Becker et al (21); Ledwith et.al PRR (20); Cecil, Sentil (20).
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Exception II: chiral twisted multilayer graphene models (C>1)
Top n-layer, Bernal stacked

Bottom n-layer, Bernal stacked

JW and Z. Liu; PRL (22); Ledwith et al; PRL (22).



14

Exception II: chiral twisted multilayer graphene models (C>1)
Top n-layer, Bernal stacked

Bottom n-layer, Bernal stacked

C=-n

C=+n

Band structure @ chiral limit, magic angle

Exact flat band exhibits nonuniform , 
but strictly satisfies .

Ωk
Trgk = Ωk JW and Z. Liu; PRL (22); Ledwith et al; PRL (22).
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Exception II: chiral twisted multilayer graphene models (C>1)
Top n-layer, Bernal stacked

Bottom n-layer, Bernal stacked

C=-n

C=+n

Band structure @ chiral limit, magic angle

Exact flat band exhibits nonuniform , 
but strictly satisfies .

Ωk
Trgk = Ωk

n=2 n=3

• Short range interaction exact zero modes start to occur at  
• Exactly Halperin state’s filling fraction (C-layered Landau level). 
• Entanglement properties all agree with model Halperin state (infinity entanglement gap).

ν = 1/(2C + 1) .

JW and Z. Liu; PRL (22); Ledwith et al; PRL (22).
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Exception III: many other models

The above are not specific features of twisted 
graphene models, but in fact something general.
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Exception III: many other models

The above are not specific features of twisted 
graphene models, but in fact something general.

(1) Kapit-Mueller model 
(A variant of Hofstadter model with fine tuned toppings)

(2) Dirac fermion in periodic magnetic field

H = ∑
j≠k

J(zj, zk)a†
j ak J(zj, zk) = W(z)e (π/2)(zj z*−z*j z)ϕ

W(z) = t × G (z)e− π
2 [(1−ϕ)|z|2] G (z) = (−1)x+y+xy

Other models exhibit exact many-body zero modes

Index theorem protected zero modesH = vFσ ⋅ (p − eA − eÃ)
Uniform Periodic

Kapit, Mueller PRL (10); J Dong, JW, L Fu (22).
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Exception III: many other models

The above are not specific features of twisted 
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Ideal flatbands
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Quantum geometry and momentum space holomorphicity
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Quantum geometry and momentum space holomorphicity

Quantum geometric tensor: .𝒬ab
k = gab

k +
i
2

ϵabΩk Denote its two eigenvalues  and eigenvectors .λ′ k ≥ λk ≥ 0 ω′ k,a, ωk,a

𝒬ab
k ω ′ k,b = λ′ kω ′ a

k 𝒬ab
k ωk,b = λkω a

k
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k 𝒬ab
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Physical intuition (make analogous to Landau level physics)

| det gk | = |Ωk |

Local unit flux, but 
shape unfixed

Trω(gk) = |Ωk |

Local unit flux, but 
shape unfixed

𝒬ab
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k ωb = 0
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ωab = ωaω*b + ω*a ωb
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Quantum geometry and momentum space holomorphicity

From its positive semi-definite property: .Trω(gk) ≥ | det gk | ≥ |Ωk |

Bruno Mera, T. Ozawa; PRB (2021). 
M. Claassen et al PRL (2015). 
Ledwith et al PRR (2020). 
JW et al PRL (2021)

Saturation of the trace bound ( ) is fully equivalent to 
momentum space holomorphilicity. 

The cell-periodic part of Bloch wavefunction  

is holomorphic in  up to a norm: 

Trωgk = Ωk

uk(r) ≡ e−ik⋅rψk(r)
k ≡ ωaka

uk(r) = Nk uholo
k=ωaka

(r)
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Consequence from holomorphicity - I: universal wavefunction form (C=1)

Jie Wang, J. Cano, A.J. Millis, Z. Liu, B. Yang; PRL (2021).

Most general form of C=1 ideal flatband wavefunction:

ψk(r) = Nk ℬ(r) Φk(r)

k-independent 
function

LLL 
wavefunctionNormalization

Φk(r) = σ (z − zk)ez*k ze− 1
2 |z|2e− 1

2 |zk|2

Torus lowest Landau level wavefunction in terms of Weierstrass Sigma 
function σ (z + a1,2) = − ea*(z+a/2)σ (z)

zk ≡ − ik = − iωaka
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function

LLL 
wavefunctionNormalization

Φk(r) = σ (z − zk)ez*k ze− 1
2 |z|2e− 1

2 |zk|2

Torus lowest Landau level wavefunction in terms of Weierstrass Sigma 
function σ (z + a1,2) = − ea*(z+a/2)σ (z)

zk ≡ − ik = − iωaka

uk(r) = e−ik⋅rψk(r) = Nke− 1
2 |zk|2 × σ (z − zk)ez*zke− 1

2 |z|2
To check:

Holomorphic in kNon-holomorphic part 
(normalization)
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Jie Wang, J. Cano, A.J. Millis, Z. Liu, B. Yang; PRL (2021).

