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Symmetry-resolved entanglement 
entropy in quantum Hall states

Geometric and analytic aspects of the Quantum Hall effect

 with B.Oblak and N. Regnault

(related works with L. Charles and J.M. Stéphan)



Probing the bulk-edge correspondence
Li-Haldane : upon partitioning the system in two 
regions A and B, the entanglement Hamiltonian is 
conjectured to be in the same universality class as 
the effective edge Hamiltonian.  


Symmetry-resolved entanglement entropy probes this conjecture. 

Entanglement spectrum of 1/3 Laughlin on the sphere     [from N.Regnault] 



Given a bipartition of the Hilbert space , and a quantum state  


• if  (product-state) : there is no entanglement 

• otherwise the degrees of freedom in A and B are said to 

be entangled (in the state ).


Example : two spin 1/2 for which  


with 


Then  is a pure state, while   is entangled. 


But it’s not always this easy : 


 


ℋ = ℋA ⊗ ℋB |Ψ⟩ ∈ ℋ

|Ψ⟩ = |ΨA⟩ ⊗ |ΨB⟩

|Ψ⟩

ℋ = ℋA ⊗ ℋB

ℋA = ℋB = ℂ | ↑ ⟩ ⊕ ℂ | ↓ ⟩ ≃ ℂ2

| ↑ ↑ ⟩ = | ↑ ⟩ ⊗ | ↑ ⟩
| ↑ ↓ ⟩ − | ↓ ↑ ⟩

2

| ↑ ↑ ⟩ + | ↑ ↓ ⟩ + | ↓ ↑ ⟩ + | ↓ ↓ ⟩
2

= ( | ↑ ⟩ + | ↓ ⟩

2 ) ⊗ ( | ↑ ⟩ + | ↓ ⟩

2 )

Entanglement in a nutshell



Given a bipartition of the Hilbert space , and a quantum state 


 


Singular value decomposition of the matrix  yields the 


ℋ = ℋA ⊗ ℋB |Ψ⟩ ∈ ℋ

|Ψ⟩ = ∑
i,j

Aij |ei⟩ ⊗ | fj⟩

(Aij)

Facts :  
• the positive integer r is well-defined (i.e. independent of any possible choice made when 

performing the Schmidt decomposition). It is called the Schmidt rank.  


r =1  :      is a  product state                     OR                           r > 1 :       is entangled


• the Schmidt coefficients  (counted with multiplicities) are also well-defined

|Ψ⟩ |Ψ⟩

pj

Schmidt decomposition of   w.r.t.  the bipartition  :  

                   ,                    ,     .  

where  and  are orthonormal vectors in  and , respectively. 

|Ψ⟩ ℋ = ℋA ⊗ ℋB

|Ψ⟩ =
r

∑
j=1

pj |uj⟩ ⊗ |vj⟩ pj > 0
r

∑
j=1

pj = 1

{ |uj⟩} { |vj⟩} ℋA ℋB

Entanglement in a nutshell



• A quantum system can be in a pure state , in which case the expectation of an 
observable O is   .  


• More generally a quantum system can be in a statistical superposition of states , 
each with a probability  .  This is conveniently described as a density matrix 


       in which case        

|Ψ⟩
⟨O⟩ = ⟨Ψ |O |Ψ⟩

|Ψi⟩
pi

ρ = ∑
j

pj |Ψj⟩⟨Ψj | ⟨O⟩ = ∑
j

pj⟨Ψj |O |Ψj⟩ = Tr(ρO)

Fact : If the total system is a state , the subsystem A is in the state   


in the sense that for any observable  acting on  : 





ρ ρA = TrℋB (ρ)
OA ℋA

⟨OA⟩ ≡ TrℋA⊗ℋB (ρOA) = TrℋA (ρAOA)

As far as any measurement in A is concerned, the subsystem A is described by . ρA

Reduced density matrix ρA



Important remark : even if the total system is in a pure state , 

subsystem A is generically a statistical superposition.


                              

 is the (non-zero) spectrum of 


 ,     . 

