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Motivation

Quantum anomalies play important role in QFT with Dirac fermions

Sometimes, Dirac fermions behave as fluids

What are the effects of the anomalies on hydrodynamics?

Pioneered by:
Alekseev, Cheianov, Fröhlich; Son, Surowka; Haehl, Loganayagam, Rangamani; . . .

Hydrodynamics (bosonization) captures anomalies in 1D. What are anomalies in
conventional 3D (Euler) fluids?

Geometrical fluid dynamics:
Lichnerowitz, Carter, Arnold, Marsden, Holm, . . .

Generalization of some of QHE physics to 4+1 dimensions with 3+1 dimensional
boundary
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Warm-up: 1+1 classical anomaly
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1+1 free boson

Classical 1d action with U(1) global symmetry φ→ φ+ const:

S =

∫
d2x

1

2
(∂µφ)2 .

The model has two conserved currents

∂µj
µ = 0 , jµ = ∂µφ , by Noether theorem

∂µj
µ
A = 0 , jµA = εµν∂νφ, , emergent

Let us introduce background gauge fields coupled to conserved currents
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1+1 classical anomaly

Adding gauge background for U(1) global symmetry:

S =

∫
d2x

1

2
(∂µφ−Aµ)2 .

The model has two currents

∂µj
µ = 0 , jµ = ∂µφ−Aµ , conserved

∂µj
µ
A = 0 , jµA = εµν∂νφ, , conserved, but NOT gauge invariant ∂µj

µ
A = −εµν∂µAν , jµA = εµν(∂νφ−Aν) , gauge invariant, but NOT conserved

Similar to 1+1 Dirac fermion QFT

L = ψ̄(i/∂µ − /Aµ)ψ , jµ = 〈ψ̄γµψ〉 , jµA = 〈ψ̄γµγ5ψ〉 .
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Anomaly inflow

Adding gauge background for U(1) global symmetry:

S =

∫
d2x

1

2
(∂µφ−Aµ)2 − Ãµεµν(∂νφ−Aν) +

∫
M3

d3x εµνλÃµ∂νAλ .

The model has two consistent currents

∂µj
µ = 0 , jµ = ∂µφ−Aµ + εµνÃν , conserved, NOT axial gauge invariant

∂µj
µ
A = −εµν∂µAν , jµA = εµν(∂νφ−Aν) , gauge invariant, but NOT conserved

or two covariant currents

∂µj
µ
cov = −εµν∂µÃν , jµ = ∂µφ−Aµ , gauge invariant, but NOT conserved

∂µj
µ
A cov = −εµν∂µAν , jµA = εµν(∂νφ−Aν) , gauge invariant, but NOT conserved
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Mixed U(1)V × U(1)A anomaly

3+1 massless Dirac fermion has G = U(1)V × U(1)A global symmetry

Gauging this symmetry, i.e., introducing dynamic gauge fields coupled to G-currents
makes theory inconsistent - anomaly

In the presence of background gauge field the theory is consistent but charges do not
conserve - mixed t’Hooft anomaly

This anomaly can be interpreted as a system’s coupling to a charge reservoir
(5d topological insulator, 4d spectators . . . )

For any system with global symmetry one can ask whether there is an anomaly
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Barotropic fluid: axial anomaly
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Barotropic fluid dynamics

Barotropic fluid dynamics: pressure is a function of density only P = P (ρ)

Equations of motion: continuity and Euler

∂tρ+ ∇(ρv) = 0 ,

∂tv + (v ·∇)v = −1

ρ
∇P .

There is a conservation of charge/mass

dQ

dt
= 0 , Q =

∫
d3x ρ .

There is an additional conservation! Fluid helicity is conserved. If ω = ∇× v

dQA
dt

= 0 , QA =

∫
d3xv · ω .

Is there a mixed anomaly between the corresponding symmetries?
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Main observation

Couple fluid density to external E/M field (charged fluid):

∂tρ+ ∇(ρv) = 0 ,

∂tv + (v ·∇)v = −1

ρ
∇P + E + v ×B .

The fluid helicity density v · ω is not conserved!
However the corrected helicity is “almost” conserved (AGA and Wiegmann, ’22)

∂t

(
v · (ω + 2B)

)
+ ∇ · jA = 2E ·B .

