Symmetry-resolved entanglement entropy in quantum Hall states

with B.Oblak and N. Regnault
(related works with L. Charles and J.M. Stéphan)

Geometric and analytic aspects of the Quantum Hall effect

Probing the bulk-edge correspondence

Li-Haldane : upon partitioning the system in two regions A and B, the entanglement Hamiltonian is conjectured to be in the same universality class as the effective edge Hamiltonian.

[^0]Symmetry-resolved entanglement entropy probes this conjecture.

Entanglement in a nutshell

Given a bipartition of the Hilbert space $\mathscr{H}=\mathscr{H}_{A} \otimes \mathscr{H}_{B}$, and a quantum state $|\Psi\rangle \in \mathscr{H}$

- if $|\Psi\rangle=\left|\Psi_{A}\right\rangle \otimes\left|\Psi_{B}\right\rangle$ (product-state) : there is no entanglement
- otherwise the degrees of freedom in A and B are said to be entangled (in the state $|\Psi\rangle$).

Example : two spin $1 / 2$ for which $\mathscr{H}=\mathscr{H}_{A} \otimes \mathscr{H}_{B}$

B

$$
\text { with } \mathscr{H}_{A}=\mathscr{H}_{B}=\mathbb{C}|\uparrow\rangle \oplus \mathbb{C}|\downarrow\rangle \simeq \mathbb{C}^{2}
$$

Then $|\uparrow \uparrow\rangle=|\uparrow\rangle \otimes|\uparrow\rangle$ is a pure state, while $\frac{|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle}{\sqrt{2}}$ is entangled.
But it's not always this easy :

$$
\frac{|\uparrow \uparrow\rangle+|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle+|\downarrow \downarrow\rangle}{2}=\left(\frac{|\uparrow\rangle+|\downarrow\rangle}{\sqrt{2}}\right) \otimes\left(\frac{|\uparrow\rangle+|\downarrow\rangle}{\sqrt{2}}\right)
$$

Entanglement in a nutshell

Given a bipartition of the Hilbert space $\mathscr{H}=\mathscr{H}_{A} \otimes \mathscr{H}_{B}$, and a quantum state $|\Psi\rangle \in \mathscr{H}$

$$
|\Psi\rangle=\sum_{i, j} A_{i j}\left|e_{i}\right\rangle \otimes\left|f_{j}\right\rangle
$$

Singular value decomposition of the matrix $\left(A_{i j}\right)$ yields the

Schmidt decomposition of $|\Psi\rangle$ w.r.t. the bipartition $\mathscr{H}=\mathscr{H}_{A} \otimes \mathscr{H}_{B}$:

$$
|\Psi\rangle=\sum_{j=1}^{r} \sqrt{p_{j}}\left|u_{j}\right\rangle \otimes\left|v_{j}\right\rangle, \quad \quad p_{j}>0, \quad \sum_{j=1}^{r} p_{j}=1
$$

where $\left\{\left|u_{j}\right\rangle\right\}$ and $\left\{\left|v_{j}\right\rangle\right\}$ are orthonormal vectors in \mathscr{H}_{A} and \mathscr{H}_{B}, respectively.

Facts:

- the positive integer r is well-defined (i.e. independent of any possible choice made when performing the Schmidt decomposition). It is called the Schmidt rank.
$r=1:|\Psi\rangle$ is a product state \quad OR $\quad r>1:|\Psi\rangle$ is entangled
- the Schmidt coefficients p_{j} (counted with multiplicities) are also well-defined

