Universal and Exact Aspects of Ideal Flatbands

--- quantum geometry and momentum space curved quantum Hall effect

JIE WANG

CENTER OF MATHEMATICAL SCIENCES AND APPLICATIONS

HARVARD UNIVERSITY

Outline

- Fractional Chern insulators
 - motivation, stability (Girvin-MacDonald-Platzmann or $W-\infty$ algebra)
- Common lore: no exact GMP algebra in flat band (lattice) systems
 - Concrete models that violates it

• Ideal flatbands:

- Quantum geometry
- <u>Universal wavefunction</u>
- Emergent exact GMP algebra
- Implications to real materials
 - moire graphene, moire TMD

Key References:

- Exact Landau level description of geometry and interaction in a flatband
- Hierarchy of ideal flatband in chiral twisted multilayer graphene models
- Origin of model fractional Chern insulators in all topological ideal flatbands

Jie Wang, Cano, Millis, Liu and Yang (PRL, 2021); Jie Wang and Zhao Liu (PRL, 2022); Jie Wang, Klevtsov and Zhao Liu (PRR, 2022).

Related on similar topics (partial list): Bergholtz, Cano, Crepel, Estienne, Fu, Kruchkov, Ozawa, Mera, Mora, Repellin, Vishwanath.

Introduction to Chern bands and fractional Chern insulators

Fractionally quantized Hall plateau

Chiral edge modes Anyon excitation

Chiral edge modes Anyon excitation

Applications:

Topological quantum computation

4

Fractional Chern insulator in Chern band

FCI = partial filling + interaction ?

Not guaranteed! Competing phases (Fermi liquid, CDW), geometry important!

Haldane (88)

Comparing Landau level and flatband

В

Landau levels:

- Zero dispersion
- Uniform, continuous translation symmetry

Landau level

- Chern number C=1
- Holomorphic LLL wave function

Flat Chern bands:

- Dispersive
- Lattice translation symmetry
- Chern number C=0,1,2,...,
- Non-holomorphic wave function

Comparing Landau level and flatband

В

Landau levels:

- Zero dispersion
- Uniform, continuous translation symmetry

Landau level

- Chern number C=1
- Holomorphic LLL wave function

Exact zero energy ground state for model interactions $(W-\infty algebra, Haldane-pseudopotential)$

Flat Chern bands:

- Dispersive
- Lattice translation symmetry
- Chern number C=0,1,2,...,
- Non-holomorphic wave function

Comparing Landau level and flatband

B

Landau levels:

- Zero dispersion
- Uniform, continuous translation symmetry

Landau level

- Chern number C=1
- Holomorphic LLL wave function

Exact zero energy ground state for model interactions $(W-\infty algebra, Haldane-pseudopotential)$

Flat Chern bands:

- Dispersive
- Lattice translation symmetry
- Chern number C=0,1,2,...,
- Non-holomorphic wave function

Usually interacting ground state is not **exact**. (Ideal flatbands are exceptions)

Haldane (83) Girvin, MacDonald, Platzmann (86) A. Cappelli, Trugenberger, Zemba (92)

Haldane (83) Girvin, MacDonald, Platzmann (86) A. Cappelli, Trugenberger, Zemba (92)

This non-commutativity implies fruitful results, including:

Haldane (83) Girvin, MacDonald, Platzmann (86) A. Cappelli, Trugenberger, Zemba (92)

This non-commutativity implies fruitful results, including:

Haldane (83) Girvin, MacDonald, Platzmann (86) A. Cappelli, Trugenberger, Zemba (92)

Common lore:

- Only Landau level has exact GMP algebra
- It's destroyed by Berry curvature fluctuation

Even if we ignore one-body dispersion, and consider projected short-ranged interaction:

Common lore:

- Only Landau level has exact GMP algebra
- It's destroyed by Berry curvature fluctuation

Even if we ignore one-body dispersion, and consider projected short-ranged interaction:

Common lore:

- Only Landau level has exact GMP algebra
- It's destroyed by Berry curvature fluctuation

•

Formalism of Band Theory. E. Blount (62)

Common lore:

- Only Landau level has exact GMP algebra
- It's destroyed by Berry curvature fluctuation

Reasoning is in below:

Can define projected coordinates

 $R_k^a = -i\partial_k^a + A_k^a$

- However, algebra no longer closes:
 - $[R_k^a, R_k^b] = -i\Omega_k \epsilon^{ab}$
 - $[R_k^a, [R_k^b, R_k^c]] \sim \partial_k \Omega_k + \dots$
- No closed density algebra, because of the lack of continuous translation invariance.