Generalized Laughlin wavefunction (exact zero modes):

ΨFCI = ∏
i

ℬ(ri) × ΨLaughlin .

ΨLaughlin = ∏
i< j

σ3(zi − zj)
3

∏
i=1

σ (∑
i

zi − αi) .

Most general form of C=1 ideal flatband wavefunction:

ψk(r) = Nk ℬ(r) Φk(r)

k-independent 
function

LLL 
wavefunctionNormalization

Φk(r) = σ (z − zk)ez*k ze− 1
2 |z|2e− 1

2 |zk|2

Torus lowest Landau level wavefunction in terms of Weierstrass Sigma 
function σ (z + a1,2) = − ea*(z+a/2)σ (z)

zk ≡ − ik = − iωaka

uk(r) = e−ik⋅rψk(r) = Nke− 1
2 |zk|2 × σ (z − zk)ez*zke− 1

2 |z|2
To check:

Holomorphic in kNon-holomorphic part 
(normalization)

Factor  satisfies : 

• k-independent, quasi-periodic (s.t.  is Bloch). 

• breaks translation symmetry from continuous to lattice 

• Determines Berry curvature distribution (next slides)

ℬ(r) ℬ(r + a) = e− i
2 a×rℬ(r)

ψk
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Consequence from holomorphicity - I: universal wavefunction form (C>1)

C = C(r) =
1

2π i ∮ dk ∂k ln uk(r) =
1

2π i ∮ dk ∂k ln |uk⟩

• Topology = zeros (Riemann-Roch Theorem) 

• Dual Thouless pumping:  is a “boundary condition” 

• Color-entangled wavefunction.

r

r0 r0 + 0.2 a1 r0 + 0.4 a1 r0 + 0.6 a1 r0 + 0.8 a1 r0 + 1.0 a1

C
=

2
C

=
3

Momentum-space plots of  for fixed |Ψk(r) | r

Jie Wang, S. Klevtsov, Z. Liu (2022).
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Consequence from holomorphicity - I: universal wavefunction form (C>1)

Color-entangled wavefunction (C>1): 

 uk(r) = ℬ(r) vk(r)+ℬ(r + a1) vk(r + a1)

Two (C) inequivalent sets of LLL wave functions:  and .vk(r) vk(r + a1)

Two inequivalent 
mapping to LLL, 

C=2

Generalized LLL wavefunction (C=1): 

 uk(r) = ℬ(r) vk(r)

One set of LLL wave functions: .vk(r)

For comparison, 
C=1.

At fixed r, wavefunction are classified following classification of holomorphic 
line bundles (theta/Weierstrass functions).

Here vk(r) = σ (z − zk)e
1
C z*zke− 1

2C |z|2e− 1
2C |zk|2

JW, Semyon Klevtsov, Zhao Liu. (2022)
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Consequence from holomorphicity - II: Kahler potential & GMP algebra

Anti-holomorphic Berry connection: Āk ≡ ⟨uk | ∂̄kuk⟩ = i (iN−1
k ∂̄kNk)∫r

N2
kuholo*

k (r)uholo
k (r) = − ∂̄k log Nk

Wavefunction: uk(r) = Nk × uholo
k (r)

Berry curvature: Ωk = − i∂k Āk + i∂̄k Ak = ∇2
k log Nk

Important: this relates the Berry 
curvature to normalization factors

JW, Jen Cano, Andrew Millis, Zhao Liu, Bo Yang. arXiv 2105.07491 (PRL, 21)



Ωk = C + δΩk

Nk = e− C
2 k2

× δNk

Normalize to 1 Normalize to δNk

Consequence from holomorphicity - II: Kahler potential & GMP algebra

JW, Semyon Klevtsov, Zhao Liu. (2022)

u Bloch
k = δNk ⋅ uholo

k e− C
2 k2 uk = uholo

k e− C
2 k2

Key intuition: Ωk = ∇2
k log Nk

Q̄a = − i∂a
k + Cϵabkb /2

Emergent exact new “guiding center” and “Landau orbital” operators

Qa = − i∂a
k − Cϵabkb /2

[Qa, Q̄b] = 0 [Qa, Qb] = − iϵabC [Q̄a, Q̄b] = + iϵabC

āuk(r) = ωaQauk(r) = 0

eiq⋅Quk(r) = e
i
2 q⋅ruk(r + Cϵabqb)

eiq1⋅Qeiq2⋅Q = eiCq1×q2/2ei(q1+q2)⋅Q

Exact dual LLL condition

Exact dual magnetic translationuk(r)