Reduced density matrix ρ_{A}

- A quantum system can be in a pure state $|\Psi\rangle$, in which case the expectation of an observable O is $\langle O\rangle=\langle\Psi| O|\Psi\rangle$.
- More generally a quantum system can be in a statistical superposition of states $\left|\Psi_{i}\right\rangle$, each with a probability p_{i}. This is conveniently described as a density matrix
$\rho=\sum_{j} p_{j}\left|\Psi_{j}\right\rangle\left\langle\Psi_{j}\right| \quad$ in which case $\quad\langle O\rangle=\sum_{j} p_{j}\left\langle\Psi_{j}\right| O\left|\Psi_{j}\right\rangle=\operatorname{Tr}(\rho O)$
Fact: If the total system is a state ρ, the subsystem A is in the state $\rho_{A}=\operatorname{Tr}_{\mathscr{H}_{B}}(\rho)$
in the sense that for any observable O_{A} acting on \mathscr{H}_{A} :

$$
\left\langle O_{A}\right\rangle \equiv \operatorname{Tr} \mathscr{H}_{A} \otimes \mathscr{H}_{B}\left(\rho O_{A}\right)=\operatorname{Tr} \mathscr{H}_{A}\left(\rho_{A} O_{A}\right)
$$

As far as any measurement in A is concerned, the subsystem A is described by ρ_{A}.

Schmidt decomposition and reduced density matrix

Important remark : even if the total system is in a pure state $|\Psi\rangle \in \mathscr{H}_{A} \otimes \mathscr{H}_{B}$, subsystem A is generically a statistical superposition.

$$
\begin{gathered}
|\Psi\rangle=\sum_{j=1}^{r} \sqrt{p_{j}}\left|u_{j}\right\rangle \otimes\left|v_{j}\right\rangle \quad \Rightarrow \quad \rho_{A}=\sum_{j} p_{j}\left|u_{j}\right\rangle\left\langle u_{j}\right| \\
\left\{p_{j}\right\} \text { is the (non-zero) spectrum of } \rho_{A}=\operatorname{Tr}_{\mathscr{H}_{B}}(|\Psi\rangle\langle\Psi|) \\
p_{j}>0, \quad \sum_{j=1}^{r} p_{j}=1 .
\end{gathered}
$$

The subsystem \mathbf{A} is the statistical superposition of the states $\left|u_{j}\right\rangle$ with probability $p_{j^{*}}$

How to quantify entanglement?

The subsystem \mathbf{A} is the statistical superposition of the states $\left|u_{j}\right\rangle$ with probability $p_{j^{*}}$ In order to quantity the amount of entanglement between subsystems A and B, the most natural candidate is the Von Neumann entropy from classical information theory :

The (von Neumann) entanglement entropy of the state $|\Psi\rangle$ w.r.t. to the bipartition $\mathscr{H}=\mathscr{H}_{A} \otimes \mathscr{H}_{B}$ is

$$
S(|\Psi\rangle)=-\sum_{j} p_{j} \log p_{j}=-\operatorname{Tr}\left(\rho_{A} \log \rho_{A}\right)
$$

Some properties :

- $S \geq 0$, with equality iff there is no entanglement
- S is maximal (given a Schmidt rank) when the uncertainty is maximal : all p_{j} equal

Other measures include the Rényi entropy of order n

$$
S_{n}(|\Psi\rangle)=\frac{1}{1-n} \log \sum_{j} p_{j}^{n}=\frac{1}{1-n} \log \operatorname{Tr}\left(\rho_{A}^{n}\right)
$$

Area law

and subleading corrections

Generic features of EE : Area law

For gapped quantum systems

- spatial bipartition
- $|\Psi\rangle$ ground-state of a local Hamiltonian with a spectral gap
- finite correlation length ξ

Expectation: the leading asymptotic behavior of EE is governed by a area/boundary law

$$
S_{n} \sim C_{n} \frac{\operatorname{Vol}(\partial A)}{\xi^{d-1}}, \quad(\xi \rightarrow 0)
$$

for regions A much larger than the correlation length ξ, and C_{n} some non-universal constant

Hastings 2007 : proof of area law in 1D (Von Neumann entropy). Implies the ability to approximate one-dimensional ground state by a matrix product state.

Topological EE

In two spatial dimensions, it has been proposed that

$$
S_{n}=C_{n} \frac{\operatorname{Length}(\partial A)}{\xi}-\gamma+o(1), \quad(\xi \rightarrow 0)
$$

where γ is universal (i.e. insensitive to the short distance physics). γ is known as the topological entanglement entropy, as it is expected to vanish for topologically trivial phases (phases not supporting anyons).