Even if we ignore one-body dispersion, and consider projected short-ranged interaction:

8

Common lore:

- Only Landau level has exact GMP algebra
- It's destroyed by Berry curvature fluctuation

Reasoning is in below:

Can define projected coordinates

 $R_k^a = -i\partial_k^a + A_k^a$

- However, algebra no longer closes:
 - $[R_k^a, R_k^b] = -i\Omega_k \epsilon^{ab}$
 - $[R_k^a, [R_k^b, R_k^c]] \sim \partial_k \Omega_k + \dots$
- No closed density algebra, because of the lack of continuous translation invariance.

Formalism of Band Theory. E. Blount (62)

Quantum geometry

Berry connection: $A^{a}(k) \equiv -\langle u_{k} | i \partial_{k}^{a} u_{k} \rangle$

Covariant derivative: $|D_{\mathbf{k}}^{a}u_{\mathbf{k}}\rangle = (\partial_{\mathbf{k}}^{a} - iA_{\mathbf{k}}^{a})|u_{\mathbf{k}}\rangle, \quad \langle u_{\mathbf{k}}|D_{\mathbf{k}}^{a}u_{\mathbf{k}}\rangle = 0.$

Quantum geometric tensor: $\mathcal{Q}_{\mathbf{k}}^{ab} \equiv \langle D_{\mathbf{k}}^{a}u_{\mathbf{k}} | D_{\mathbf{k}}^{b}u_{\mathbf{k}} \rangle$

Quantum geometric tensor:

Fubini-Study metric

Berry curvature

 $\mathscr{Q}^{ab}_{\mathbf{k}}$ can be expressed by band projectors: $\mathscr{Q}^{ab} = 2\langle \partial^a_{\mathbf{k}} u | (\mathbb{I} - P_{\mathbf{k}}) | \partial^b_{\mathbf{k}} u \rangle$ where $P_{\mathbf{k}} = |u_{\mathbf{k}}\rangle \langle u_{\mathbf{k}}|$. So it is positive semi-definite with two eigenvalues $\lambda'_{\mathbf{k}} \ge \lambda_{\mathbf{k}} \ge 0$.

Exceptions: concrete models and common feature

Criteria for "strong correlation": $|t/U| \ll 1$

Santos, Peres, Neto (07); Bistritzer, MacDonald (11)

Santos, Peres, Neto (07); Bistritzer, MacDonald (11)

Santos, Peres, Neto (07); Bistritzer, MacDonald (11)

Band structure of twisted bilayer graphene

Moire (mini) Brillouin zone

Band structure of twisted bilayer graphene

 K_{+}

13

Top n-layer, Bernal stacked

Bottom n-layer, Bernal stacked

Top n-layer, Bernal stacked

Bottom n-layer, Bernal stacked

Exact flat band exhibits nonuniform $\Omega_{\mathbf{k}}$, but strictly satisfies $\mathrm{Tr}g_{\mathbf{k}} = \Omega_{\mathbf{k}}$.
Exception II: chiral twisted multilayer graphene models (C>1)

Top n-layer, Bernal stacked

Bottom n-layer, Bernal stacked

Exact flat band exhibits nonuniform Ω_k , but strictly satisfies $\text{Tr}g_k = \Omega_k$.

- Short range interaction exact zero modes start to occur at $\nu = 1/(2C+1)$.
- Exactly Halperin state's filling fraction (C-layered Landau level).
- Entanglement properties all agree with model Halperin state (infinity entanglement gap).

The above are not **specific** features of twisted graphene models, but in fact something **general**.

The above are not **specific** features of twisted graphene models, but in fact something **general**.