We have an anomalous equation

∂µj
µ
A = 2E ·B .
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Main observation. Details

Couple fluid density to external E/M field (charged fluid):

∂tρ+ ∇(ρv) = 0 ,

∂tv + (v ·∇)v = −1

ρ
∇P + E + v ×B .

Derive

∂t(vω) +∇
[
v(vω) + ω

(
µ− v2

2

)
+ v × (E + v ×B)

]
− 2ω(E + v ×B) = 0 ,

∂t(vB) +∇
[
v(vB) +B

(
µ− v2

2

)
− v × (E + v ×B)

]
+ ω(E + v ×B) = EB .

and combine

∂t (v(ω + 2B)) +∇
[
v (v(ω + 2B)) + (ω + 2B)

(
µ− v2

2

)
− v × (E + v ×B)

]
= 2EB .
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Barotropic fluid: variational principle
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Variational principle for perfect fluid

Variational principle for the dynamics of the perfect fluid

has a long history

is nontrivial

has many versions

The geometric version we adopt here

is close to the one used by Carter and by Arnold’s school

involves the use of “restricted variations”

suitable for both relativistic and nonrelativistic hydro

.
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Action for perfect barotropic fluid

The action of a barotropic fluid:

S[π] = −
∫
d4x P (π) - P is a function of πµ

Only restricted variations of πµ are allowed

1) Diffeomorphisms xµ → xµ + εµ

δεπν = εµ∂µπν + πµ∂νε
µ , - π is a 1-form

2) Gauge transformations (not needed)

δλπν = ∂νλ , - π is charged
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Equations of motion

Variational principle gives equations of motion

∂µT
µ
ν = 0 , Tµν = jµπν + δµνP ,

∂µj
µ = 0 , jµ = − ∂P

∂πµ
,

Identify:

Tµν - energy-momentum tensor

jµ - charge/number current

πµ - specific momentum

P - pressure
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Relativistic vs. non-relativistic

Consider pressure P (µ) as a function of the chemical potential, so that dP = ρ dµ.

1) µ = −π0 −
π2
i
2 describes non-relativistic (Galilean) fluid

π0 = −µ− v2

2
, πi = vi , jµ = (ρ, ρv) ,

vi − 3-velocity , ρ− number density , µ(ρ)− chemical potential

2) µ =
√−πµπµ describes relativistic fluid

πµ = µuµ , jµ = nuµ , uµuµ = −1 ,

uµ − 4-velocity , n− number density , µ(n)− chemical potential
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Admissible variations

Vary the action S[π] over admissible variations

δπν = εµ∂µπν + πµ∂νε
µ , δπ = Lεπ

and obtain

δS =

∫
d4x

δS

δπν
(εµ∂µπν + πµ∂νε

µ) = 0 .

Introducing “particle current” J ν ≡ − δS
δπν

J ν(∂νπµ − ∂µπν) + πµ∂νJ ν = 0 .

Multiply by J µ

J ν(∂νπµ − ∂µπν) = 0 , ∂νJ ν = 0 .

Notice, that the conservation of ∂νJ ν = 0 follows from diffeos.
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Geometric transport

The Lichnerowicz-Carter equation:

J ν(∂νπµ − ∂µπν) = 0 , or in form notation iJ dπ = 0 .

Then

iJ (dπ ∧ dπ) = 2(iJ dπ) ∧ dπ = 0 .

But dπ ∧ dπ is a 4-form and is proportional to the volume form and should be zero. Or we
can conclude that dπ has a rank 2 and, we have a fundamental property of barotropic fluid

dπ ∧ dπ = 0 .

In components:

∂µ(εµνλρπν∂λπρ) = 0 .
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Chiral current

In external e/m field S[π]→ S[π −A] but still

∂µ(εµνλρπν∂λπρ) = 0 .

However, the helicity density is NOT gauge invariant. Introduce the chiral current:

JµA = εµνλρ(πν −Aν)∂λ(πρ +Aρ) = εµνλρpν(∂νpρ + Fνρ) , pµ ≡ πµ −Aµ .

The chiral current is gauge invariant but it is NOT conserved!

∂µJ
µ
A = 2E ·B , d(π −A) ∧ d(π +A) = −dA ∧ dA .