- For Laughlin $\nu=1 / m$ it is expected to be $\gamma=\log \sqrt{m}$.
- More generally $\gamma=\log D$ where $D \geq 1$ is the total quantum dimension, given by

$$
D=\sqrt{\sum_{a} d_{a}^{2}}
$$

where d_{a} are the quantum dimensions of the anyons (labelled by a)

- For a CFT model state $D=1 / S_{00}$ and $d_{a}=S_{a 0} / S_{00}$ in terms the modular S matrix of the underlying conformal field theory.

This is supported by a few exactly solvable models (e.g. quantum stabilizers such as the toric code), numerics on FQH states and also TQFT mumbo jumbo.

Topological EE from microscopic models

Exact Matrix Product State approach to CFT model states on the cylinder [Zaletel Mong 2012]

Scaling of the entanglement entropy for the Moore-Read state.

TQFT prediction :

- $\gamma_{\text {vac }}=\log (2 \sqrt{2}) \simeq 1.0397$
- $\gamma_{\mathrm{qh}}=\log (2) \simeq 0.6931$
4% error in the range $15 \xi \leq L \leq 25 \xi$
[From BE, Regnault, Bernevig

Entanglement spectrum and bulk-edge correspondence

The entanglement or modular Hamiltonian H_{A} is defined via $\rho_{A}=\frac{1}{Z} e^{-H_{A}}$ and it spectrum is known as the entanglement spectrum.

Li-Haldane (2008) the entanglement Hamiltonian "mimics" the chiral edge CFT, that is

$$
H_{A} \simeq v \frac{2 \pi}{L}\left(L_{0}-\frac{c}{24}\right)
$$

where v is a non-universal constant proportional to ξ, and $L=\operatorname{length}(\partial A)$.

Quote : the (entanglement)spectrum is "gapless", and has the same count of states (characters) at each momentum (Virasoro level), although there is some splitting of the "energies".

Entanglement spectrum of 1/3 Laughlin on the sphere with 8 particles [N .Regnault] in the $\Delta N_{A}=0$ sector.

Entanglement spectrum and bulk-edge correspondence

Dubail Read Rezayi (2012): the entanglement Hamiltonian is in the same universality class as the chiral edge CFT, that is
$H_{A}=v \frac{2 \pi}{L}\left(L_{0}-\frac{c}{24}\right)+$ local irrelevant perturbations
where v is a non-universal constant proportional to ξ, and $L=$ length (∂A).

Entanglement spectrum of $1 / 3$ Laughlin on the sphere with 12 particles [Dubail et al.] in the $\Delta N_{A}=0$ sector.

VS
spectrum of $H_{\mathrm{CFT}}+$ fine tuned perturbation (6 parameters)

Integer quantum Hall state

exact results

Integer quantum Hall effect

Setup :

- two-dimensional (oriented) surface M with metric $g_{i j}$
- magnetic field $F_{i j}=B \sqrt{g} \epsilon_{i j}$
- no interactions (but Pauli principle)

One body Hamiltonian = magnetic Laplacian

$$
H=\frac{1}{2} \nabla^{*} \nabla=-\frac{1}{2} \frac{1}{\sqrt{g}} \nabla_{i} \sqrt{g} g^{i j} \nabla_{j}
$$

acting on a Hermitian line bundle $L \rightarrow M$, with connection ∇ (whose curvature is the magnetic field F).

