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Motivation

A
B

Space R2. Take A ⊂ R2, B = R2\A its complement.

Wrt the bipartition H = HA ⊗HB, compute the
entanglement entropy SA = SB of some pure state |ψ〉.

Scaling: how does this behave as region A gets larger? Or,
dilate A by a factor L. Behavior of SLA as L→∞?



Extract useful physical information from entanglement scaling.

Successes in the context of topological phases and quantum
Hall effect [Kitaev & Preskill 2006; Levin & Wen 2006]:
SLA = αL+ γ + . . . where γ is universal.

Other systems, e. g. quantum criticality [Holzhey, Larsen & Wilczek

1994; Vidal, Latorre, Rico & Kitaev 2003; Calabrese & Cardy 2004]

Many choices for subsystem A, smooth regions, regions with
corner, cones, etc. Disentangling geometry of A from physics
information.



This talk: simpler observable based on charge fluctuations, but
exact same logic as for entanglement.

Some charge Q =
∫
ρ(r)dr which is conserved. Subsystem charge

QA =
∫
A ρ(r)dr can fluctuate.

Charge variance/second cumulant

C2(A) =
〈
(QA)

2
〉
− 〈QA〉2

=

∫
A2

〈ρ(r)ρ(r′)〉c drdr′ (1)

[Martin & Yalcin 1980; Klich & Levitov 2006; Song, Rachel, Flindt, Klich, Laflorencie

& Le Hur 2012; Leblé 2021] and more generally higher cumulants.



Example: Laughlin state

ψ(z1, . . . , zN ) =
∏

j<k(zj − zk)me−
1
2

∑N
j=1 |zj |2



Example: Laughlin state
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j<k(zj − zk)me−
1
2

∑N
j=1 |zj |2

Do particle statistics in some large region in the bulk, where
translation invariance, rotational invariance should hold.



What we do

Compute the expansion of the cumulants Cm(LA) as L→∞ with
the following assumptions

Translation invariance

Invariance wrt rotations and inversion.

Fast enough decay of the connected correlation function
f(r1, . . . , rm−1) = 〈ρ(r1), . . . , ρ(rm−1)ρ(0)〉. For this talk we
take this decay to be exponentially fast (correlation length ξ).

For the example of FQH states in the bulk: physically reasonable,
mathematically highly non-trivial.



Inspiration

Smooth regions: geometric expansion for the entanglement
entropy [Grover, Turner & Vishwanath 2011] with translation
invariance (TI) and rotation invariance (RI). Exploit symmetry
SA = SB to predict which powers of L appear in the
expansion.

Asymptotics of determinants [Kaufman & Onsager 1948; Szego 1952;

Kac 1954; Widom 1960; Roccaforte 1984] related to counting statistics
for free fermions with TI kernel.



Smooth regions

C2(LA) = −Lvol(∂A)
∫ ∞
0

2r2f(r)dr − 1

L

∫
κ2dσ

∫ ∞
0

r4

12
f(r)dr + . . .

Leading term is called boundary law or “area” law.

All terms L1, L−1, L−3, . . . with corresponding powers of
r2, r4, r6, . . . appear in the expansion.



Polygons

Different expansion:

C2(LA) = −Lvol(∂A)
∫ ∞
0

dr 2r2f(r) +
∑

corners i

b(θi, f) +O(L−∞)

Explicit corner contribution

b(θ; f) =
(
1 + (π − θ) cot θ

)∫ ∞
0

dr
r3

2
f(r)



Polygons

Explicit corner contribution

b(θ; f) =
(
1 + (π − θ) cot θ

)∫ ∞
0

dr
r3

2
f(r)

Angular dependence is independent from the physics (function f),
except for a (physically relevant) prefactor.

This angular dependence was encountered in several previous
papers, which all correspond to a particular choice of f .
[Brandt, Neri & Sato 1981; Korchemsky & Radyushkin 1987; Casini, Fosco & Huerta

2005; Swingle 2010; Herviou, Le Hur & Mora 2019; Estienne & JMS 2019]



Sum rules

Liquid in the bulk.
∫
r3f(r)dr gives exactly the k2 coefficient of

the static structure factor and is known to be universal [Stillinger &

Lovett 1968]

b(θ; Lauglin) =
1

4π2m
(1 + (π − θ) cot θ)

Some higher moments r5, r7 “sum rules” are known for Laughlin
and other FQH states [Kalinay, Markos, Samaj, Travenec 2000; Can, Laskin,

Wiegmann 2015; Dwidevi & Klevtsov 2019].
Can presumably be probed too, but not clear how to do it in a not
too unnatural way.



Where do these results come from?



Just compute volumes (variance C2)

Need to evaluate vol [A ∩ (B − r/L)] for large L.

r/L



Just compute volumes (third cumulant C3)

Need to evaluate volA ∩ [(B − r1/L) ∪ (B − r2/L)] for large L.



Third cumulant

Final result

C3(LA) = L0 ×
∫
∂A
κ dσ ×

∫ |r1 ∧ r2|
4π

f(r1, r2) + . . .

All other odd cumulants are similar.

The geometric integral is nothing but 2π times the Euler
characteristic of A.



Numerical illustrations (Laughlin ν = 1/2)

Disk x2 + y2 < r2 and 4-disk x4 + y4 < R4

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
3

r/R

disk, N = 32
disk, N = 64

4-disk, N = 32
4-disk, N = 64



Numerical illustrations (Laughlin ν = 1/2)

Annulus (χ(A) = 0)
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Higher even cumulants

The 1/L constribution to Cm/(m− 1) is given by

−
∫
∂A
κ2dσ ×

∫ ′x1
8

m−1∑
j,k=1

y2j y
2
k∂

2f

∂xj∂xk
+
x21
4

m−1∑
j=1

y2j∂f

∂xj



where f = f(x1, y1, . . . , xm−1, ym−1), and the integration∫ ′
=
∫
x1≥maxk(0,xk)

dx1 . . . dxm−1dy1 . . . dym−1.



Generalizations to higher dimension Rd

Smooth case: κ→ extrinsic curvature tensor K. Similar but
more complicated results, e.g. C3 proportional to

∫
∂AK

a
adσ.

Expansion for any cumulant to any order in any dimension
using the same method.

Cubes, cones, etc. Case by case results.



Conclusion

Systematic geometric expansion: extraction of moments of
connected correlation functions by counting particles.

The case of slow decay is also interesting.

Relation to entanglement entropy.

Finite-size effects: smooth vs polygons.

More general manifolds?



Thank you!


