Full counting statistics of charge fluctuations

Jean-Marie Stéphan

Camille Jordan Institute, University of Lyon 1, France

Geometric and analytic aspects of the Quantum Hall effect, Les Diablerets

Based on [Estienne, JMS, Witczak-Krempa arXiv:2102.06223]
[Berthière, Estienne, JMS, Witczak-Krempa arXiv:2211.05159]

Motivation

B

- Space \mathbb{R}^{2}. Take $A \subset \mathbb{R}^{2}, B=\mathbb{R}^{2} \backslash A$ its complement.
- Wrt the bipartition $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$, compute the entanglement entropy $S_{A}=S_{B}$ of some pure state $|\psi\rangle$.
- Scaling: how does this behave as region A gets larger? Or, dilate A by a factor L. Behavior of $S_{L A}$ as $L \rightarrow \infty$?
- Extract useful physical information from entanglement scaling.
- Successes in the context of topological phases and quantum Hall effect [Kitaev \& Preskill 2006; Levin \& Wen 2006]: $S_{L A}=\alpha L+\gamma+\ldots$ where γ is universal.
- Other systems, e. g. quantum criticality [Holzhey, Larsen \& Wilczek 1994; Vidal, Latorre, Rico \& Kitaev 2003; Calabrese \& Cardy 2004]
- Many choices for subsystem A, smooth regions, regions with corner, cones, etc. Disentangling geometry of A from physics information.

This talk: simpler observable based on charge fluctuations, but exact same logic as for entanglement.

Some charge $Q=\int \rho(\mathbf{r}) d \mathbf{r}$ which is conserved. Subsystem charge $Q_{A}=\int_{A} \rho(\mathbf{r}) d \mathbf{r}$ can fluctuate.

Charge variance/second cumulant

$$
\begin{align*}
C_{2}(A) & =\left\langle\left(Q_{A}\right)^{2}\right\rangle-\left\langle Q_{A}\right\rangle^{2} \\
& =\int_{A^{2}}\left\langle\rho(\mathbf{r}) \rho\left(\mathbf{r}^{\prime}\right)\right\rangle_{c} d \mathbf{r} d \mathbf{r}^{\prime} \tag{1}
\end{align*}
$$

[Martin \& Yalcin 1980; Klich \& Levitov 2006; Song, Rachel, Flindt, Klich, Laflorencie \& Le Hur 2012; Leblé 2021] and more generally higher cumulants.

Example: Laughlin state

$$
\psi\left(z_{1}, \ldots, z_{N}\right)=\prod_{j<k}\left(z_{j}-z_{k}\right)^{m} e^{-\frac{1}{2} \sum_{j=1}^{N}\left|z_{j}\right|^{2}}
$$

Example: Laughlin state

$$
\psi\left(z_{1}, \ldots, z_{N}\right)=\prod_{j<k}\left(z_{j}-z_{k}\right)^{m} e^{-\frac{1}{2} \sum_{j=1}^{N}\left|z_{j}\right|^{2}}
$$

Do particle statistics in some large region in the bulk, where translation invariance, rotational invariance should hold.

What we do

Compute the expansion of the cumulants $C_{m}(L A)$ as $L \rightarrow \infty$ with the following assumptions

- Translation invariance
- Invariance wrt rotations and inversion.
- Fast enough decay of the connected correlation function $f\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{m-1}\right)=\left\langle\rho\left(\mathbf{r}_{1}\right), \ldots, \rho\left(\mathbf{r}_{m-1}\right) \rho(0)\right\rangle$. For this talk we take this decay to be exponentially fast (correlation length ξ).

For the example of FQH states in the bulk: physically reasonable, mathematically highly non-trivial.

Inspiration

- Smooth regions: geometric expansion for the entanglement entropy [Grover, Turner \& Vishwanath 2011] with translation invariance (TI) and rotation invariance (RI). Exploit symmetry $S_{A}=S_{B}$ to predict which powers of L appear in the expansion.
- Asymptotics of determinants [Kaufman \& Onsager 1948; Szego 1952; Kac 1954; Widom 1960; Roccaforte 1984] related to counting statistics for free fermions with TI kernel.

Smooth regions

$$
C_{2}(L A)=-L \operatorname{vol}(\partial A) \int_{0}^{\infty} 2 r^{2} f(r) d r-\frac{1}{L} \int \kappa^{2} d \sigma \int_{0}^{\infty} \frac{r^{4}}{12} f(r) d r+\ldots
$$

Leading term is called boundary law or "area" law.