Key points: 
• Exact closed density algebra for unnormalized states (emergent, hidden). 
• Normalization does not affect interacting zero modes. 
• Position-momentum duality is important.
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Implication to real materials
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Phase diagram for ideal flatband

Berry curvature 
Fluctuation

Interaction range

Exact 
FCI

CDW, Wigner 
crystal and 

others

FCI

Beyond ideal flatband limit 
e.g. Trgk ≠ Ωk
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Phase diagram for ideal flatband

Berry curvature 
Fluctuation

Interaction range

Exact 
FCI

CDW, Wigner 
crystal and 

others

FCI

Beyond ideal flatband limit 
e.g. Trgk ≠ Ωk

Message to experimentalists (to search for FCI): 

1. Design/engineer material’s quantum geometry 

(single-particle property) 

2. Screen the interaction range

zero mode × 3Laughlin

(w, λ) = (0,0)

all × 3Laughlin

CDW
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Application of ideal flatband theory - I: twisted bilayer graphene

Single-electron transistor microscopy 
——— local inverse compressibility dμ /dn

Yonglong Xie et, al; Nature (21)
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Yonglong Xie et, al; Nature (21)

FCIs at high field

CDW at low field

Quantum phases identified from the 
Streda formula

CDW: t = 0, s = fractional 

FCI: t = fractional, s = fractionalZo
om

 in

ν = t (Φ/Φ0) + s

Chern number Zero-field filling
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Application of ideal flatband theory - I: twisted bilayer graphene

Single-electron transistor microscopy 
——— local inverse compressibility dμ /dn

Yonglong Xie et, al; Nature (21)

FCIs at high field

CDW at low field

Quantum phases identified from the 
Streda formula

CDW: t = 0, s = fractional 

FCI: t = fractional, s = fractionalZo
om

 in

ν = t (Φ/Φ0) + s

Chern number Zero-field filling

Berry curvature 
Fluctuation

Interaction 
range

Exact 
FCI

CDW, 
Wigner 
crystal 

and others

FCI

Beyond ideal flatband 
limit

Role of 
magnetic field

Calculation shows small B-field tunes quantum geometries
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Strong spin-orbit coupling

K, spin-up K’, spin-down

Monolayer hole-band

Application of ideal flatband theory - II: twisted TMD
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Strong spin-orbit coupling

K, spin-up K’, spin-down

Monolayer hole-band

Application of ideal flatband theory - II: twisted TMD

AA-stacked homo-bilayer TMD

Top, K Bottom, K

Interlayer-tunneling

Flat moire band
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Application of ideal flatband theory - II: twisted TMD

Moire TMD band structure

N. Duran, Jie Wang, Kaxiras group, Repellin, Cano (2023).

Deviation from the 
trace condition

Bandwidth

Guidance to material engineering:  

pressure and angle tuned band properties!

Magic line: 
simultaneous optimization of bandwidth and trace condition

Phase diagram

T̄ = ∫ d2k [Trgk − Ωk]

C=1
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Application of ideal flatband theory - II: twisted TMD (twisted MoTe2)

Quantum geometry of twisted MoTe2 is nearly ideal.

University of Washington (Xiao-dong Xu group; arXiv 2304.08470) Cornell (Jie Shan, Kinfai Mak; arXiv 2305.00973)

Theory: Di Xiao group, Liang Fu group.

Two independent experiments show evidence of zero field fractional Chern insulator.
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Summary:

Jie Wang, J. Cano, A.J. Millis, Z. Liu, B. Yang; PRL (2021). 
Jie Wang, Zhao Liu; PRL (2022). 
Jie Wang, Y. Zheng, A.J. Millis, J. Cano; PRR (2021).

Jie Wang, S. Klevtsov, Z. Liu; arXiv (2022). 
J. Dong, Jie Wang, Liang Fu; arXiv (2022). 
N. Duran, Jie Wang, Kaxiras group, Repellin, Cano (2023).

Berry curvature 
Fluctuation

Interaction range

Exact 
FCI

CDW, Wigner 
crystal and 

others

FCI

Theory

Experiment & material design

Take home message: 

• Common wisdom that only Landau level has GMP algebra is now 

revisited. 

• Ideal flatbands are ideal platform to study quantum Hall effect on 

curved manifold. 

• Quantum geometry (especially overlooked Fubini-Study metric) 

are important indicator for real experiment.
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Backup slides



Fractional Chern insulator: to be or not to be?

Is fractional Chern insulator guaranteed?