Other models exhibit exact many-body zero modes

(1) Kapit-Mueller model

(A variant of Hofstadter model with fine tuned toppings)

$$H = \sum_{j \neq k} J(z_j, z_k) a_j^{\dagger} a_k \qquad J(z_j, z_k) = W(z) e^{(\pi/2)(z_j z^* - z_j^* z)\phi}$$

 $W(z) = t \times G(z)e^{-\frac{\pi}{2}[(1-\phi)|z|^2]} \quad G(z) = (-1)^{x+y+xy}$

(2) Dirac fermion in periodic magnetic field

The above are not **specific** features of twisted graphene models, but in fact something **general**.

Other models exhibit exact many-body zero modes

(1) Kapit-Mueller model

(A variant of Hofstadter model with fine tuned toppings)

$$H = \sum_{j \neq k} J(z_j, z_k) a_j^{\dagger} a_k \qquad J(z_j, z_k) = W(z) e^{(\pi/2)(z_j z^* - z_j^* z)\phi}$$

 $W(z) = t \times G(z) e^{-\frac{\pi}{2}[(1-\phi)|z|^2]} \quad G(z) = (-1)^{x+y+xy}$

(2) Dirac fermion in periodic magnetic field

 $\operatorname{Tr}_{\omega}g_{\mathbf{k}} \equiv \omega_{ab}g_{\mathbf{k}}^{ab}$

All common features:

- Exact flat single-particle dispersion.
- Positive-definite Berry curvature $\Omega_{\mathbf{k}} > 0$.
- Satisfies the trace relation: $\text{Tr}_{\omega}g_{\mathbf{k}}^{ab} = \Omega_{\mathbf{k}}$ for all \mathbf{k} .

The above are not **specific** features of twisted graphene models, but in fact something **general**.

Other models exhibit exact many-body zero modes

(1) Kapit-Mueller model

(A variant of Hofstadter model with fine tuned toppings)

 $H = \sum_{j \neq k} J(z_j, z_k) a_j^{\dagger} a_k \qquad J(z_j, z_k) = W(z) e^{(\pi/2)(z_j z^* - z_j^* z)\phi}$

 $W(z) = t \times G(z) e^{-\frac{\pi}{2}[(1-\phi)|z|^2]} \quad G(z) = (-1)^{x+y+xy}$

(2) Dirac fermion in periodic magnetic field

 $\operatorname{Tr}_{\omega}g_{\mathbf{k}} \equiv \omega_{ab}g_{\mathbf{k}}^{ab}$

All common features:

- Exact flat single-particle dispersion.
- Positive-definite Berry curvature $\Omega_{\mathbf{k}} > 0$.
- Satisfies the trace relation: $Tr_{\omega}g_{\mathbf{k}}^{ab} = \Omega_{\mathbf{k}}$ for all \mathbf{k} .

These <u>define</u> ideal flatband.

JW, J. Cano, A.J. Millis, Z. Liu, B. Yang; PRL (2021). JW, S Kletsov, Z. Liu; arXiv (2022).

The above are not **specific** features of twisted graphene models, but in fact something **general**.

Other models exhibit exact many-body zero modes

(1) Kapit-Mueller model

(A variant of Hofstadter model with fine tuned toppings)

$$H = \sum_{j \neq k} J(z_j, z_k) a_j^{\dagger} a_k \qquad J(z_j, z_k) = W(z) e^{(\pi/2)(z_j z^* - z_j^* z)\phi}$$

$$W(z) = t \times G(z)e^{-\frac{\pi}{2}[(1-\phi)|z|^2]} \quad G(z) = (-1)^{x+y+xy}$$

(2) Dirac fermion in periodic magnetic field

 $\operatorname{Tr}_{\omega}g_{\mathbf{k}} \equiv \omega_{ab}g_{\mathbf{k}}^{ab}$

All common features:

- Exact flat single-particle dispersion.
- Positive-definite Berry curvature $\Omega_{\mathbf{k}} > 0$.
- Satisfies the trace relation: $Tr_{\omega}g_{\mathbf{k}}^{ab} = \Omega_{\mathbf{k}}$ for all \mathbf{k} .