Facts :

- M is naturally a Riemann surface (the metric induces a complex structure J)
- L has a natural holomorphic structure $\bar{\partial}$ such that ∇ is the Chern connection

$$
H=\bar{\partial}^{*} \bar{\partial}+\frac{B}{2}
$$

Provided the magnetic field B is uniform (Kälher condition), then

Integer quantum Hall state is gapped

LLL is spanned by holomorphic section $\left\{\left|\psi_{n}\right\rangle\right\}$ of L
IQH= fully occupied LLL
The corresponding quantum state is a slater determinant: $\quad|\Psi\rangle=\bigwedge_{n}\left|\psi_{n}\right\rangle$

This is a gapped state. The projector onto the occupied states is known as the Bergman kernel $\Pi(z, \bar{w})=\sum\left\langle z \mid \psi_{n}\right\rangle\left\langle\psi_{n} \mid w\right\rangle$
n
This kernel falls off faster than any power law. On the plane for instance

$$
|\Pi(z, \bar{w})|=\frac{B}{2 \pi} e^{-B \frac{|z-w|^{2}}{2}}
$$

Correlation length (after restoring \hbar and the electric charge q)

$$
\xi=\sqrt{\frac{\hbar}{q B}}
$$

Area law and geometric corrections

Theorem: Area Law holds [L.Charles, BE, 2018]

$$
S_{A} \sim C \frac{\text { Length }(\partial A)}{\xi}, \quad(\xi \rightarrow 0)
$$

for some explicit constant C, independently of the shape of A, as long as ∂A is smooth.

Subleading corrections (exact result, not a theorem :):
$S_{A}=\int_{\partial A} \frac{d \sigma}{\xi}\left(C+\xi^{2}\left[C_{1} \kappa^{2}+C_{2} R\right]\right)+O\left(\xi^{3}\right)$
where

- κ is the geodesic curvature of ∂A
- R is the scalar curvature of the underlying surface

Entanglement spectrum on the cylinder

On the flat infinite cylinder of perimeter L:

$$
S_{n} \sim C_{n} \frac{\text { Length }(\partial A)}{\xi}+O\left(\xi^{-\infty}\right)
$$

region A
region B

Entanglement Hamiltonian

Fact: for free fermions the entanglement Hamiltonian is quadratic

$$
H_{A}=\sum_{k} \epsilon(k) c_{k}^{\dagger} c_{k}
$$

IQH on the flat infinite cylinder of perimeter L:
$\epsilon(k)=\log \left[\frac{2}{\operatorname{erfc}(\xi k)}-1\right], \quad k \in \frac{2 \pi}{L} \mathbb{Z}$
H_{A} is the Hamiltonian of a chiral Dirac fermion in $1+1$ dimensions

$$
H_{A}=v \sum_{k} k c_{k}^{\dagger} c_{k}+\cdots
$$

up to irrelevant perturbations.

Linear at small momenta

$$
\epsilon(k)=\frac{4 \xi}{\sqrt{\pi}} k+O\left(k^{3}\right)
$$

Sensitivity to geometry

Leading area law term is robust, subleading corrections sensitive to curvature(s)

$$
S_{n}=\int_{\partial A} \frac{d \sigma}{\xi}\left(C_{n}+\xi^{2}\left[C_{n}^{(1)} \kappa^{2}+C_{n}^{(2)} R\right]\right)+O\left(\xi^{3}\right)
$$

where

- κ is the geodesic curvature of ∂A
- R is the scalar curvature of the underlying surface

$$
\text { No correction of order } O(1) \quad S_{n}=C_{n} L / \xi+O\left(\xi^{-1}\right)
$$

$$
\text { The } O(1) \text { term } \gamma=0 \text { (the TEE) is also robust! }
$$

Symmetry-resolved entanglement entropy

Back to a bipartition $\mathscr{H}=\mathscr{H}_{A} \otimes \mathscr{H}_{B}$

We have a conserved quantity, namely the number of particles

$$
N=\int \rho(\mathbf{r}) d^{2} r=N_{A}+N_{B}
$$

Even though the total number N is fixed, N_{A} fluctuates. Its distribution is known as the Full Counting Statistics. For convenience we work with $Q_{A}=N_{A}-\left\langle N_{A}\right\rangle$.

Facts:

ρ_{A} commutes with Q_{A}, and therefore it is block diagonal w.r.t. to the number of particles q in region A. In fact

$$
\rho_{A}=\bigoplus_{q} p_{q} \rho_{A}(q)
$$

where $\rho_{A}(q)$ is a bona fide density matrix (that is it is positive and has unit trace).
When measuring Q_{A}, the outcome q is obtained with probability p_{q}. After such a measurement, the reduced density matrix describing subsystem A collapses to $\rho_{A}(q)$.

