Uniqueness of Landau levels and their analogs with higher Chern numbers

Bruno Mera
(arXiv:2304.00866—Joint work with Tomoki Ozawa)

Advanced Institute for Materials Research (WPI-AIMR), Tohoku University Instituto de Telecomunicações
Instituto Superior Técnico, Universidade de Lisboa
Geometric and analytic aspects of the QHE
Les Diablerets, 8-12th May, 2023

it(i)
famr ozawa group

Outline

Bloch bands and quantum geometry

Kähler bands

Ideal Kähler bands/Ideal flatbands

Flat Kähler bands

Bloch bands and quantum geometry

Abstracting the concept of a Bloch wavefunction

Consider the real-space lattice $\mathbb{Z}^{2} \subset \mathbb{R}^{2}$.

Abstracting the concept of a Bloch wavefunction

Consider the real-space lattice $\mathbb{Z}^{2} \subset \mathbb{R}^{2}$. Then \mathbb{Z}^{2} is the reciprocal (dual) momentum-space lattice.

Abstracting the concept of a Bloch wavefunction

Consider the real-space lattice $\mathbb{Z}^{2} \subset \mathbb{R}^{2}$. Then \mathbb{Z}^{2} is the reciprocal (dual) momentum-space lattice.

Definition (Bloch wavefunction)

Abstracting the concept of a Bloch wavefunction

Consider the real-space lattice $\mathbb{Z}^{2} \subset \mathbb{R}^{2}$. Then \mathbb{Z}^{2} is the reciprocal (dual) momentum-space lattice.

Definition (Bloch wavefunction)

A Bloch wavefunction in two dimensions is determined by a family of nonvanishing vectors $\left|u_{\mathbf{k}}\right\rangle \in \mathcal{H}$, where \mathcal{H} is a fixed Hilbert space, smoothly paramaterized by $\mathbf{k} \in \mathbb{R}^{2}$, satisfying the following quasiperiodicity relation:

Abstracting the concept of a Bloch wavefunction

Consider the real-space lattice $\mathbb{Z}^{2} \subset \mathbb{R}^{2}$. Then \mathbb{Z}^{2} is the reciprocal (dual) momentum-space lattice.

Definition (Bloch wavefunction)

A Bloch wavefunction in two dimensions is determined by a family of nonvanishing vectors $\left|u_{\mathbf{k}}\right\rangle \in \mathcal{H}$, where \mathcal{H} is a fixed Hilbert space, smoothly paramaterized by $\mathbf{k} \in \mathbb{R}^{2}$, satisfying the following quasiperiodicity relation:

$$
\begin{equation*}
\left|u_{\mathbf{k}+\mathbf{G}}\right\rangle=e_{\mathbf{G}}(\mathbf{k}) U_{\mathbf{G}}\left|u_{\mathbf{k}}\right\rangle, \text { for all } \mathbf{G} \in \mathbb{Z}^{2} \tag{1}
\end{equation*}
$$

Abstracting the concept of a Bloch wavefunction

Consider the real-space lattice $\mathbb{Z}^{2} \subset \mathbb{R}^{2}$. Then \mathbb{Z}^{2} is the reciprocal (dual) momentum-space lattice.

Definition (Bloch wavefunction)

A Bloch wavefunction in two dimensions is determined by a family of nonvanishing vectors $\left|u_{\mathbf{k}}\right\rangle \in \mathcal{H}$, where \mathcal{H} is a fixed Hilbert space, smoothly paramaterized by $\mathbf{k} \in \mathbb{R}^{2}$, satisfying the following quasiperiodicity relation:

$$
\begin{equation*}
\left|u_{\mathbf{k}+\mathbf{G}}\right\rangle=e_{\mathbf{G}}(\mathbf{k}) U_{\mathbf{G}}\left|u_{\mathbf{k}}\right\rangle, \text { for all } \mathbf{G} \in \mathbb{Z}^{2} \tag{1}
\end{equation*}
$$

where $\left(e_{\mathbf{G}}\right)_{\mathbf{G} \in \mathbb{Z}^{2}}$ is a system of multipliers for a line bundle $L \rightarrow B Z^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$ and $\left(U_{\mathbf{G}}\right)_{\mathbf{G} \in \mathbb{Z}^{2}}$ a unitary representation of the reciprocal lattice.

Abstracting the concept of a Bloch wavefunction (cont.)

Remark

Abstracting the concept of a Bloch wavefunction (cont.)

Remark

L has a natural Hermitian inner product and a compatible connection

Abstracting the concept of a Bloch wavefunction (cont.)

Remark

L has a natural Hermitian inner product and a compatible connection

$$
\begin{equation*}
h(\mathbf{k}):=\frac{1}{\left\langle u_{\mathbf{k}} \mid u_{\mathbf{k}}\right\rangle} \text { and } A(\mathbf{k})=-\frac{\left\langle u_{\mathbf{k}}\right| d\left|u_{\mathbf{k}}\right\rangle}{\left\langle u_{\mathbf{k}} \mid u_{\mathbf{k}}\right\rangle} \tag{2}
\end{equation*}
$$

Abstracting the concept of a Bloch wavefunction (cont.)

Remark

L has a natural Hermitian inner product and a compatible connection

$$
\begin{equation*}
h(\mathbf{k}):=\frac{1}{\left\langle u_{\mathbf{k}} \mid u_{\mathbf{k}}\right\rangle} \text { and } A(\mathbf{k})=-\frac{\left\langle u_{\mathbf{k}}\right| d\left|u_{\mathbf{k}}\right\rangle}{\left\langle u_{\mathbf{k}} \mid u_{\mathbf{k}}\right\rangle}, \tag{2}
\end{equation*}
$$

with $d \log h=\bar{A}+A$; i.e. L is an Hermitian line bundle with connection.

Abstracting the concept of a Bloch wavefunction (cont.)

Remark

L has a natural Hermitian inner product and a compatible connection

$$
\begin{equation*}
h(\mathbf{k}):=\frac{1}{\left\langle u_{\mathbf{k}} \mid u_{\mathbf{k}}\right\rangle} \text { and } A(\mathbf{k})=-\frac{\left\langle u_{\mathbf{k}}\right| d\left|u_{\mathbf{k}}\right\rangle}{\left\langle u_{\mathbf{k}} \mid u_{\mathbf{k}}\right\rangle}, \tag{2}
\end{equation*}
$$

with $d \log h=\bar{A}+A$; i.e. L is an Hermitian line bundle with connection. Note that $A(\mathbf{k})$ is the opposite of the Berry connection.

Abstracting the concept of a Bloch wavefunction (cont.)

Definition (Equivalence of Bloch wavefunctions)

Abstracting the concept of a Bloch wavefunction (cont.)

Definition (Equivalence of Bloch wavefunctions)

Two families $\left|u_{\mathbf{k}}\right\rangle,\left|u_{\mathbf{k}}^{\prime}\right\rangle$, in the same given Hilbert space \mathcal{H}, are said to determine equivalent Bloch wavefunctions if there exists a smooth function $g: \mathbb{R}^{2} \rightarrow \mathbb{C}^{*}$ such that $\left|u_{\mathbf{k}}^{\prime}\right\rangle=\left|u_{\mathbf{k}}\right\rangle g(\mathbf{k})$.

Abstracting the concept of a Bloch wavefunction (cont.)