Axial/chiral anomaly!

AGA, P.B. Wiegmann, PRL 128, 054501 (2022) [arXiv:2110.11480]
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Axial gauge field background
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Coupling to axial gauge field

The action of a charged barotropic fluid with higher gradients:

S[π,A, Ã] = −
∫
d4x P (π −A) + . . . +

∫
AA ∧ (π −A) ∧ d(π +A)

The extra term is

Topological → does not contribute to energy-momentum tensor

Linear in AA, in fact, equal to AAµJ
µ
A

Gauge invariant w.r.t. A

Compare to: G. Monteiro, AGA, and V. Nair, Phys. Rev. D 91 (2015) 125033.
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Advection flux and axial current

Variational principle gives:

J µ(∂µπν − ∂νπµ) = 0 , ∂µJ µ = 0 , J µ = − δS
δπµ

.

J µ is a particle current. Explicitly

J = j + ?
(

2AA ∧ dπ − (π −A) ∧ dAA
)
, jµ = − ∂P

∂πµ
.

Immediate consequence:

∂µJ
µ
A = 2E ·B .
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Energy-momentum tensor and vector current

Equation for energy-momentum tensor

∂µT
µ
ν = FνµJ

µ + FAνµJ
µ
A , Tµν = jµ(πν −Aν) + δµνP , jµ = − ∂P

∂πµ
.

Electric current:

J = J + ?
(

2d
[
AA(π −A)

]
−AA ∧ F

)
= j + ?(π −A) ∧ dAA

∂µJ
µ = 2EA ·B + 2E ·BA .

Alexander Abanov (Stony Brook) Chiral anomaly in fluid dynamics 25 / 31



Equations of motion

(Non)conservation laws following from the constructed action:

∂µT
µ
ν = FνµJ

µ + FAνµJ
µ
A , Tµν = jµ(πν −Aν) + δµνP .

∂µJ
µ = 2EA ·B + 2E ·BA = −2 ? dA ∧ dAA ,

∂µJ
µ
A = 2E ·B = − ? dA ∧ dA .

Only 4 of these 6 equations are independent!

The equations exhibit the covariant mixed anomaly
between charge and helicity conservations.

J µ(∂µπν − ∂νπµ) = 0 .
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Comment on three vector fields

There are three important vector fields

πµ −Aµ - specific kinematic momentum ,

Jµ - electric current ,

J µ - particle current .

In Galilean fluid mechanics all three vector fields are proportional to the fluid velocity v.
They are all different in the presence of axial and vector backgrounds.
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Stationary flows
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Static equilibrium (stationary flow)

Assume time-independent external fields and put for simplicity BA = 0. Equilibrium
conditions J = 0, π0 = 0 give (for Galilean fluid):

ρv = 2µA(ω + B) + EA ×mv – generalized Beltrami flow

We find currents in equilibrium:

J =

transport︷ ︸︸ ︷
2µAB +

micro︷ ︸︸ ︷
2∇× (µAmv) ,

JA = 2µB + 2∇× (µmv) .

J =

CME︷ ︸︸ ︷
2µAB +

CV E︷ ︸︸ ︷
2µAω ,

JA = 2µB︸︷︷︸
CSE

+ µω︸︷︷︸
CV SE

.

for constant chemical potentials
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Conclusions

Background gauge and axial gauge fields are introduced for perfect barotropic fluid

There is a mixed anomaly between the charge and the helicity conservations

A variational (and Hamiltonian) formulation of anomalous fluid dynamics is given

Stationary solutions are given by generalized Beltrami flows
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A few open questions

Realization of external gauge fields in real systems

Explicit demonstration of the mixed anomaly for underlying gauge and relabeling
symmetries

Analogous phenomena for baroclinic flows and hydro with many species

Alexander Abanov (Stony Brook) Chiral anomaly in fluid dynamics 31 / 31


	Introduction
	Warm-up: 1+1 classical anomaly
	Barotropic fluid: axial anomaly
	Barotropic fluid: variational principle
	Barotropic perfect fluid
	Conservation of helicity

	Axial gauge field background
	Building the action
	Anomalous fluid dynamics
	Conservation laws

	Stationary flows
	Beltrami flow

	Conclusions