All terms $L^{1}, L^{-1}, L^{-3}, \ldots$ with corresponding powers of $r^{2}, r^{4}, r^{6}, \ldots$ appear in the expansion.

Polygons

Different expansion:

$$
C_{2}(L A)=-L \operatorname{vol}(\partial A) \int_{0}^{\infty} d r 2 r^{2} f(r)+\sum_{\text {corners } i} b\left(\theta_{i}, f\right)+O\left(L^{-\infty}\right)
$$

Explicit corner contribution

$$
b(\theta ; f)=(1+(\pi-\theta) \cot \theta) \int_{0}^{\infty} d r \frac{r^{3}}{2} f(r)
$$

Polygons

Explicit corner contribution

$$
b(\theta ; f)=(1+(\pi-\theta) \cot \theta) \int_{0}^{\infty} d r \frac{r^{3}}{2} f(r)
$$

Angular dependence is independent from the physics (function f), except for a (physically relevant) prefactor.

This angular dependence was encountered in several previous papers, which all correspond to a particular choice of f.
[Brandt, Neri \& Sato 1981; Korchemsky \& Radyushkin 1987; Casini, Fosco \& Huerta 2005; Swingle 2010; Herviou, Le Hur \& Mora 2019; Estienne \& JMS 2019]

Sum rules

Liquid in the bulk. $\int r^{3} f(r) d r$ gives exactly the k^{2} coefficient of the static structure factor and is known to be universal [Stillinger \& Lovett 1968]

$$
b(\theta ; \text { Lauglin })=\frac{1}{4 \pi^{2} m}(1+(\pi-\theta) \cot \theta)
$$

Some higher moments r^{5}, r^{7} "sum rules" are known for Laughlin and other FQH states [Kalinay, Markos, Samaj, Travenec 2000; Can, Laskin, Wiegmann 2015; Dwidevi \& Klevtsov 2019].
Can presumably be probed too, but not clear how to do it in a not too unnatural way.

Where do these results come from?

Just compute volumes (variance C_{2})

Need to evaluate $\operatorname{vol}[A \cap(B-\mathbf{r} / L)]$ for large L.

Just compute volumes (third cumulant C_{3})

Need to evaluate $\operatorname{vol} A \cap\left[\left(B-\mathbf{r}_{1} / L\right) \cup\left(B-\mathbf{r}_{2} / L\right)\right]$ for large L.

Third cumulant

Final result

$$
C_{3}(L A)=L^{0} \times \int_{\partial A} \kappa d \sigma \times \int \frac{\left|\mathbf{r}_{1} \wedge \mathbf{r}_{2}\right|}{4 \pi} f\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)+\ldots
$$

All other odd cumulants are similar.

The geometric integral is nothing but 2π times the Euler characteristic of A.

Numerical illustrations (Laughlin $\nu=1 / 2$)

Disk $x^{2}+y^{2}<r^{2}$ and 4-disk $x^{4}+y^{4}<R^{4}$

Numerical illustrations (Laughlin $\nu=1 / 2$)

$$
\text { Annulus }(\chi(A)=0)
$$

Higher even cumulants

The $1 / L$ constribution to $C_{m} /(m-1)$ is given by

$$
-\int_{\partial A} \kappa^{2} d \sigma \times \int^{\prime}\left(\frac{x_{1}}{8} \sum_{j, k=1}^{m-1} \frac{y_{j}^{2} y_{k}^{2} \partial^{2} f}{\partial x_{j} \partial x_{k}}+\frac{x_{1}^{2}}{4} \sum_{j=1}^{m-1} \frac{y_{j}^{2} \partial f}{\partial x_{j}}\right)
$$

where $f=f\left(x_{1}, y_{1}, \ldots, x_{m-1}, y_{m-1}\right)$, and the integration $\int^{\prime}=\int_{x_{1} \geq \max _{k}\left(0, x_{k}\right)} d x_{1} \ldots d x_{m-1} d y_{1} \ldots d y_{m-1}$.

Generalizations to higher dimension \mathbb{R}^{d}

- Smooth case: $\kappa \rightarrow$ extrinsic curvature tensor K. Similar but more complicated results, e.g. C_{3} proportional to $\int_{\partial A} K_{a}^{a} d \sigma$. Expansion for any cumulant to any order in any dimension using the same method.
- Cubes, cones, etc. Case by case results.

Conclusion

- Systematic geometric expansion: extraction of moments of connected correlation functions by counting particles.
- The case of slow decay is also interesting.
- Relation to entanglement entropy.
- Finite-size effects: smooth vs polygons.
- More general manifolds?

Thank you!