Definition (Equivalence of Bloch wavefunctions)

Two families $\left|u_{\mathbf{k}}\right\rangle,\left|u_{\mathbf{k}}^{\prime}\right\rangle$, in the same given Hilbert space \mathcal{H}, are said to determine equivalent Bloch wavefunctions if there exists a smooth function $g: \mathbb{R}^{2} \rightarrow \mathbb{C}^{*}$ such that $\left|u_{\mathbf{k}}^{\prime}\right\rangle=\left|u_{\mathbf{k}}\right\rangle g(\mathbf{k})$.

Remark

Abstracting the concept of a Bloch wavefunction (cont.)

Definition (Equivalence of Bloch wavefunctions)

Two families $\left|u_{\mathbf{k}}\right\rangle,\left|u_{\mathbf{k}}^{\prime}\right\rangle$, in the same given Hilbert space \mathcal{H}, are said to determine equivalent Bloch wavefunctions if there exists a smooth function $g: \mathbb{R}^{2} \rightarrow \mathbb{C}^{*}$ such that $\left|u_{\mathbf{k}}^{\prime}\right\rangle=\left|u_{\mathbf{k}}\right\rangle g(\mathbf{k})$.

Remark

The transformation $\left|u_{\mathbf{k}}\right\rangle \mapsto\left|u_{\mathbf{k}}\right\rangle g(\mathbf{k})$ induces the transformations $e_{\mathbf{G}}(\mathbf{k}) \mapsto e_{\mathbf{G}}(\mathbf{k})\left(g(\mathbf{k}+\mathbf{G}) g^{-1}(\mathbf{k})\right)$ which produces isomorphic line bundles.

Abstracting the concept of a Bloch wavefunction (cont.)

Perhaps a weaker, more general, definition of equivalence would be:

Abstracting the concept of a Bloch wavefunction (cont.)

Perhaps a weaker, more general, definition of equivalence would be:

Definition (Equivalence of Bloch wavefunctions)

Abstracting the concept of a Bloch wavefunction (cont.)

Perhaps a weaker, more general, definition of equivalence would be:

Definition (Equivalence of Bloch wavefunctions)

Two families $\left|u_{\mathbf{k}}\right\rangle,\left|u_{\mathbf{k}}^{\prime}\right\rangle$, in the same given Hilbert space \mathcal{H}, are said to determine equivalent Bloch wavefunctions if there exists a smooth function $g: \mathbb{R}^{2} \rightarrow \mathbb{C}^{*}$ and a constant unitary operator $U \in U(\mathcal{H})$ such that $\left|u_{\mathbf{k}}^{\prime}\right\rangle=\left(U\left|u_{\mathbf{k}}\right\rangle\right) g(\mathbf{k})$.

Abstracting the concept of a Bloch wavefunction (cont.)

Perhaps a weaker, more general, definition of equivalence would be:

Definition (Equivalence of Bloch wavefunctions)

Two families $\left|u_{\mathbf{k}}\right\rangle,\left|u_{\mathbf{k}}^{\prime}\right\rangle$, in the same given Hilbert space \mathcal{H}, are said to determine equivalent Bloch wavefunctions if there exists a smooth function $g: \mathbb{R}^{2} \rightarrow \mathbb{C}^{*}$ and a constant unitary operator $U \in U(\mathcal{H})$ such that $\left|u_{\mathbf{k}}^{\prime}\right\rangle=\left(U\left|u_{\mathbf{k}}\right\rangle\right) g(\mathbf{k})$.

Remark

Abstracting the concept of a Bloch wavefunction (cont.)

Perhaps a weaker, more general, definition of equivalence would be:

Definition (Equivalence of Bloch wavefunctions)

Two families $\left|u_{\mathbf{k}}\right\rangle,\left|u_{\mathbf{k}}^{\prime}\right\rangle$, in the same given Hilbert space \mathcal{H}, are said to determine equivalent Bloch wavefunctions if there exists a smooth function $g: \mathbb{R}^{2} \rightarrow \mathbb{C}^{*}$ and a constant unitary operator $U \in U(\mathcal{H})$ such that $\left|u_{\mathbf{k}}^{\prime}\right\rangle=\left(U\left|u_{\mathbf{k}}\right\rangle\right) g(\mathbf{k})$.

Remark

The unitary operator U intertwines the unitary reps of \mathbb{Z}^{2} : $U_{\mathbf{G}}^{\prime} U=U U_{\mathbf{G}}, \forall \mathbf{G} \in \mathbb{Z}^{2}$.

Spatial structure of Bloch wavefunctions

Characters

Spatial structure of Bloch wavefunctions

Characters

- Since $U_{\mathbf{G}}$ determines a unitary rep of \mathbb{Z}^{2} we can split it into irreps.

Spatial structure of Bloch wavefunctions

Characters

- Since $U_{\mathbf{G}}$ determines a unitary rep of \mathbb{Z}^{2} we can split it into irreps.
- Unitary irreps of the reciprocal lattice, $\chi: \mathbb{Z}^{2} \rightarrow \mathrm{U}(1)$, are labelled by points \mathbf{r} in the real unit cell, under the identification $\mathbf{r} \sim \mathbf{r}+\mathbf{R}$ with $\mathbf{R} \in \mathbb{Z}^{2}: \chi(\mathbf{G})=e^{-2 \pi i \mathbf{G} \cdot \mathbf{r}}$.

Spatial structure of Bloch wavefunctions

Characters

- Since $U_{\mathbf{G}}$ determines a unitary rep of \mathbb{Z}^{2} we can split it into irreps.
- Unitary irreps of the reciprocal lattice, $\chi: \mathbb{Z}^{2} \rightarrow \mathrm{U}(1)$, are labelled by points \mathbf{r} in the real unit cell, under the identification $\mathbf{r} \sim \mathbf{r}+\mathbf{R}$ with $\mathbf{R} \in \mathbb{Z}^{2}: \chi(\mathbf{G})=e^{-2 \pi i \mathbf{G} \cdot \mathbf{r}}$.
- Then $\mathcal{H} \cong \bigoplus_{\mathbf{r}} \mathcal{H}_{\mathbf{r}}$, where $\left.U_{\mathbf{G}}\right|_{\mathcal{H}_{\mathbf{r}}}=\chi(\mathbf{G})=e^{-2 \pi i \mathbf{G} \cdot \mathbf{r}}$.

Spatial structure of Bloch wavefunctions

Characters

- Since $U_{\mathbf{G}}$ determines a unitary rep of \mathbb{Z}^{2} we can split it into irreps.
- Unitary irreps of the reciprocal lattice, $\chi: \mathbb{Z}^{2} \rightarrow \mathrm{U}(1)$, are labelled by points \mathbf{r} in the real unit cell, under the identification $\mathbf{r} \sim \mathbf{r}+\mathbf{R}$ with $\mathbf{R} \in \mathbb{Z}^{2}: \chi(\mathbf{G})=e^{-2 \pi i \mathbf{G} \cdot \mathbf{r}}$.
- Then $\mathcal{H} \cong \bigoplus_{\mathbf{r}} \mathcal{H}_{\mathbf{r}}$, where $\left.U_{\mathbf{G}}\right|_{\mathcal{H}_{\mathbf{r}}}=\chi(\mathbf{G})=e^{-2 \pi i \mathbf{G} \cdot \mathbf{r}}$.