Symmetry-resolved entropy

Idea : refine the EE by q sectors, according to

$$
\rho_{A}=\bigoplus p_{q} \rho_{A}(q)
$$

q
in order to measure how entanglement is distributed among the different sectors. This means introducing

$$
S_{n}(q)=\frac{1}{1-n} \log \operatorname{Tr}\left(\rho_{A}(q)^{n}\right)
$$

In particular for the total Von Neumann entropy splits into

$$
S=-\sum_{q} p_{q} \log p_{q}+\sum_{q} p_{q} S(q)
$$

- The first part is the amount of uncertainty coming from the fluctuations of Q_{A}
- The second term is the average entanglement entropy in each Q_{A} sector

$$
S(q) \text { does not depend on } q
$$

Equipartition for Integer quantum Hall state

exact results

Full Counting Statistics for the IQHE

Theorem: [L.Charles, BE (2018)]

The random variable N_{A} is a sum of independent Bernoulli variables

$$
N_{A}=\sum_{j} B_{j}
$$

with success rate $\lambda_{j} \in(0,1)$ given by the spectrum of the Bergman kernel restricted to region A

All (even) cumulants obey the Area law. In particular the variance

$$
\sigma^{2}=\left\langle N_{A}^{2}\right\rangle-\left\langle N_{A}\right\rangle^{2} \sim(2 \pi)^{-3 / 2} L / \xi, \quad(\xi \rightarrow 0)
$$

Twisted moments $\widehat{Z}_{n}(\alpha)$

Computing the SR Rényi entropy boils down to computing

$$
Z_{n}(q)=\operatorname{Tr}\left(\rho_{A}^{n} \Pi_{q}\right) \quad \text { where } \quad \Pi_{q} \text { is the projector onto the sector } Q_{A}=q
$$

It turns out to be more convenient to work with the Fourier transform

$$
\hat{Z}_{n}(\alpha)=\operatorname{Tr}\left(\rho_{A}^{n} e^{i \alpha Q_{A}}\right)
$$

In particular $\widehat{Z}_{1}(\alpha)=\operatorname{Tr}\left(\rho_{A} e^{i \alpha Q_{A}}\right)=\left\langle e^{i \alpha Q_{A}}\right\rangle$ is the generating function of the FCS

For the IQHE (Peschel trick)

$$
\hat{Z}_{n}(\alpha)=\prod_{j}\left(\lambda_{j}^{n} e^{i \alpha\left(1-\lambda_{j}\right)}+\left(1-\lambda_{j}\right)^{n} e^{-i \alpha \lambda_{j}}\right)
$$

where $\lambda_{j} \in(0,1)$ are the eigenvalues of the Bergman kernel restricted to A

Simple setup : the cylinder

Two parameters :

- the perimeter L / ξ

- the holonomy Φ

$$
\text { on the cylinder } \lambda_{j}=\frac{1}{2} \operatorname{erfc}\left(\frac{2 \pi \xi}{L} j\right) \text { with } \quad j \in \mathbb{Z}+\frac{\Phi}{2 \pi}
$$

$$
\log \widehat{Z}_{n}(\alpha)=\sum_{j} \log \left(\lambda_{j}^{n} e^{i \alpha\left(1-\lambda_{j}\right)}+\left(1-\lambda_{j}\right)^{n} e^{-i \alpha \lambda_{j}}\right)=\frac{L}{\xi} F_{n}(\alpha)+O\left(L^{-\infty}\right)
$$

Where $F_{n}(\alpha)$ is explicit

$$
F_{n}(\alpha)=\int_{-\infty}^{\infty} \frac{d k}{4 \pi} \log \left(\lambda(k)^{2 n}+\lambda(-k)^{2 n}+2 \lambda(k)^{n} \lambda(-k)^{n} \cos \alpha\right) \quad \lambda(k)=\frac{1}{2} \operatorname{erfc}(\xi k)
$$