The subsystem A is the statistical superposition of the states   with probability  . 

|Ψ⟩ ∈ ℋA ⊗ ℋB

|Ψ⟩ =
r

∑
j=1

pj |uj⟩ ⊗ |vj⟩ ⇒ ρA = ∑
j

pj |uj⟩⟨uj |

{pj} ρA = TrℋB ( |Ψ⟩⟨Ψ |)

pj > 0
r

∑
j=1

pj = 1

|uj⟩ pj

Schmidt decomposition and reduced density matrix



The subsystem A is the statistical superposition of the states   with probability  . 

In order to quantity the amount of entanglement between subsystems A and B, the most 
natural candidate is the Von Neumann entropy from classical information theory :

|uj⟩ pj

The (von Neumann) entanglement entropy of the state  w.r.t. to the bipartition 
 is


|Ψ⟩
ℋ = ℋA ⊗ ℋB

S( |Ψ⟩) = − ∑
j

pj log pj = − Tr (ρA log ρA)

How to quantify entanglement ?

Some properties :

• , with equality iff there is no entanglement

•  is maximal (given a Schmidt rank) when the uncertainty is maximal : all  equal

S ≥ 0
S pj

Other measures include the Rényi entropy of order  


                          

n

Sn( |Ψ⟩) =
1

1 − n
log∑

j

pn
j =

1
1 − n

log Tr (ρn
A)



Area law 
and subleading corrections



Generic features of EE :     Area law

Expectation :  the leading asymptotic behavior of EE 
is governed by a area/boundary law 




for regions A much larger than the correlation length , 
and  some non-universal constant

Sn ∼ Cn
Vol( ∂A )

ξd−1
, (ξ → 0)

ξ
Cn

For gapped quantum systems  


• spatial bipartition 

•   ground-state of a local Hamiltonian with a spectral gap 
•  finite correlation length 

|Ψ⟩
ξ

Hastings 2007 : proof of area law in 1D (Von Neumann entropy). Implies the ability to 
approximate one-dimensional ground state by a matrix product state. 



Topological EE                                        [Kitaev, Preskill   2006], [Levin Wen 2006] 


In two spatial dimensions, it has been proposed that 

   





where  is universal (i.e. insensitive to the short distance physics).  is known as the 
topological entanglement entropy, as it is expected to vanish for topologically trivial 
phases (phases not supporting anyons).  

• For Laughlin  it is expected to be . 


• More generally  where  is the total quantum dimension, given by 


                                                 


where  are the quantum dimensions of the anyons (labelled by a)


• For a CFT model state    and  in terms the modular  matrix 
of the underlying conformal field theory. 


This is supported by a few exactly solvable models (e.g. quantum stabilizers such as 
the toric code), numerics on FQH states and also TQFT mumbo jumbo.   


Sn = Cn
Length( ∂A )

ξ
− γ + o(1), (ξ → 0)

γ γ

ν = 1/m γ = log m

γ = log D D ≥ 1

D = ∑
a

d2
a

da

D = 1/S00 da = Sa0/S00 S



Topological EE from microscopic models

Exact Matrix Product State approach 
to CFT model states on the cylinder 
[Zaletel Mong 2012] 

Scaling of the entanglement entropy for 
the Moore-Read state. 


TQFT prediction : 

• 

• 


error in the range 


[From BE, Regnault, Bernevig         2015]

γvac = log(2 2) ≃ 1.0397
γqh = log(2) ≃ 0.6931

4 % 15ξ ≤ L ≤ 25ξ



Entanglement spectrum and bulk-edge correspondence

The entanglement or modular Hamiltonian  is defined via      and it 

spectrum is known as the entanglement spectrum. 

HA ρA =
1
Z

e−HA

Li-Haldane (2008)  the entanglement Hamiltonian 
“mimics” the chiral edge CFT, that is 


                       


where v is a non-universal constant proportional to 
, and . 

HA ≃ v
2π
L (L0 −

c
24 )

ξ L = length(∂A)

Entanglement spectrum of 1/3 Laughlin on 
the sphere with 8 particles  [N.Regnault] in 
the   sector.ΔNA = 0

Quote : the  (entanglement )spectrum is “gapless”, and has
the same count of states (characters) at each momentum
(Virasoro level), although there is some splitting of the “energies”.