Remark

Spatial structure of Bloch wavefunctions

Characters

- Since $U_{\mathbf{G}}$ determines a unitary rep of \mathbb{Z}^{2} we can split it into irreps.
- Unitary irreps of the reciprocal lattice, $\chi: \mathbb{Z}^{2} \rightarrow \mathrm{U}(1)$, are labelled by points \mathbf{r} in the real unit cell, under the identification $\mathbf{r} \sim \mathbf{r}+\mathbf{R}$ with $\mathbf{R} \in \mathbb{Z}^{2}: \chi(\mathbf{G})=e^{-2 \pi i \mathbf{G} \cdot \mathbf{r}}$.
- Then $\mathcal{H} \cong \bigoplus_{\mathbf{r}} \mathcal{H}_{\mathbf{r}}$, where $\left.U_{\mathbf{G}}\right|_{\mathcal{H}_{\mathbf{r}}}=\chi(\mathbf{G})=e^{-2 \pi i \mathbf{G} \cdot \mathbf{r}}$.

Remark

The direct sum is over a collection of points $\mathbf{r}=(x, y) \in u . c$. .

Spatial structure of Bloch wavefunctions

Characters

- Since $U_{\mathbf{G}}$ determines a unitary rep of \mathbb{Z}^{2} we can split it into irreps.
- Unitary irreps of the reciprocal lattice, $\chi: \mathbb{Z}^{2} \rightarrow \mathrm{U}(1)$, are labelled by points \mathbf{r} in the real unit cell, under the identification $\mathbf{r} \sim \mathbf{r}+\mathbf{R}$ with $\mathbf{R} \in \mathbb{Z}^{2}: \chi(\mathbf{G})=e^{-2 \pi i \mathbf{G} \cdot \mathbf{r}}$.
- Then $\mathcal{H} \cong \bigoplus_{\mathbf{r}} \mathcal{H}_{\mathbf{r}}$, where $\left.U_{\mathbf{G}}\right|_{\mathcal{H}_{\mathbf{r}}}=\chi(\mathbf{G})=e^{-2 \pi i \mathbf{G} \cdot \mathbf{r}}$.

Remark

The direct sum is over a collection of points $\mathbf{r}=(x, y) \in u . c$.. This collection can be the whole unit cell, in which case the direct sum has to be replaced by the more general direct integral $\mathcal{H} \cong \int^{\oplus} d^{2} \mathbf{r} \mathcal{H}_{\mathbf{r}}$.

Spatial structure of Bloch wavefunctions (cont.)

Quasiperiodicity condition

Spatial structure of Bloch wavefunctions (cont.)

Quasiperiodicity condition

The component $u_{\mathbf{k}}(\mathbf{r}) \in \mathcal{H}_{\mathbf{r}}$ of $\left|u_{\mathbf{k}}\right\rangle$ satisfies

Spatial structure of Bloch wavefunctions (cont.)

Quasiperiodicity condition

The component $u_{\mathbf{k}}(\mathbf{r}) \in \mathcal{H}_{\mathbf{r}}$ of $\left|u_{\mathbf{k}}\right\rangle$ satisfies

$$
\begin{align*}
u_{\mathbf{k}+\mathbf{G}}(\mathbf{r}) & =e_{\mathbf{G}}(\mathbf{k}) \chi(\mathbf{G}) u_{\mathbf{k}}(\mathbf{r}) \\
& =e_{\mathbf{G}}(\mathbf{k}) e^{-2 \pi i \mathbf{G} \cdot \mathbf{r}} u_{\mathbf{k}}(\mathbf{r}) . \tag{3}
\end{align*}
$$

Spatial structure of Bloch wavefunctions (cont.)

Coefficients determine smooth sections of line bundles $L_{r} \rightarrow \mathrm{BZ}^{2}$

Spatial structure of Bloch wavefunctions (cont.)

Coefficients determine smooth sections of line bundles $L_{r} \rightarrow B Z^{2}$

- Fix an o.n. basis for $\mathcal{H}_{\mathbf{r}}$, say $\{|\alpha, \mathbf{r}\rangle\}_{\alpha=1,2, \ldots}$, and write

Spatial structure of Bloch wavefunctions (cont.)

Coefficients determine smooth sections of line bundles $L_{r} \rightarrow B Z^{2}$

- Fix an o.n. basis for $\mathcal{H}_{\mathbf{r}}$, say $\{|\alpha, \mathbf{r}\rangle\}_{\alpha=1,2, \ldots}$, and write

$$
\begin{equation*}
\mathcal{H}_{\mathbf{r}} \ni u_{\mathbf{k}}(\mathbf{r})=\sum_{\alpha} f_{\alpha, \mathbf{r}}(\mathbf{k})|\alpha, \mathbf{r}\rangle . \tag{4}
\end{equation*}
$$

Spatial structure of Bloch wavefunctions (cont.)

Coefficients determine smooth sections of line bundles $L_{r} \rightarrow B Z^{2}$

- Fix an o.n. basis for $\mathcal{H}_{\mathbf{r}}$, say $\{|\alpha, \mathbf{r}\rangle\}_{\alpha=1,2, \ldots}$, and write

$$
\begin{equation*}
\mathcal{H}_{\mathbf{r}} \ni u_{\mathbf{k}}(\mathbf{r})=\sum_{\alpha} f_{\alpha, \mathbf{r}}(\mathbf{k})|\alpha, \mathbf{r}\rangle . \tag{4}
\end{equation*}
$$

- The $f_{\alpha, r}$'s define functions $f_{\alpha, \boldsymbol{r}}: \mathbb{R}^{2} \rightarrow \mathbb{C}$ satisfying

Spatial structure of Bloch wavefunctions (cont.)

Coefficients determine smooth sections of line bundles $L_{r} \rightarrow B Z^{2}$

- Fix an o.n. basis for $\mathcal{H}_{\mathbf{r}}$, say $\{|\alpha, \mathbf{r}\rangle\}_{\alpha=1,2, \ldots}$, and write

$$
\begin{equation*}
\mathcal{H}_{\mathbf{r}} \ni u_{\mathbf{k}}(\mathbf{r})=\sum_{\alpha} f_{\alpha, \mathbf{r}}(\mathbf{k})|\alpha, \mathbf{r}\rangle . \tag{4}
\end{equation*}
$$

- The $f_{\alpha, \text { r's }}$ define functions $f_{\alpha, \boldsymbol{r}}: \mathbb{R}^{2} \rightarrow \mathbb{C}$ satisfying

$$
\begin{equation*}
f_{\alpha, \mathbf{r}}(\mathbf{k}+\mathbf{G})=e_{\mathbf{G}}(\mathbf{k}) \chi(\mathbf{G}) f_{\alpha, \mathbf{r}}(\mathbf{k}), \alpha=1,2, \ldots, \tag{5}
\end{equation*}
$$

Spatial structure of Bloch wavefunctions (cont.)

Coefficients determine smooth sections of line bundles $L_{r} \rightarrow B Z^{2}$

- Fix an o.n. basis for $\mathcal{H}_{\mathbf{r}}$, say $\{|\alpha, \mathbf{r}\rangle\}_{\alpha=1,2, \ldots}$, and write

$$
\begin{equation*}
\mathcal{H}_{\mathbf{r}} \ni u_{\mathbf{k}}(\mathbf{r})=\sum_{\alpha} f_{\alpha, \mathbf{r}}(\mathbf{k})|\alpha, \mathbf{r}\rangle . \tag{4}
\end{equation*}
$$

- The $f_{\alpha, \text { 'r }}$ define functions $f_{\alpha, \mathbf{r}}: \mathbb{R}^{2} \rightarrow \mathbb{C}$ satisfying

$$
\begin{equation*}
f_{\alpha, \mathbf{r}}(\mathbf{k}+\mathbf{G})=e_{\mathbf{G}}(\mathbf{k}) \chi(\mathbf{G}) f_{\alpha, \mathbf{r}}(\mathbf{k}), \alpha=1,2, \ldots, \tag{5}
\end{equation*}
$$

and so determine sections of a line bundle $L_{r} \rightarrow \mathrm{BZ}^{2}$ whose multipliers are $e_{\mathbf{G}}(\mathbf{k}) \chi(\mathbf{G})$.