All these examples strongly suggest:

- Universal properties implied from quantum geometry.
- Emergent projective properties (hidden GMP algebra)
- High Chern number corresponds to multiple Landau-levels.

JW, J. Cano, A.J. Millis, Z. Liu, B. Yang; PRL (2021). JW, S Kletsov, Z. Liu; arXiv (2022).

Ideal flatbands

Quantum geometric tensor:
$$\mathcal{Q}_{\mathbf{k}}^{ab} = g_{\mathbf{k}}^{ab} + \frac{\iota}{2} \epsilon^{ab} \Omega_{\mathbf{k}}.$$

Denote its two eigenvalues $\lambda'_{\mathbf{k}} \geq \lambda_{\mathbf{k}} \geq 0$ and eigenvectors $\omega'_{\mathbf{k},a}, \omega_{\mathbf{k},a}$.

$$\mathcal{Q}_{\mathbf{k}}^{ab}\omega_{\mathbf{k},b}^{\prime} = \lambda_{\mathbf{k}}^{\prime}\omega_{\mathbf{k}}^{\prime a} \qquad \mathcal{Q}_{\mathbf{k}}^{ab}\omega_{\mathbf{k},b} = \lambda_{\mathbf{k}}\omega_{\mathbf{k}}^{a}$$

Quantum geometric tensor: $\mathcal{Q}_{\mathbf{k}}^{ab} = g_{\mathbf{k}}^{ab} + \frac{i}{2} \epsilon^{ab} \Omega_{\mathbf{k}}.$

Denote its two eigenvalues $\lambda'_k \geq \lambda_k \geq 0$ and eigenvectors $\omega'_{k,a}, \omega_{k,a}$.

$$\mathcal{Q}_{\mathbf{k}}^{ab}\omega_{\mathbf{k},b}^{\prime} = \lambda_{\mathbf{k}}^{\prime}\omega_{\mathbf{k}}^{\prime a} \qquad \mathcal{Q}_{\mathbf{k}}^{ab}\omega_{\mathbf{k},b} = \lambda_{\mathbf{k}}\omega_{\mathbf{k}}^{ab}$$

From its positive semi-definite property: $\operatorname{Tr}_{\omega}(g_k) \ge |\det g_k| \ge |\Omega_k|$.

Quantum geometric tensor:
$$\mathcal{Q}^{ab}_{\mathbf{k}} = g^{ab}_{\mathbf{k}} + \frac{\iota}{2} \epsilon^{ab} \Omega_{\mathbf{k}}$$

Denote its two eigenvalues $\lambda'_{\mathbf{k}} \geq \lambda_{\mathbf{k}} \geq 0$ and eigenvectors $\omega'_{\mathbf{k},a}, \omega_{\mathbf{k},a}$.

$$\mathcal{Q}_{\mathbf{k}}^{ab}\omega_{\mathbf{k},b}' = \lambda_{\mathbf{k}}'\omega_{\mathbf{k}}'^{a} \qquad \mathcal{Q}_{\mathbf{k}}^{ab}\omega_{\mathbf{k},b} = \lambda_{\mathbf{k}}\omega_{\mathbf{k}}^{a}$$

From its positive semi-definite property: $\operatorname{Tr}_{\omega}(g_k) \ge |\det g_k| \ge |\Omega_k|$.

Physical intuition (make analogous to Landau level physics)

Quantum geometric tensor: $\mathcal{Q}_{\mathbf{k}}^{ab} = g_{\mathbf{k}}^{ab} + \frac{i}{2} \epsilon^{ab} \Omega_{\mathbf{k}}.$

From its positive semi-definite property: $\operatorname{Tr}_{\omega}(g_{\mathbf{k}}) \geq |\det g_{\mathbf{k}}| \geq |\Omega_{\mathbf{k}}|$.