Entanglement spectrum and bulk-edge correspondence

Dubail Read Rezayi (2012): the entanglement Hamiltonian is in the same universality 
class as the chiral edge CFT, that is 


   +   local irrelevant perturbations 


where v is a non-universal constant proportional to , and . 

HA = v
2π
L (L0 −

c
24 )

ξ L = length(∂A)

Entanglement spectrum of 1/3 Laughlin on 
the sphere with 12 particles  [Dubail et al.] 
in the   sector.


VS


spectrum of  + fine tuned 
perturbation (6 parameters)

ΔNA = 0

HCFT



Integer quantum Hall state

exact results



Integer quantum Hall effect
Setup :  
• two-dimensional (oriented) surface M with metric 


• magnetic field 

• no interactions (but Pauli principle)

gij
Fij = B gϵij

One body Hamiltonian = magnetic Laplacian    

                            

acting on a Hermitian line bundle , with connection  (whose curvature is the 
magnetic field F).


Facts :   
• M is naturally a Riemann surface (the metric induces a complex structure J)

• L has a natural holomorphic structure  such that  is the Chern connection                                               


  

Provided the magnetic field B is uniform (Kälher condition), then 


Lowest Landau level  =   holomorphic sections

H =
1
2

∇* ∇ = −
1
2

1
g

∇i ggij ∇j

L → M ∇

∂̄ ∇

H = ∂̄* ∂̄ + B
2



Integer quantum Hall state is gapped

LLL is spanned by holomorphic section  of L


IQH= fully occupied LLL 


The corresponding quantum state is a slater determinant :        


{ |ψn⟩}

|Ψ⟩ = ⋀
n

|ψn⟩

This is a gapped state. The projector onto the occupied states is known as the Bergman 
kernel  


This kernel falls off faster than any power law. On the plane for instance 





Correlation length (after restoring  and the electric charge )          


Π(z, w̄) = ∑
n

⟨z |ψn⟩⟨ψn |w⟩

Π(z, w̄) =
B
2π

e−B |z − w |2
2

ℏ q ξ = ℏ
qB



Area law and geometric corrections

Theorem :   Area Law holds       [L.Charles, BE,  2018]  




for some explicit constant , independently of the shape 
of A, as long as  is smooth. 

SA ∼ C
Length( ∂A )

ξ
, (ξ → 0)

C
∂A

Subleading corrections (exact result, not a 
theorem :):  
  




where 

•  is the geodesic curvature of 

•  is the scalar curvature of the underlying surface

SA = ∫∂A

dσ
ξ (C + ξ2 [C1κ2+C2R]) + O(ξ3)

κ ∂A
R



Entanglement spectrum on the cylinder

On the flat infinite cylinder of perimeter L :


Sn ∼ Cn
Length( ∂A )

ξ
+ O(ξ−∞)

From [B.Oblak, N. Regnault and BE     (2021)] 



Entanglement Hamiltonian

IQH on the flat infinite cylinder of perimeter L : 


ϵ(k) = log [ 2
erfc (ξ k)

− 1], k ∈
2π
L

ℤ

Fact :   for free fermions the entanglement Hamiltonian is quadratic              [Peschel]  

          HA = ∑
k

ϵ(k)c†
k ck

Linear at small momenta 


 ϵ(k) =
4ξ

π
k + O(k3)

 is the Hamiltonian of a chiral Dirac fermion 
in 1+1 dimensions 


                  


up to irrelevant perturbations.

HA

HA = v∑
k

kc†
k ck + ⋯



Leading area law term is robust, subleading corrections sensitive to curvature(s) 
  




where 

•  is the geodesic curvature of 

•  is the scalar curvature of the underlying surface

Sn = ∫∂A

dσ
ξ (Cn + ξ2 [C(1)

n κ2+C(2)
n R]) + O(ξ3)

κ ∂A
R

No correction of order                


The  term  =0 (the TEE) is also robust !

O(1) Sn = CnL /ξ + O(ξ−1)

O(1) γ

Linear, low energy part of the 
spectrum is robust.