Spatial structure of Bloch wavefunctions (cont.)

Coefficients determine smooth sections of line bundles $L_{r} \rightarrow B Z^{2}$

- Fix an o.n. basis for $\mathcal{H}_{\mathbf{r}}$, say $\{|\alpha, \mathbf{r}\rangle\}_{\alpha=1,2, \ldots}$, and write

$$
\begin{equation*}
\mathcal{H}_{\mathbf{r}} \ni u_{\mathbf{k}}(\mathbf{r})=\sum_{\alpha} f_{\alpha, \mathbf{r}}(\mathbf{k})|\alpha, \mathbf{r}\rangle . \tag{4}
\end{equation*}
$$

- The $f_{\alpha, \text { 'r }}$ define functions $f_{\alpha, \mathbf{r}}: \mathbb{R}^{2} \rightarrow \mathbb{C}$ satisfying

$$
\begin{equation*}
f_{\alpha, \mathbf{r}}(\mathbf{k}+\mathbf{G})=e_{\mathbf{G}}(\mathbf{k}) \chi(\mathbf{G}) f_{\alpha, \mathbf{r}}(\mathbf{k}), \alpha=1,2, \ldots, \tag{5}
\end{equation*}
$$

and so determine sections of a line bundle $L_{r} \rightarrow \mathrm{BZ}^{2}$ whose multipliers are $e_{\mathbf{G}}(\mathbf{k}) \chi(\mathbf{G})$.

- For each \mathbf{r} occurring in the decomposition $\mathcal{H}=\bigoplus_{\mathbf{r}} \mathcal{H}_{\mathbf{r}}$ we have one such line bundle.

Spatial structure of Bloch wavefunctions (cont.)

Geometric interpretation

Spatial structure of Bloch wavefunctions (cont.)

Geometric interpretation

The positions \mathbf{r} in the unit cell determine characters
$\chi(\mathbf{G})=e^{-2 \pi i \mathbf{G} \cdot \mathbf{r}}$, defining flat line bundles

Spatial structure of Bloch wavefunctions (cont.)

Geometric interpretation

The positions \mathbf{r} in the unit cell determine characters
$\chi(\mathbf{G})=e^{-2 \pi i \mathbf{G} \cdot \mathbf{r}}$, defining flat line bundles

$$
\begin{equation*}
\mathcal{L}_{\mathbf{r}}=\mathbb{R}^{2} \times_{\chi} \mathbb{C} \rightarrow \mathrm{BZ}^{2} \tag{6}
\end{equation*}
$$

Spatial structure of Bloch wavefunctions (cont.)

Geometric interpretation

The positions \mathbf{r} in the unit cell determine characters
$\chi(\mathbf{G})=e^{-2 \pi i \mathbf{G} \cdot \mathbf{r}}$, defining flat line bundles

$$
\begin{equation*}
\mathcal{L}_{\mathbf{r}}=\mathbb{R}^{2} \times_{\chi} \mathbb{C} \rightarrow \mathrm{BZ}^{2} \tag{6}
\end{equation*}
$$

which twist the original bundle L as

Spatial structure of Bloch wavefunctions (cont.)

Geometric interpretation

The positions \mathbf{r} in the unit cell determine characters
$\chi(\mathbf{G})=e^{-2 \pi i \mathbf{G} \cdot \mathbf{r}}$, defining flat line bundles

$$
\begin{equation*}
\mathcal{L}_{\mathbf{r}}=\mathbb{R}^{2} \times_{\chi} \mathbb{C} \rightarrow \mathrm{BZ}^{2} \tag{6}
\end{equation*}
$$

which twist the original bundle L as

$$
\begin{equation*}
L_{r}=L \otimes \mathcal{L}_{\mathbf{r}} \rightarrow \mathrm{BZ}^{2} \tag{7}
\end{equation*}
$$

Spatial structure of Bloch wavefunctions (cont.)

Geometric interpretation

The positions \mathbf{r} in the unit cell determine characters
$\chi(\mathbf{G})=e^{-2 \pi i \mathbf{G} \cdot \mathbf{r}}$, defining flat line bundles

$$
\begin{equation*}
\mathcal{L}_{\mathbf{r}}=\mathbb{R}^{2} \times_{\chi} \mathbb{C} \rightarrow \mathrm{BZ}^{2} \tag{6}
\end{equation*}
$$

which twist the original bundle L as

$$
\begin{equation*}
L_{r}=L \otimes \mathcal{L}_{\mathbf{r}} \rightarrow \mathrm{BZ}^{2} \tag{7}
\end{equation*}
$$

The $u_{\mathrm{k}}(\mathbf{r})$'s know of the spatial structure of the unit cell through the holonomy on loops $\mathbf{k}(t) \mapsto \mathbf{k}+t \mathbf{G}, t \in[0,1]: \chi^{-1}(\mathbf{G})$.

Spatial structure of Bloch wavefunctions (cont.)

Figure: Geometric interpretation of the spatial structure of Bloch wavefunctions.

Quantum geometry in momentum space

- The assignment $\mathbf{k} \mapsto\left|u_{\mathbf{k}}\right\rangle \in \mathcal{H}-\{0\}$ determines a map $f: \mathbb{R}^{2} \rightarrow \mathbb{P H}$ which uniquely defines the Bloch wavefunction.

Quantum geometry in momentum space

- The assignment $\mathbf{k} \mapsto\left|u_{\mathbf{k}}\right\rangle \in \mathcal{H}-\{0\}$ determines a map $f: \mathbb{R}^{2} \rightarrow \mathbb{P H}$ which uniquely defines the Bloch wavefunction.
- The space $\mathbb{P H}$ is a (possibly infinite dimensional) Kähler manifold with respect to the Fubini-Study Kähler structure- $\left(\mathbb{P H}, \omega_{F S}\right)\left(g_{F S}=\omega\left(\cdot, J_{F S} \cdot\right)\right)$.

Quantum geometry in momentum space

- The assignment $\mathbf{k} \mapsto\left|u_{\mathbf{k}}\right\rangle \in \mathcal{H}-\{0\}$ determines a map $f: \mathbb{R}^{2} \rightarrow \mathbb{P H}$ which uniquely defines the Bloch wavefunction.
- The space $\mathbb{P H}$ is a (possibly infinite dimensional) Kähler manifold with respect to the Fubini-Study Kähler structure- $\left(\mathbb{P H}, \omega_{F S}\right)\left(g_{F S}=\omega\left(\cdot, J_{F S} \cdot\right)\right)$.
- Over $\mathbb{P H}$ we have the Hermitian holomorphic line bundle known as the tautological line bundle.