$\widehat{Z}_{n}(\alpha) \sim e^{-L\left(a_{n}+b_{n} \alpha^{2}+c_{n} \alpha^{4}\right)+O\left(L \alpha^{6}\right)}$

Full Counting Statistics for the IQHE on the cylinder

$$
\begin{aligned}
& \widehat{Z}_{1}(\alpha) \sim e^{-L\left(b_{1} \alpha^{2}+c_{n} \alpha^{4}\right)+O\left(L \alpha^{6}\right)} \\
& \text { and } p_{q}=\int \frac{d \alpha}{2 \pi} e^{-i \alpha q} \widehat{Z}_{1}(\alpha)
\end{aligned}
$$

is readily obtained by saddle point

On the cylinder the distribution is nearly Gaussian

$$
p_{q} \simeq \frac{1}{2 \pi \sigma^{2}} e^{-\frac{q^{2}}{2 \sigma^{2}}}
$$

with variance $\quad \sigma^{2}=\frac{1}{(2 \pi)^{3 / 2}} \frac{L}{\xi}$
at least for typical values, that is

$$
q=O(\sqrt{L})
$$

From [B.Oblak, N. Regnault and BE

Full Counting Statistics for the IQHE on the cylinder

From [B.Oblak, N. Regnault and BE

$$
\begin{aligned}
& F_{n}(\alpha)=\int_{-\infty}^{\infty} \frac{d k}{4 \pi} \log \left(\lambda(k)^{2 n}+\lambda(-k)^{2 n}+2 \lambda(k)^{n} \lambda(-k)^{n} \cos \alpha\right) \\
& \widehat{Z}_{n}(\alpha) \sim e^{-L\left(a_{n}+b_{n} \alpha^{2}+c_{n} \alpha^{4}\right)+O\left(L \alpha^{6}\right)}
\end{aligned}
$$

For typical values of q, namely $q=O(\sqrt{L})$, we have

$$
S_{n}(q) \sim S_{n}-\frac{1}{2} \log L+A_{n}+B_{n} \frac{q^{2}}{L}+C_{n} \frac{q^{4}}{L^{3}}+O\left(\frac{1}{L^{2}}\right)
$$

Equipartition holds for $q=o(\sqrt{L})$

Equipartition for Laughlin states

probing the Li-Haldane conjecture

Equipartition from Li-Haldane

From [B.Oblak, N. Regnault and BE

Let's assume that Li-Haldane holds strictly (no irrelevant perturbation/finite size correction)

$$
\rho_{A}=\frac{1}{Z_{a}} e^{-\frac{2 \pi v \xi}{L}\left(L_{0}-\frac{c}{24}\right)} \quad \text { with } \quad Z_{a}=\operatorname{Tr}_{a} e^{-\frac{2 \pi v \xi}{L}\left(L_{0}-\frac{c}{24}\right)}
$$

For the Laughlin state the CFT is a chiral compact boson at radius $R=\sqrt{m}$

$$
\rho_{A}=\frac{1}{Z_{a}} \mathrm{e}^{-\frac{\pi v p}{L} Q_{A}^{2}} \mathrm{e}^{-\frac{2 \pi v}{L}\left(\sum_{n} a_{-n} a_{n}-1 / 24\right)}
$$

ρ_{A} is manifestly block-diagonal with respect to Q_{A}, and more remarkably
the normalized blocks $\rho_{A}(q)$ do not depend on q: $\quad \rho_{A}(q)=\frac{1}{\eta(\tau)} \mathrm{e}^{-\frac{2 \pi v}{L}\left(\sum_{n} a_{-n} a_{n}-1 / 24\right)}$
This would mean strict equipartition of the entanglement!
Furthermore the charge distribution would be exactly Gaussian!