Denote its two eigenvalues $\lambda'_{\mathbf{k}} \geq \lambda_{\mathbf{k}} \geq 0$ and eigenvectors $\omega'_{\mathbf{k},a}, \omega_{\mathbf{k},a}$.

$$\mathcal{Q}_{\mathbf{k}}^{ab}\omega_{\mathbf{k},b}' = \lambda_{\mathbf{k}}'\omega_{\mathbf{k}}'^{a} \qquad \mathcal{Q}_{\mathbf{k}}^{ab}\omega_{\mathbf{k},b} = \lambda_{\mathbf{k}}\omega_{\mathbf{k}}^{a}$$

Physical intuition (make analogous to Landau level physics)

 $\mathcal{Q}^{ab}_{\mathbf{k}}\omega_{\mathbf{k}}=0$

 $\omega_{ab} = \omega_a \omega_b^* + \omega_a^* \omega_b$

Saturation of the trace bound $(\operatorname{Tr}_{\omega}g_{\mathbf{k}} = \Omega_{\mathbf{k}})$ is fully equivalent to momentum space holomorphilicity. The cell-periodic part of Bloch wavefunction $u_{\mathbf{k}}(\mathbf{r}) \equiv e^{-i\mathbf{k}\cdot\mathbf{r}}\psi_{\mathbf{k}}(\mathbf{r})$ is holomorphic in $k \equiv \omega^{a}\mathbf{k}_{a}$ up to a norm: $u_{\mathbf{k}}(\mathbf{r}) = N_{\mathbf{k}} u_{k=\omega^{a}k_{a}}^{\text{holo}}(\mathbf{r})$

> Bruno Mera, T. Ozawa; PRB (2021). M. Claassen et al PRL (2015). Ledwith et al PRR (2020). JW et al PRL (2021)

17

Torus lowest Landau level wavefunction in terms of Weierstrass Sigma function $\sigma(z+a_{1,2})=-\,e^{a^*(z+a/2)}\sigma(z)$

 $\Phi_{\mathbf{k}}(\mathbf{r}) = \sigma(z - z_k)e^{z_k^* z} e^{-\frac{1}{2}|z|^2} e^{-\frac{1}{2}|z_k|^2} \qquad z_k \equiv -ik = -i\omega^a \mathbf{k}_a$

Torus lowest Landau level wavefunction in terms of Weierstrass Sigma function $\sigma(z+a_{1,2})=-\,e^{a^*(z+a/2)}\sigma(z)$

$$\Phi_{\mathbf{k}}(\mathbf{r}) = \sigma(z - z_k)e^{z_k^* z}e^{-\frac{1}{2}|z|^2}e^{-\frac{1}{2}|z_k|^2} \qquad z_k \equiv -ik = -i\omega^a \mathbf{k}_a$$

To check:
$$u_{\mathbf{k}}(\mathbf{r}) = e^{-i\mathbf{k}\cdot\mathbf{r}}\psi_{\mathbf{k}}(\mathbf{r}) = N_{\mathbf{k}}e^{-\frac{1}{2}|z_{k}|^{2}} \times \sigma(z - z_{k})e^{z^{*}z_{k}}e^{-\frac{1}{2}|z|^{2}}$$

Non-holomorphic part Holomorphic in k (normalization)

Jie Wang, J. Cano, A.J. Millis, Z. Liu, B. Yang; PRL (2021).

Torus lowest Landau level wavefunction in terms of Weierstrass Sigma function $\sigma(z + a_{1,2}) = -e^{a^*(z+a/2)}\sigma(z)$

$$\Phi_{\mathbf{k}}(\mathbf{r}) = \sigma(z - z_k)e^{z_k^* z}e^{-\frac{1}{2}|z|^2}e^{-\frac{1}{2}|z_k|^2} \qquad z_k \equiv -ik = -i\omega^a \mathbf{k}_a$$

To check:
$$u_{\mathbf{k}}(\mathbf{r}) = e^{-i\mathbf{k}\cdot\mathbf{r}}\psi_{\mathbf{k}}(\mathbf{r}) = N_{\mathbf{k}}e^{-\frac{1}{2}|z_{k}|^{2}} \times \sigma(z - z_{k})e^{z^{*}z_{k}}e^{-\frac{1}{2}|z|^{2}}$$

Non-holomorphic part Holomorphic in k (normalization)

Jie Wang, J. Cano, A.J. Millis, Z. Liu, B. Yang; PRL (2021).