Quantum geometry in momentum space

- The assignment $\mathbf{k} \mapsto\left|u_{\mathbf{k}}\right\rangle \in \mathcal{H}-\{0\}$ determines a map $f: \mathbb{R}^{2} \rightarrow \mathbb{P H}$ which uniquely defines the Bloch wavefunction.
- The space $\mathbb{P H}$ is a (possibly infinite dimensional) Kähler manifold with respect to the Fubini-Study Kähler structure- $\left(\mathbb{P H}, \omega_{F S}\right)\left(g_{F S}=\omega\left(\cdot, J_{F S} \cdot\right)\right)$.
- Over $\mathbb{P H}$ we have the Hermitian holomorphic line bundle known as the tautological line bundle. Its Chern connection has curvature $2 i \omega_{F S}$.

Quantum geometry in momentum space (cont.)

Definition (Berry curvature and quantum metric)

Quantum geometry in momentum space (cont.)

Definition (Berry curvature and quantum metric)

The Berry curvature F and quantum metric g of the Bloch wavefunction determined by $\left|u_{\mathbf{k}}\right\rangle$ are, respectively,

Quantum geometry in momentum space (cont.)

Definition (Berry curvature and quantum metric)

The Berry curvature F and quantum metric g of the Bloch wavefunction determined by $\left|u_{\mathbf{k}}\right\rangle$ are, respectively,

$$
\begin{equation*}
F:=f^{*}\left(2 i \omega_{F S}\right) \text { and } g:=f^{*} g_{F S} . \tag{8}
\end{equation*}
$$

Quantum geometry in momentum space (cont.)

Proposition (Quantum geometry in the Brillouin zone)

The tensors $F \in \Omega^{2}\left(\mathbb{R}^{2}\right)$ and $g \in \operatorname{Symm}^{2}\left(\mathbb{R}^{2}\right)$ go down to the Brillouin zone $\mathrm{BZ}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$.

Quantum geometry in momentum space (cont.)

Proposition (Quantum geometry in the Brillouin zone)

The tensors $F \in \Omega^{2}\left(\mathbb{R}^{2}\right)$ and $g \in \operatorname{Symm}^{2}\left(\mathbb{R}^{2}\right)$ go down to the Brillouin zone $\mathrm{BZ}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$. The tensors F and g only depend on the Bloch wavefunction and not the particular representative.

Quantum geometry in momentum space (cont.)

Proposition (Quantum geometry in the Brillouin zone)

The tensors $F \in \Omega^{2}\left(\mathbb{R}^{2}\right)$ and $g \in \operatorname{Symm}^{2}\left(\mathbb{R}^{2}\right)$ go down to the Brillouin zone $\mathrm{BZ}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$. The tensors F and g only depend on the Bloch wavefunction and not the particular representative.

Proof.

Since $\left|u_{\mathbf{k}+\mathbf{G}}\right\rangle=U_{\mathbf{G}}\left|u_{\mathbf{k}}\right\rangle e_{\mathbf{G}}(\mathbf{k})$, then for $\phi_{\mathbf{G}}: \mathbf{k} \mapsto \mathbf{k}+\mathbf{G}, \mathbf{G} \in \mathbb{Z}^{2}$, we have

Quantum geometry in momentum space (cont.)

Proposition (Quantum geometry in the Brillouin zone)

The tensors $F \in \Omega^{2}\left(\mathbb{R}^{2}\right)$ and $g \in \operatorname{Symm}^{2}\left(\mathbb{R}^{2}\right)$ go down to the Brillouin zone $\mathrm{BZ}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$. The tensors F and g only depend on the Bloch wavefunction and not the particular representative.

Proof.

Since $\left|u_{\mathbf{k}+\mathbf{G}}\right\rangle=U_{\mathbf{G}}\left|u_{\mathbf{k}}\right\rangle e_{\mathbf{G}}(\mathbf{k})$, then for $\phi_{\mathbf{G}}: \mathbf{k} \mapsto \mathbf{k}+\mathbf{G}, \mathbf{G} \in \mathbb{Z}^{2}$, we have

$$
\begin{equation*}
f \circ \phi_{\mathbf{G}}=U_{\mathbf{G}} \circ f \tag{9}
\end{equation*}
$$

Quantum geometry in momentum space (cont.)

Proposition (Quantum geometry in the Brillouin zone)

The tensors $F \in \Omega^{2}\left(\mathbb{R}^{2}\right)$ and $g \in \operatorname{Symm}^{2}\left(\mathbb{R}^{2}\right)$ go down to the Brillouin zone $\mathrm{BZ}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$. The tensors F and g only depend on the Bloch wavefunction and not the particular representative.

Proof.

Since $\left|u_{\mathbf{k}+\mathbf{G}}\right\rangle=U_{\mathbf{G}}\left|u_{\mathbf{k}}\right\rangle e_{\mathbf{G}}(\mathbf{k})$, then for $\phi_{\mathbf{G}}: \mathbf{k} \mapsto \mathbf{k}+\mathbf{G}, \mathbf{G} \in \mathbb{Z}^{2}$, we have

$$
\begin{equation*}
f \circ \phi_{\mathbf{G}}=U_{\mathbf{G}} \circ f, \tag{9}
\end{equation*}
$$

where in the above formula $U_{\mathbf{G}}: \mathbb{P H} \rightarrow \mathbb{P H}$ denotes the induced map. Now $U_{\mathbf{G}} \in \operatorname{Aut}\left(\mathbb{P H}, \omega_{F S}\right)$ as a Kähler manifold so $\phi_{\mathbf{G}}^{*} F=F$ and $\phi_{\mathbf{G}}^{*} g=g$ for all $\mathbf{G} \in \mathbb{Z}^{2}$.

Quantum geometry in momentum space (cont.)

Proposition (Quantum geometry in the Brillouin zone)

The tensors $F \in \Omega^{2}\left(\mathbb{R}^{2}\right)$ and $g \in \operatorname{Symm}^{2}\left(\mathbb{R}^{2}\right)$ go down to the Brillouin zone $\mathrm{BZ}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$. The tensors F and g only depend on the Bloch wavefunction and not the particular representative.

Proof.

Since $\left|u_{\mathbf{k}+\mathbf{G}}\right\rangle=U_{\mathbf{G}}\left|u_{\mathbf{k}}\right\rangle e_{\mathbf{G}}(\mathbf{k})$, then for $\phi_{\mathbf{G}}: \mathbf{k} \mapsto \mathbf{k}+\mathbf{G}, \mathbf{G} \in \mathbb{Z}^{2}$, we have

$$
\begin{equation*}
f \circ \phi_{\mathbf{G}}=U_{\mathbf{G}} \circ f, \tag{9}
\end{equation*}
$$

where in the above formula $U_{\mathbf{G}}: \mathbb{P H} \rightarrow \mathbb{P H}$ denotes the induced map. Now $U_{\mathbf{G}} \in \operatorname{Aut}\left(\mathbb{P H}, \omega_{F S}\right)$ as a Kähler manifold so $\phi_{\mathbf{G}}^{*} F=F$ and $\phi_{\mathbf{G}}^{*} g=g$ for all $\mathbf{G} \in \mathbb{Z}^{2}$. The second part follows from the equivalence of representatives being done through elements of $\operatorname{Aut}\left(\mathbb{P} \mathcal{H}, \omega_{F S}\right)$.