Sensitivity to geometry



Symmetry-resolved entanglement entropy



We have a conserved quantity, namely the number of particles


  N = ∫ ρ(r) d2r = NA + NB

Back to a bipartition ℋ = ℋA ⊗ ℋB

Even though the total number  is fixed,  fluctuates.  Its distribution is known as the Full 
Counting Statistics. For convenience we work with . 

Facts :  
 commutes with , and therefore it is block diagonal w.r.t. to the number of particles q 

in region A. In fact  


                                                        


where  is a bona fide density matrix (that is it is positive and has unit trace). 


When measuring , the outcome  is obtained with probability . After such a 
measurement, the reduced density matrix describing subsystem A collapses to 


N NA
QA = NA − ⟨NA⟩

ρA QA

ρA = ⨁
q

pq ρA(q)

ρA(q)

QA q pq
ρA(q) .



Symmetry-resolved entropy
Idea : refine the EE by q sectors, according to


                                                        


 

in order to measure how entanglement is distributed among the different sectors. This 
means introducing 





In particular for the total Von Neumann entropy splits into 


                                               


• The first part is the amount of uncertainty coming from the fluctuations of 

• The second term is the average entanglement entropy in each  sector

ρA = ⨁
q

pq ρA(q)

Sn(q) =
1

1 − n
log Tr (ρA(q)n)

S = − ∑
q

pq log pq + ∑
q

pqS(q)

QA
QA

Conjecture : equipartition of entanglement entropy                 [Xavier, Alcaraz, Sierra (2018)] 
  

 does not depend on   

at least for typically values of         

S(q) q
q



Equipartition for Integer quantum Hall state

exact results



Full Counting Statistics for the IQHE
Theorem :    [L.Charles, BE  (2018)]  
The random variable  is a sum of  independent Bernoulli variables 


                                                                 


with success rate  given by the spectrum of the Bergman kernel restricted to region 

NA

NA = ∑
j

Bj

λj ∈ (0,1) A

All (even) cumulants obey the Area law. In particular the variance  

 
 

σ2 = ⟨N2
A⟩ − ⟨NA⟩2 ∼ (2π)−3/2 L /ξ, (ξ → 0)



Computing the SR Rényi entropy boils down to computing


                      where         is the projector onto the sector Zn(q) = Tr (ρn
A Πq) Πq QA = q

It turns out to be more convenient to work with the Fourier transform 


         ̂Zn(α) = Tr (ρn
A eiαQA)

For the IQHE (Peschel trick)


                                           


where  are the eigenvalues of the Bergman kernel restricted to 

̂Zn(α) = ∏
j

(λn
j eiα(1−λj) + (1 − λj)ne−iαλj)

λj ∈ (0,1) A

Twisted moments  ̂Zn(α)

In particular  is the generating function of the FCŜZ1(α) = Tr (ρAeiαQA) = ⟨eiαQA⟩



Fn(α) = ∫
∞

−∞

dk
4π

log (λ(k)2n + λ(−k)2n + 2λ(k)nλ(−k)ncos α)

̂Zn(α) ∼ e−L(an+bnα2+cnα4)+O(Lα6)

                        on the cylinder     with    


     

λj =
1
2

erfc ( 2πξ
L

j) j ∈ ℤ +
Φ
2π

log ̂Zn(α) = ∑
j

log (λn
j eiα(1−λj) + (1 − λj)ne−iαλj) =

L
ξ

Fn(α) + O (L−∞)

Simple setup : 
            the cylinder
Two parameters : 

• the perimeter 

• the holonomy 

L /ξ
Φ

Where  is explicitFn(α)   λ(k) =
1
2

erfc (ξk)






and 


is readily obtained by saddle point

̂Z1(α) ∼ e−L(b1α2+cnα4)+O(Lα6)

pq = ∫
dα
2π

e−iαq ̂Z1(α)

From [B.Oblak, N. Regnault and BE     (2021)] 

Full Counting Statistics for the IQHE on the cylinder 

FCS on the cylinder for  
and various values of 

L = 25ξ
Φ

On the cylinder the distribution is 
nearly Gaussian 


                


with variance      


at least for typical values, that is 


                  

pq ≃
1

2πσ2
e− q2

2σ2

σ2 =
1

(2π)3/2

L
ξ

q = O( L)