Generalized Laughlin wavefunction (exact zero modes):

$$\Psi_{\text{FCI}} = \prod_{i} \mathscr{B}(r_i) \times \Psi_{\text{Laughlin}}.$$
$$\Psi_{\text{Laughlin}} = \prod_{i < j}^{i} \sigma^3(z_i - z_j) \prod_{i=1}^{3} \sigma(\sum_{i} z_i - \alpha_i).$$

18

Torus lowest Landau level wavefunction in terms of Weierstrass Sigma function $\sigma(z + a_{1,2}) = -e^{a^*(z+a/2)}\sigma(z)$

$$\Phi_{\mathbf{k}}(\mathbf{r}) = \sigma(z - z_k)e^{z_k^* z}e^{-\frac{1}{2}|z|^2}e^{-\frac{1}{2}|z_k|^2} \qquad z_k \equiv -ik = -i\omega^a \mathbf{k}_a$$

To check:
$$u_{\mathbf{k}}(\mathbf{r}) = e^{-i\mathbf{k}\cdot\mathbf{r}}\psi_{\mathbf{k}}(\mathbf{r}) = N_{\mathbf{k}}e^{-\frac{1}{2}|z_{k}|^{2}} \times \sigma(z-z_{k})e^{z^{*}z_{k}}e^{-\frac{1}{2}|z|^{2}}$$

Non-holomorphic part Holomorphic in k

Generalized Laughlin wavefunction (exact zero modes):

$$\Psi_{\text{FCI}} = \prod_{i} \mathscr{B}(r_i) \times \Psi_{\text{Laughlin}}.$$
$$\Psi_{\text{Laughlin}} = \prod_{i < j}^{i} \sigma^3(z_i - z_j) \prod_{i=1}^{3} \sigma(\sum_{i} z_i - \alpha_i).$$

Factor $\mathscr{B}(\mathbf{r})$ satisfies $\mathscr{B}(\mathbf{r} + \mathbf{a}) = e^{-\frac{i}{2}\mathbf{a} \times \mathbf{r}} \mathscr{B}(r)$:

- k-independent, quasi-periodic (s.t. ψ_k is Bloch).
- breaks translation symmetry from continuous to lattice
- Determines Berry curvature distribution (next slides)

Jie Wang, J. Cano, A.J. Millis, Z. Liu, B. Yang; PRL (2021).

Momentum-space plots of $|\Psi_k(r)|$ for fixed r

$$C = C(\mathbf{r}) = \frac{1}{2\pi i} \oint dk \ \partial_k \ln u_k(\mathbf{r}) = \frac{1}{2\pi i} \oint dk \ \partial_k \ln |u_k\rangle$$

- Topology = zeros (Riemann-Roch Theorem)
- \bullet Dual Thouless pumping: ${\boldsymbol r}$ is a "boundary condition"
- Color-entangled wavefunction.

One set of LLL wave functions: $v_{\mathbf{k}}(\mathbf{r})$.

Here
$$v_{\mathbf{k}}(\mathbf{r}) = \sigma(z - z_k)e^{\frac{1}{C}z^*z_k}e^{-\frac{1}{2C}|z|^2}e^{-\frac{1}{2C}|z_k|^2}$$

JW, Semyon Klevtsov, Zhao Liu. (2022)

Consequence from holomorphicity - II: Kahler potential & GMP algebra

Wavefunction: $u_{\mathbf{k}}(\mathbf{r}) = N_{\mathbf{k}} \times u_{k}^{\text{holo}}(\mathbf{r})$

Anti-holomorphic Berry connection:
$$\bar{A}_k \equiv \langle u_{\mathbf{k}} | \bar{\partial}_k u_{\mathbf{k}} \rangle = i \left(i N_{\mathbf{k}}^{-1} \bar{\partial}_k N_{\mathbf{k}} \right) \int_{\mathbf{r}} N_{\mathbf{k}}^2 u_k^{\text{holo}*}(\mathbf{r}) u_k^{\text{holo}}(\mathbf{r}) = - \bar{\partial}_k \log N_{\mathbf{k}}$$