Kähler bands

Kähler bands

Definition (Kähler band)

Kähler bands

Definition (Kähler band)

A Kähler band is determined by a Bloch wavefunction with the property that $f: \mathbb{R}^{2} \rightarrow \mathbb{P H}$ is a holomorphic immersion with respect to a complex structure J that is invariant under reciprocal lattice translations ($\phi_{\mathbf{G}}^{*} J=J$ for all $\mathbf{G} \in \mathbb{Z}^{2}$).

Kähler bands

Definition (Kähler band)

A Kähler band is determined by a Bloch wavefunction with the property that $f: \mathbb{R}^{2} \rightarrow \mathbb{P H}$ is a holomorphic immersion with respect to a complex structure J that is invariant under reciprocal lattice translations ($\phi_{\mathbf{G}}^{*} J=J$ for all $\mathbf{G} \in \mathbb{Z}^{2}$).

Remark

Kähler bands

Definition (Kähler band)

A Kähler band is determined by a Bloch wavefunction with the property that $f: \mathbb{R}^{2} \rightarrow \mathbb{P H}$ is a holomorphic immersion with respect to a complex structure J that is invariant under reciprocal lattice translations ($\phi_{\mathbf{G}}^{*} J=J$ for all $\mathbf{G} \in \mathbb{Z}^{2}$).

Remark

For a Kähler band $\left(f^{*} \omega_{F S}, f^{*} g_{F S}, J\right)$ determines a Kähler structure in the Brillouin zone BZ^{2}, hence the adjective Kähler.

Ideal Kähler bands/Ideal flatbands

Ideal Kähler bands

Definition (Ideal Kähler bands)

Ideal Kähler bands

Definition (Ideal Kähler bands)

Ideal Kähler bands, also known as ideal flat bands, are Kähler bands with respect to a translation invariant complex structure J_{τ}, determined by a modular parameter $\tau \in \mathbb{H}=\{\tau \in \mathbb{C}: \operatorname{Im}(\tau)>0\}$ (complex coordinate $z_{\tau}=k_{x}+\tau k_{y}$).

Structure theory of ideal Kähler bands

Holomorphicity condition

Structure theory of ideal Kähler bands

Holomorphicity condition

$$
\begin{equation*}
\frac{\partial}{\partial \bar{z}_{\tau}}\left|u_{\mathbf{k}}\right\rangle-\frac{\left\langle u_{\mathbf{k}}\right| \frac{\partial}{\partial \bar{z}_{\tau}}\left|u_{\mathbf{k}}\right\rangle}{\left\langle u_{\mathbf{k}} \mid u_{\mathbf{k}}\right\rangle}\left|u_{\mathbf{k}}\right\rangle=0 \tag{10}
\end{equation*}
$$

Structure theory of ideal Kähler bands

Holomorphicity condition

$$
\begin{equation*}
\frac{\partial}{\partial \bar{z}_{\tau}}\left|u_{\mathbf{k}}\right\rangle-\frac{\left\langle u_{\mathbf{k}}\right| \frac{\partial}{\partial \bar{z}_{\tau}}\left|u_{\mathbf{k}}\right\rangle}{\left\langle u_{\mathbf{k}} \mid u_{\mathbf{k}}\right\rangle}\left|u_{\mathbf{k}}\right\rangle=0 \tag{10}
\end{equation*}
$$

or, in an appropriate holomorphic gauge,

Structure theory of ideal Kähler bands

Holomorphicity condition

$$
\begin{equation*}
\frac{\partial}{\partial \bar{z}_{\tau}}\left|u_{\mathbf{k}}\right\rangle-\frac{\left\langle u_{\mathbf{k}}\right| \frac{\partial}{\partial \bar{z}_{\tau}}\left|u_{\mathbf{k}}\right\rangle}{\left\langle u_{\mathbf{k}} \mid u_{\mathbf{k}}\right\rangle}\left|u_{\mathbf{k}}\right\rangle=0 \tag{10}
\end{equation*}
$$

or, in an appropriate holomorphic gauge,

$$
\begin{equation*}
\frac{\partial}{\partial \bar{z}_{\tau}}\left|u_{\mathbf{k}}\right\rangle=0 . \tag{11}
\end{equation*}
$$

Structure theory of ideal Kähler bands

Holomorphicity condition

$$
\begin{equation*}
\frac{\partial}{\partial \bar{z}_{\tau}}\left|u_{\mathbf{k}}\right\rangle-\frac{\left\langle u_{\mathbf{k}}\right| \frac{\partial}{\partial \bar{z}_{\tau}}\left|u_{\mathbf{k}}\right\rangle}{\left\langle u_{\mathbf{k}} \mid u_{\mathbf{k}}\right\rangle}\left|u_{\mathbf{k}}\right\rangle=0 \tag{10}
\end{equation*}
$$

or, in an appropriate holomorphic gauge,

$$
\begin{equation*}
\frac{\partial}{\partial \bar{z}_{\tau}}\left|u_{\mathbf{k}}\right\rangle=0 \tag{11}
\end{equation*}
$$

We can then assume holomorphic multipliers $e_{\gamma}\left(z_{\tau}\right)$ with $\gamma \in \Lambda_{\tau}=\mathbb{Z}+\tau \mathbb{Z} \cong \mathbb{Z}^{2}$, so $L \rightarrow \mathbb{C} / \Lambda_{\tau}$ and, in fact, all the $L_{\mathbf{r}} \rightarrow \mathbb{C} / \Lambda_{\tau}$ are Hermitian holomorphic line bundles.

Structure theory of ideal Kähler bands (cont.): Theta functions

- Holomorphic line bundles over complex tori are always isomorphic to holomorphic line bundles whose holomorphic sections are described by suitable theta functions.

Structure theory of ideal Kähler bands (cont.): Theta functions

- Holomorphic line bundles over complex tori are always isomorphic to holomorphic line bundles whose holomorphic sections are described by suitable theta functions. Recall:

Structure theory of ideal Kähler bands (cont.): Theta functions

- Holomorphic line bundles over complex tori are always isomorphic to holomorphic line bundles whose holomorphic sections are described by suitable theta functions. Recall:

$$
\vartheta\left[\begin{array}{l}
a \tag{12}\\
b
\end{array}\right](z, \tau):=\sum_{n \in \mathbb{Z}} e^{i \pi \tau(n+a)^{2}+2 \pi i(n+a)(z+b)}, a, b \in \mathbb{R}
$$

Structure theory of ideal Kähler bands (cont.): Theta functions

- Holomorphic line bundles over complex tori are always isomorphic to holomorphic line bundles whose holomorphic sections are described by suitable theta functions. Recall:

$$
\vartheta\left[\begin{array}{l}
a \tag{12}\\
b
\end{array}\right](z, \tau):=\sum_{n \in \mathbb{Z}} e^{i \pi \tau(n+a)^{2}+2 \pi i(n+a)(z+b)}, a, b \in \mathbb{R}
$$

- We may assume after multiplying $\left|u_{\mathbf{k}}\right\rangle$ by $g(\mathbf{k}) \in \mathbb{C}^{*}$ that

Structure theory of ideal Kähler bands (cont.): Theta functions

- Holomorphic line bundles over complex tori are always isomorphic to holomorphic line bundles whose holomorphic sections are described by suitable theta functions. Recall:

$$
\vartheta\left[\begin{array}{l}
a \tag{12}\\
b
\end{array}\right](z, \tau):=\sum_{n \in \mathbb{Z}} e^{i \pi \tau(n+a)^{2}+2 \pi i(n+a)(z+b)}, a, b \in \mathbb{R}
$$