Probing Li-Haldane

Let's now restore irrelevant perturbations to the entanglement Hamiltonian

$$
\rho_{A}=\frac{1}{Z_{a}} e^{-H_{A}} \quad H_{A}=\frac{2 \pi v}{L}\left(L_{0}-\frac{c}{24}\right)+\sum_{j} g_{j} \underbrace{\int_{0}^{L} \phi_{j}(y) \mathrm{d} y}_{\equiv\left(\frac{\pi}{L}\right)^{\Delta_{j}-1} V_{j}}
$$

where

- all perturbations are $U(1)$ neutral (here polynomials in derivatives of the scalar field)
- the scaling dimensions Δ_{j} of the perturbations are $\Delta_{j}>2$
- V_{j} stands for the zero mode of the field ϕ_{j}
- the coupling constants g_{j} are not known and depend on the geometry
we need to evaluate the charged moments :

$$
\widehat{Z}_{n}(\alpha)=\frac{1}{Z_{a}^{n}} \operatorname{Tr}_{a}\left(\mathrm{e}^{i \alpha Q_{A}} \mathrm{e}^{-\frac{2 \pi v n}{L}\left(L_{0}-1 / 24\right)+\cdots}\right)
$$

Mapping to partition functions in 2+0 critical systems

$\operatorname{Tr}\left(e^{i \alpha Q_{A}} e^{-\frac{2 \pi n \xi \nu}{L}\left(L_{0}-1 / 24\right)+\cdots}\right)$ can be interpreted as the partition function of a critical 1D system

- on an open chain of length L

- at inverse temperature $\beta_{n}=2 n v \xi$
- with twisted boundary conditions (in the compact imaginary time)

Interchanging space and imaginary time, one obtains a periodic system of size $2 n v \xi$, with twisted periodic boundary conditions. Thus

$$
\operatorname{Tr}\left(e^{i \alpha Q_{A}} e^{-\frac{2 \pi \xi_{v}}{L}\left(L_{0}-1 / 24\right)+\cdots}\right)=\langle B(\alpha)| e^{-L H}|B(\alpha)\rangle \sim\left|\left\langle B(\alpha) \mid \Psi_{0}\right\rangle\right|^{2} e^{-L E_{0}(\alpha)}
$$

one recovers the same phenomenology as for the IQHE $\widehat{Z}_{n}(\alpha) \sim g^{n-1} e^{-L\left(a_{n}+b_{n} \alpha^{2}+c_{n} \alpha^{4}\right)+O\left(L \alpha^{6}\right)}$
up to an additional prefactor $g=$ Ludwig-Affleck boundary entropy $\quad \Rightarrow \quad \gamma=\log g$
Same conclusion as for the IQHE :

- equipartition holds for $q=o(\sqrt{L})$
- FCS is gaussian for $q=O(\sqrt{L})$

Numerical check (using MPS on the cylinder)

For typical values of q, namely $q=O(\sqrt{L})$, we have

$$
S_{n}(q) \sim S_{n}-\frac{1}{2} \log L+A_{n}+B_{n} \frac{q^{2}}{L}+C_{n} \frac{q^{4}}{L^{3}}+O\left(\frac{1}{L^{2}}\right)
$$

Numerical values for Laughlin $\nu=1 / 2$

(\tilde{q} stands for $q / 2$).

The solid lines are quartic fits with three parameters A_{n}, B_{n}, C_{n}. As anticipated the quartic approximation holds for $q=O(\sqrt{L})$.

To conclude

For both the IQHE and the Laughin state

- typical charge fluctuations are gaussian
- Equipartition of entanglement entropy holds for $q=o(\sqrt{L})$
- finite size corrections are important

This offers compelling evidence in support of the Li-Haldane conjecture in the strong sense of Dubail Read and Rezayi, that is

$$
\rho_{A}=\frac{1}{Z_{a}} e^{-H_{A}}
$$

$$
H_{A}=\frac{2 \pi v}{L}\left(L_{0}-\frac{c}{24}\right)+\sum_{j} g_{j} \underbrace{\int_{0}^{L} \phi_{j}(y) \mathrm{d} y}_{\equiv\left(\frac{\pi}{L}\right)^{\Delta_{j}-1} V_{j}}
$$

Thank you!

[^0]: Entanglement spectrum of $1 / 3$ Laughlin on the sphere [from N.Regnault]