Berry curvature: $\Omega_{\mathbf{k}} = -i\partial_k \bar{A}_k + i\bar{\partial}_k A_k = \nabla_{\mathbf{k}}^2 \log N_{\mathbf{k}}$

Important: this relates the Berry curvature to normalization factors

Consequence from holomorphicity - II: Kahler potential & GMP algebra

JW, Semyon Klevtsov, Zhao Liu. (2022)

Emergent exact new "guiding center" and "Landau orbital" operators

 $\bar{Q}^a = -i\partial_k^a + C\epsilon^{ab}k_b/2$

 $[Q^a, Q^b] = -i\epsilon^{ab}C \qquad [\bar{Q}^a, \bar{Q}^b] = +i\epsilon^{ab}C$

Exact dual LLL condition $\bar{a}u_{\mathbf{k}}(\mathbf{r}) = \omega_a Q^a u_{\mathbf{k}}(\mathbf{r}) = 0$

Exact dual magnetic translation $e^{i\mathbf{q}_{1}\cdot\mathbf{Q}}e^{i\mathbf{q}_{2}\cdot\mathbf{Q}} = e^{iC\mathbf{q}_{1}\times\mathbf{q}_{2}/2}e^{i(\mathbf{q}_{1}+\mathbf{q}_{2})\cdot\mathbf{Q}}$ $e^{i\mathbf{q}\cdot\mathbf{Q}}u_{\mathbf{k}}(\mathbf{r}) = e^{\frac{i}{2}\mathbf{q}\cdot\mathbf{r}}u_{\mathbf{k}}(\mathbf{r}+C\epsilon^{ab}q_{b})$

- Exact closed density algebra for unnormalized states (emergent, hidden).
- Normalization does not affect interacting zero modes.
- Position-momentum duality is important.

Implication to real materials

24

Application of ideal flatband theory - I: twisted bilayer graphene

Single-electron transistor microscopy

Yonglong Xie et, al; Nature (21)

Application of ideal flatband theory - I: twisted bilayer graphene

Yonglong Xie et, al; Nature (21)

Application of ideal flatband theory - I: twisted bilayer graphene

25

Application of ideal flatband theory - II: twisted TMD

Strong spin-orbit coupling

Monolayer hole-band

K, spin-up

Application of ideal flatband theory - II: twisted TMD

Application of ideal flatband theory - II: twisted TMD

N. Duran, Jie Wang, Kaxiras group, Repellin, Cano (2023).

Application of ideal flatband theory - II: twisted TMD (twisted MoTe2)

Two independent experiments show evidence of zero field fractional Chern insulator.

Theory: Di Xiao group, Liang Fu group.

Summary:

Take home message:

- Common wisdom that only Landau level has GMP algebra is now revisited.
- Ideal flatbands are ideal platform to study quantum Hall effect on curved manifold.
- Quantum geometry (especially overlooked Fubini-Study metric) are important indicator for real experiment.

Jie Wang, J. Cano, A.J. Millis, Z. Liu, B. Yang; <u>PRL (2021).</u> Jie Wang, Zhao Liu; <u>PRL (2022).</u> Jie Wang, Y. Zheng, A.J. Millis, J. Cano; <u>PRR (2021).</u> Jie Wang, S. Klevtsov, Z. Liu; <u>arXiv (2022).</u> J. Dong, Jie Wang, Liang Fu; <u>arXiv (2022).</u> N. Duran, Jie Wang, Kaxiras group, Repellin, Cano <u>(2023).</u>

Backup slides

Fractional Chern insulator: to be or not to be?

$$\Delta \to \infty, D \to 0$$
 $\nu = \frac{1}{3}$

Is fractional Chern insulator guaranteed?
$$\Delta \to \infty, D \to 0$$
 $\nu = \frac{1}{3}$

Is fractional Chern insulator guaranteed?