- We may assume after multiplying $\left|u_{\mathbf{k}}\right\rangle$ by $g(\mathbf{k}) \in \mathbb{C}^{*}$ that

$$
\begin{equation*}
e_{\gamma}\left(z_{\tau}\right)=e^{-i \pi \mathcal{C} \tau n^{2}-2 \pi i n \mathcal{C} z_{\tau}}, \text { for } \gamma=m+n \tau \in \Lambda_{\tau} \tag{13}
\end{equation*}
$$

Structure theory of ideal Kähler bands (cont.): Theta functions

- Holomorphic line bundles over complex tori are always isomorphic to holomorphic line bundles whose holomorphic sections are described by suitable theta functions. Recall:

$$
\vartheta\left[\begin{array}{l}
a \tag{12}\\
b
\end{array}\right](z, \tau):=\sum_{n \in \mathbb{Z}} e^{i \pi \tau(n+a)^{2}+2 \pi i(n+a)(z+b)}, a, b \in \mathbb{R} .
$$

- We may assume after multiplying $\left|u_{\mathbf{k}}\right\rangle$ by $g(\mathbf{k}) \in \mathbb{C}^{*}$ that

$$
\begin{align*}
& \qquad e_{\gamma}\left(z_{\tau}\right)=e^{-i \pi \mathcal{C} \tau n^{2}-2 \pi i n \mathcal{C}_{\tau}}, \text { for } \gamma=m+n \tau \in \Lambda_{\tau}, \tag{13}\\
& \mathcal{C}=\operatorname{deg}\left(L_{\mathbf{r}}\right)=\operatorname{dim} H^{0}\left(\mathbb{C} / \Lambda_{\tau}, L_{\mathbf{r}}\right) \text { is the Chern number } \\
& \text { associated with the Bloch wavefunction }\left|u_{\mathbf{k}}\right\rangle .
\end{align*}
$$

Structure theory of ideal Kähler bands (cont.): Theta functions

- Holomorphic line bundles over complex tori are always isomorphic to holomorphic line bundles whose holomorphic sections are described by suitable theta functions. Recall:

$$
\vartheta\left[\begin{array}{l}
a \tag{12}\\
b
\end{array}\right](z, \tau):=\sum_{n \in \mathbb{Z}} e^{i \pi \tau(n+a)^{2}+2 \pi i(n+a)(z+b)}, a, b \in \mathbb{R} .
$$

- We may assume after multiplying $\left|u_{\mathbf{k}}\right\rangle$ by $g(\mathbf{k}) \in \mathbb{C}^{*}$ that

$$
\begin{equation*}
e_{\gamma}\left(z_{\tau}\right)=e^{-i \pi \mathcal{C} \tau n^{2}-2 \pi i n C z_{\tau}}, \text { for } \gamma=m+n \tau \in \Lambda_{\tau} \tag{13}
\end{equation*}
$$

$\mathcal{C}=\operatorname{deg}\left(L_{\mathbf{r}}\right)=\operatorname{dim} H^{0}\left(\mathbb{C} / \Lambda_{\tau}, L_{\mathbf{r}}\right)$ is the Chern number associated with the Bloch wavefunction $\left|u_{\mathbf{k}}\right\rangle$.

- Then

$$
f_{\alpha, \mathbf{r}}(\mathbf{k})=\sum_{\beta=0}^{\mathcal{C}-1} a_{\alpha, \beta}(\mathbf{r}) \vartheta\left[\begin{array}{c}
\frac{\beta}{\mathcal{C}}-\frac{y_{\mathcal{C}}}{\mathcal{C}} \tag{14}\\
x
\end{array}\right]\left(\mathcal{C} z_{\tau}, \mathcal{C} \tau\right), \alpha=1,2, \ldots
$$

Structure theory of ideal Kähler bands (cont.)

Structure of ideal Kähler bands

Structure theory of ideal Kähler bands (cont.)

Structure of ideal Kähler bands

For an ideal Kähler band with flat complex structure determined by $\tau \in \mathbb{H}$ and Chern number \mathcal{C}, we have $\left|u_{\mathbf{k}}\right\rangle=\int_{\text {u.c. }}^{\oplus} d^{2} \mathbf{r} u_{\mathbf{k}}(\mathbf{r})$, with

Structure theory of ideal Kähler bands (cont.)

Structure of ideal Kähler bands

For an ideal Kähler band with flat complex structure determined by $\tau \in \mathbb{H}$ and Chern number \mathcal{C}, we have $\left|u_{\mathbf{k}}\right\rangle=\int_{\text {u.c. }}^{\oplus} d^{2} \mathbf{r} u_{\mathbf{k}}(\mathbf{r})$, with

$$
\begin{equation*}
u_{\mathbf{k}}(\mathbf{r})=\sum_{\alpha} f_{\alpha, \mathbf{r}}(\mathbf{k})|\alpha, \mathbf{r}\rangle \in \mathcal{H}_{\mathbf{r}} \tag{15}
\end{equation*}
$$

Structure theory of ideal Kähler bands (cont.)

Structure of ideal Kähler bands

For an ideal Kähler band with flat complex structure determined by $\tau \in \mathbb{H}$ and Chern number \mathcal{C}, we have $\left|u_{\mathbf{k}}\right\rangle=\int_{\text {u.c. }}^{\oplus} d^{2} \mathbf{r} u_{\mathbf{k}}(\mathbf{r})$, with

$$
\begin{equation*}
u_{\mathbf{k}}(\mathbf{r})=\sum_{\alpha} f_{\alpha, \mathbf{r}}(\mathbf{k})|\alpha, \mathbf{r}\rangle \in \mathcal{H}_{\mathbf{r}} \tag{15}
\end{equation*}
$$

and

Structure theory of ideal Kähler bands (cont.)

Structure of ideal Kähler bands

For an ideal Kähler band with flat complex structure determined by $\tau \in \mathbb{H}$ and Chern number \mathcal{C}, we have $\left|u_{\mathbf{k}}\right\rangle=\int_{\text {u.c. }}^{\oplus} d^{2} \mathbf{r} u_{\mathbf{k}}(\mathbf{r})$, with

$$
\begin{equation*}
u_{\mathbf{k}}(\mathbf{r})=\sum_{\alpha} f_{\alpha, \mathbf{r}}(\mathbf{k})|\alpha, \mathbf{r}\rangle \in \mathcal{H}_{\mathbf{r}} \tag{15}
\end{equation*}
$$

and

$$
f_{\alpha, \mathbf{r}}(\mathbf{k})=\sum_{\beta=0}^{\mathcal{C}-1} a_{\alpha, \beta}(\mathbf{r}) \vartheta\left[\begin{array}{c}
\frac{\beta}{\mathcal{C}}-\frac{y}{\mathcal{C}} \tag{16}\\
x
\end{array}\right](\mathcal{C} z, \mathcal{C} \tau), \alpha=1,2, \ldots,
$$

Structure theory of ideal Kähler bands (cont.)