From [B.Oblak, N. Regnault and BE     (2021)] 
Full Counting Statistics for the IQHE on the cylinder 

log ̂Zn(α) = LFn(α) + O(L−∞)

Fn(α) = ∫
∞

−∞

dk
4π

log (λ(k)2n + λ(−k)2n + 2λ(k)nλ(−k)ncos α)

̂Zn(α) ∼ e−L(an+bnα2+cnα4)+O(Lα6)

For typical values of  , namely , we have


                        

q q = O( L)

Sn(q) ∼ Sn −
1
2

log L + An + Bn
q2

L
+ Cn

q4

L3
+ O ( 1

L2 )
Equipartition holds for q = o( L)



Equipartition for Laughlin states

probing the Li-Haldane conjecture



From [B.Oblak, N. Regnault and BE     (2021)] 
Equipartition from Li-Haldane

log ̂Zn(α) = LFn(α) + O(L−∞)

         with         ρA =
1
Za

e− 2πvξ
L (L0 − c

24 ) Za = Tra e− 2πvξ
L (L0 − c

24 )

For the Laughlin state the CFT is a chiral compact boson at radius R = m

 is manifestly block-diagonal with respect to , and more remarkably 


the normalized blocks  do not depend on q : 

ρA QA

ρA(q)

Let’s assume that Li-Haldane holds strictly (no irrelevant perturbation/finite size correction)

This would mean strict equipartition of the entanglement !  

Furthermore the charge distribution would be exactly Gaussian ! 



From [B.Oblak, N. Regnault and BE     (2021)] 
Probing Li-Haldane

log ̂Zn(α) = LFn(α) + O(L−∞)

         ρA =
1
Za

e−HA

Let’s now restore irrelevant perturbations to the entanglement Hamiltonian

where 

• all perturbations are  neutral (here polynomials in derivatives of the scalar field)

• the scaling dimensions  of the perturbations are 


•  stands for the zero mode of the field 


• the coupling constants  are not known and depend on the geometry

U(1)
Δj Δj > 2

Vj ϕj
gj

we need to evaluate the charged moments : 



Mapping to partition functions in 2+0 critical systems

 can be interpreted as


the partition function of a critical 1D system  
• on an open chain of length L

• at inverse temperature 

• with twisted boundary conditions (in the compact imaginary time)


Interchanging space and imaginary time, one obtains a periodic system of size , with

twisted periodic boundary conditions. Thus 


         


one recovers the same phenomenology as for the IQHE  

                  

up to an additional prefactor Ludwig-Affleck boundary entropy    


Tr (eiαQAe− 2πnξv
L (L0 − 1/24)+⋯)

βn = 2nvξ

2nvξ

Tr (eiαQAe− 2πξv
L (L0 − 1/24)+⋯) = ⟨B(α) |e−LH |B(α)⟩ ∼ ⟨B(α) |Ψ0⟩

2
e−LE0(α)

̂Zn(α) ∼ gn−1 e−L(an+bnα2+cnα4)+O(Lα6)

g = ⇒ γ = log g

ξ

Same conclusion as for the IQHE :   
•  equipartition holds for  

• FCS is gaussian for  
q = o( L)

q = O( L)



Numerical check (using MPS on the cylinder)
For typical values of  , namely , we have


                        

q q = O( L)

Sn(q) ∼ Sn −
1
2

log L +An + Bn
q2

L
+ Cn

q4

L3
+ O ( 1

L2 )

Numerical values for Laughlin               (  stands for ). 


The solid lines are quartic fits with three parameters .  As anticipated the quartic 
approximation holds for . 

ν = 1/2 q̃ q/2

An, Bn, Cn
q = O( L)



To conclude

For both the IQHE and the Laughin state

• typical charge fluctuations are gaussian 

• Equipartition of entanglement entropy holds for 

• finite size corrections are important

q = o( L)

This offers compelling evidence in support of the Li-Haldane conjecture 
in the strong sense of Dubail Read and Rezayi, that is  

         ρA =
1
Za

e−HA

Thank you ! 