No! <u>Wavefunctions</u> can still be highly nonuniform! Flatband-projected interacting Hamiltonian: $H = \sum_{\mathbf{q}} v_{\mathbf{q}} : \rho_{\mathbf{q}}\rho_{-\mathbf{q}} :, \quad \rho_{\mathbf{q}} = \sum_{\mathbf{k}} \langle u_{\mathbf{k}+\mathbf{q}} | u_{\mathbf{k}} \rangle c_{\mathbf{k}+\mathbf{q}}^{\dagger} c_{\mathbf{k}}$

$$\Delta \to \infty, D \to 0$$
 $\nu = \frac{1}{3}$

Is fractional Chern insulator guaranteed?

Bloch wavefunction (lattice translational invariant)

No!
Wavefunctions can still be highly nonuniform!
Flatband-projected interacting Hamiltonian:

$$H = \sum_{\mathbf{q}} v_{\mathbf{q}} : \rho_{\mathbf{q}} \rho_{-\mathbf{q}} : , \quad \rho_{\mathbf{q}} = \sum_{\mathbf{k}} \langle u_{\mathbf{k}+\mathbf{q}} | u_{\mathbf{k}} \rangle c_{\mathbf{k}+\mathbf{q}}^{\dagger} c_{\mathbf{k}}$$

31

$$\Delta \to \infty, D \to 0$$
 $\nu = \frac{1}{3}$

Is fractional Chern insulator guaranteed?

Bloch wavefunction (lattice translational invariant)

$$\Delta \to \infty, D \to 0$$
 $\nu = \frac{1}{3}$

Is fractional Chern insulator guaranteed?

Bloch wavefunction (lattice translational invariant)

If wavefunction varies strongly

Charge density wave/ Wigner crystal is favored

Key question of this talk: How to characterize wavefunction's role in interacting physics?

Uncorrelated state (single slater determinant)

Small spin-orbit coupling: spin degenerate

8 flatbands = 2 spin, 2 valley, 2 sub-lattice

Small spin-orbit coupling: spin degenerate

8 flatbands = 2 spin, 2 valley, 2 sub-lattice

Small spin-orbit coupling: spin degenerate

8 flatbands = 2 spin, 2 valley, 2 sub-lattice

Schematic illustration of the 8 flatbands of TBG Valley $\zeta = +1$ Valley $\zeta = -1$ Without hBN C₂T symmetric

Hexagonal boron nitride (hBN) encapsulation

Observation of anomalous Hall effect @ $\nu = 3/4$

Observation of anomalous Hall effect @ $\nu = 3/4$

Non-interacting

Observation of anomalous Hall effect @ $\nu = 3/4$

Non-interacting

Interaction driven spontaneous time-reversal breaking

Lattice relaxation and the chiral model of twisted bilayer graphene

Bistritzer, MacDonald (PNAS 11) Tarnopolsky, Kruchkov, Vishwanath (PRL 19)

Lattice relaxation and the chiral model of twisted bilayer graphene

Bistritzer-MacDonald: $w_{AA} = w_{AB} = 100 \text{ meV}$

34

Lattice relaxation and the chiral model of twisted bilayer graphene

Bistritzer-MacDonald: $w_{AA} = w_{AB} = 100 \text{ meV}$

Bistritzer, MacDonald (PNAS 11) Tarnopolsky, Kruchkov, Vishwanath (PRL 19)

Universality of the flatband wavefunction

Start from k-space holomorphic function

 $u_{k+b}(\mathbf{r}) = e^{i\phi_{k,b}}e^{-i\mathbf{b}\cdot\mathbf{r}}u_k(\mathbf{r})$

Boundary condition is constrained by the Chern number

$$C = -\frac{1}{2\pi} \left(\phi_{k_0 + b_1, b_2} - \phi_{k_0, b_2} + \phi_{k_0, b_1} - \phi_{k_0 + b_2, b_1} \right)$$

Trick: origin of Brillouin zone is a 'gauge choice', so C is independent on it:

 $\phi_{k,b}$ Is constrained to be linear, holomorphic function of k (fixed form up to gauge transformations)

Therefore, the most general form of C=1 ideal flatband wavefunction is chiral TBG's:

 $\Psi_{\mathbf{k}}(\mathbf{r}) = N_{\mathbf{k}} \ \mathscr{B}(\mathbf{r}) \ \Phi_{\mathbf{k}}(\mathbf{r})$

Thank you for attention