Δ → ∞, D → 0 ν =
1
3
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Plot: local density of states n(r) = ∫ d2k |ψk(r) |2
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Is fractional Chern insulator guaranteed?

Δ → ∞, D → 0 ν =
1
3

No! 

Wavefunctions can still be highly nonuniform! 

Flatband-projected interacting Hamiltonian: 

H = ∑
q

vq : ρq ρ−q : , ρq = ∑
k

⟨uk+q |uk⟩c†
k+qck

31

Bloch wavefunction (lattice translational invariant)

Plot: local density of states n(r) = ∫ d2k |ψk(r) |2

If wavefunction 
varies strongly

Charge density wave/ 
Wigner crystal is favored

Uncorrelated state (single slater determinant)

Key question of this talk: 

How to characterize wavefunction’s 

role in interacting physics?

Important 
geometric 

information!
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Quantum anomalous Hall effect in twisted bilayer graphene (TBG)

Small spin-orbit coupling: spin degenerate 8 flatbands = 2 spin, 2 valley, 2 sub-lattice



32

Quantum anomalous Hall effect in twisted bilayer graphene (TBG)

Small spin-orbit coupling: spin degenerate 8 flatbands = 2 spin, 2 valley, 2 sub-lattice

Schematic illustration of the 8 flatbands of TBG 

Without hBN 

 symmetricC2T

Valley ζ = + 1 Valley ζ = − 1



32

Quantum anomalous Hall effect in twisted bilayer graphene (TBG)

Small spin-orbit coupling: spin degenerate

Hexagonal boron nitride (hBN) encapsulation

8 flatbands = 2 spin, 2 valley, 2 sub-lattice

Schematic illustration of the 8 flatbands of TBG 

Without hBN 

 symmetricC2T

Valley ζ = + 1 Valley ζ = − 1
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Quantum anomalous Hall effect in twisted bilayer graphene (TBG)

Small spin-orbit coupling: spin degenerate

Hexagonal boron nitride (hBN) encapsulation

With hBN 

 breakingC2

C=-1

C=+1

8 flatbands = 2 spin, 2 valley, 2 sub-lattice

Schematic illustration of the 8 flatbands of TBG 

Without hBN 

 symmetricC2T

Valley ζ = + 1 Valley ζ = − 1
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Quantum anomalous Hall effect in twisted bilayer graphene

Stanford, D. Goldhaber-Gordon group; Science (19) 
UCSB, A. Young group; Science (19)

Observation of anomalous Hall effect @ ν = 3/4
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Quantum anomalous Hall effect in twisted bilayer graphene

Non-interacting
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Quantum anomalous Hall effect in twisted bilayer graphene

Non-interacting

Stanford, D. Goldhaber-Gordon group; Science (19) 
UCSB, A. Young group; Science (19)

Observation of anomalous Hall effect @ ν = 3/4

Interaction driven spontaneous time-reversal breaking

C=+1

C=-1

Q: Is fractional Chern insulators possible by partially fill the band ?
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Bistritzer, MacDonald (PNAS 11) 
Tarnopolsky, Kruchkov, Vishwanath (PRL 19) 

Lattice relaxation and the chiral model of twisted bilayer graphene

A B

A-B region

wAB

A-A region

wAA

Lattice relaxation: wAA < wAB

90 meV 110 meV
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Bistritzer, MacDonald (PNAS 11) 
Tarnopolsky, Kruchkov, Vishwanath (PRL 19) 

Lattice relaxation and the chiral model of twisted bilayer graphene

A B

A-B region

wAB

A-A region

wAA

Kb
+ Kt

+ Γ M Kb
+

Bistritzer-MacDonald:  wAA = wAB = 100 meV

Kb
+ Kt

+ Γ M Kb
+

θ = 1.13∘

Chiral model: wAA = 0, wAB = 110 meV

Lattice relaxation: wAA < wAB

90 meV 110 meV



35

Universality of the flatband wavefunction
Start from k-space holomorphic function

uk+b(r) = eiϕk,be−ib⋅ruk(r)

JW, Jen Cano, Andrew Millis, Zhao Liu, Bo Yang. PRL (21)

C = −
1

2π (ϕk0+b1,b2
− ϕk0,b2

+ ϕk0,b1
− ϕk0+b2,b1)

Boundary condition is constrained by the Chern number

ϕk,b

Trick: origin of Brillouin zone is a ‘gauge choice’, so C is independent on it:

Is constrained to be linear, holomorphic function of k (fixed form up to gauge transformations)

Ψk(r) = Nk ℬ(r) Φk(r)

Therefore, the most general form of C=1 ideal flatband wavefunction is chiral TBG’s:
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Thank you for attention