Structure of ideal Kähler bands

For an ideal Kähler band with flat complex structure determined by $\tau \in \mathbb{H}$ and Chern number \mathcal{C}, we have $\left|u_{\mathbf{k}}\right\rangle=\int_{\text {u.c. }}^{\oplus} d^{2} \mathbf{r} u_{\mathbf{k}}(\mathbf{r})$, with

$$
\begin{equation*}
u_{\mathbf{k}}(\mathbf{r})=\sum_{\alpha} f_{\alpha, \mathbf{r}}(\mathbf{k})|\alpha, \mathbf{r}\rangle \in \mathcal{H}_{\mathbf{r}} \tag{15}
\end{equation*}
$$

and

$$
f_{\alpha, \mathbf{r}}(\mathbf{k})=\sum_{\beta=0}^{\mathcal{C}-1} a_{\alpha, \beta}(\mathbf{r}) \vartheta\left[\begin{array}{c}
\frac{\beta}{\mathcal{C}}-\frac{y}{\mathcal{C}} \tag{16}\\
x
\end{array}\right](\mathcal{C} z, \mathcal{C} \tau), \alpha=1,2, \ldots,
$$

where $a_{\alpha, \beta}(\mathbf{r}), \alpha=1,2, \ldots, \operatorname{dim} \mathcal{H}_{\mathbf{r}}, \beta=0, \ldots, \mathcal{C}-1$, depend on the particular ideal Kähler band (also on the particular choice of basis $\{|\alpha, \mathbf{r}\rangle\}$ chosen for the $\mathcal{H}_{\mathbf{r}}$'s).

Flat Kähler bands

Flat Kähler bands

Definition (Flat Kähler bands)

Flat Kähler bands

Definition (Flat Kähler bands)

Flat Kähler bands are Kähler bands for which the quantum geometry is translation-invariant.

Flat Kähler bands (cont.)
Consequences of the definition

Flat Kähler bands (cont.)

Consequences of the definition

- For every $\mathbf{q} \in \mathbb{R}^{2}$, we have a diffeomorphism of BZ^{2} given by $\phi_{\mathbf{q}}: \mathbf{k} \mapsto \mathbf{k}+\mathbf{q} \bmod \mathbb{Z}^{2}$.

Flat Kähler bands (cont.)

Consequences of the definition

- For every $\mathbf{q} \in \mathbb{R}^{2}$, we have a diffeomorphism of BZ^{2} given by $\phi_{\mathbf{q}}: \mathbf{k} \mapsto \mathbf{k}+\mathbf{q} \bmod \mathbb{Z}^{2}$. Translation-invariance of the quantum geometry means

Flat Kähler bands (cont.)

Consequences of the definition

- For every $\mathbf{q} \in \mathbb{R}^{2}$, we have a diffeomorphism of BZ^{2} given by $\phi_{\mathbf{q}}: \mathbf{k} \mapsto \mathbf{k}+\mathbf{q} \bmod \mathbb{Z}^{2}$. Translation-invariance of the quantum geometry means

$$
\begin{equation*}
\phi_{\mathbf{q}}^{*} g=g \text { and } \phi_{\mathbf{q}}^{*} F=F, \text { for all } \mathbf{q} \in \mathbb{R}^{2} \tag{17}
\end{equation*}
$$

Flat Kähler bands (cont.)

Consequences of the definition

- For every $\mathbf{q} \in \mathbb{R}^{2}$, we have a diffeomorphism of BZ^{2} given by $\phi_{\mathbf{q}}: \mathbf{k} \mapsto \mathbf{k}+\mathbf{q} \bmod \mathbb{Z}^{2}$. Translation-invariance of the quantum geometry means

$$
\begin{equation*}
\phi_{\mathbf{q}}^{*} g=g \text { and } \phi_{\mathbf{q}}^{*} F=F, \text { for all } \mathbf{q} \in \mathbb{R}^{2} \tag{17}
\end{equation*}
$$

- $g=f^{*} g_{F S}$, and $\phi_{\mathbf{q}}$ can be associated with an isometry of $g_{F S}$ which then lifts to \mathcal{H} to act as a unitary or anti-unitary operator U_{q}

Flat Kähler bands (cont.)

Consequences of the definition

- For every $\mathbf{q} \in \mathbb{R}^{2}$, we have a diffeomorphism of BZ^{2} given by $\phi_{\mathbf{q}}: \mathbf{k} \mapsto \mathbf{k}+\mathbf{q} \bmod \mathbb{Z}^{2}$. Translation-invariance of the quantum geometry means

$$
\begin{equation*}
\phi_{\mathbf{q}}^{*} g=g \text { and } \phi_{\mathbf{q}}^{*} F=F, \text { for all } \mathbf{q} \in \mathbb{R}^{2} \tag{17}
\end{equation*}
$$

- $g=f^{*} g_{F S}$, and $\phi_{\mathbf{q}}$ can be associated with an isometry of $g_{F S}$ which then lifts to \mathcal{H} to act as a unitary or anti-unitary operator $U_{\mathbf{q}}$-Wigner's theorem: quantum symmetries (isometries of the Fubini-Study metric) are represented by unitary or anti-unitary operators in the Hilbert space.

Flat Kähler bands (cont.)

Consequences of the definition

- For every $\mathbf{q} \in \mathbb{R}^{2}$, we have a diffeomorphism of BZ^{2} given by $\phi_{\mathbf{q}}: \mathbf{k} \mapsto \mathbf{k}+\mathbf{q} \bmod \mathbb{Z}^{2}$. Translation-invariance of the quantum geometry means

$$
\begin{equation*}
\phi_{\mathbf{q}}^{*} g=g \text { and } \phi_{\mathbf{q}}^{*} F=F, \text { for all } \mathbf{q} \in \mathbb{R}^{2} \tag{17}
\end{equation*}
$$

- $g=f^{*} g_{F S}$, and $\phi_{\mathbf{q}}$ can be associated with an isometry of $g_{F S}$ which then lifts to \mathcal{H} to act as a unitary or anti-unitary operator $U_{\mathbf{q}}$-Wigner's theorem: quantum symmetries (isometries of the Fubini-Study metric) are represented by unitary or anti-unitary operators in the Hilbert space.
- Since an anti-unitary operator would change the sign of F it follows that $U_{\mathbf{q}}$ is unitary.

Flat Kähler bands (cont.)

Heisenberg groups

Flat Kähler bands (cont.)

Heisenberg groups

- The lifted unitaries form a projective unitary representation of \mathbb{R}^{2} :

Flat Kähler bands (cont.)

Heisenberg groups

- The lifted unitaries form a projective unitary representation of \mathbb{R}^{2} :

$$
\begin{equation*}
U_{\mathbf{k}_{1}} U_{\mathbf{k}_{2}}=U_{\mathbf{k}_{1}+\mathbf{k}_{2}} \overbrace{\psi\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)}^{\in \mathrm{U}(1)} . \tag{18}
\end{equation*}
$$

Flat Kähler bands (cont.)

Heisenberg groups (cont.)

Flat Kähler bands (cont.)

Heisenberg groups (cont.)

- Projective unitary representations of \mathbb{R}^{2} form unitary representations of central extensions G of \mathbb{R}^{2} by $U(1)$:

Flat Kähler bands (cont.)

Heisenberg groups (cont.)

- Projective unitary representations of \mathbb{R}^{2} form unitary representations of central extensions G of \mathbb{R}^{2} by $U(1)$:

$$
\begin{equation*}
1 \longrightarrow \mathrm{U}(1) \longrightarrow G \longrightarrow \mathbb{R}^{2} \longrightarrow 0 \tag{19}
\end{equation*}
$$

Flat Kähler bands (cont.)

Heisenberg groups (cont.)

- Projective unitary representations of \mathbb{R}^{2} form unitary representations of central extensions G of \mathbb{R}^{2} by $U(1)$:

$$
\begin{equation*}
1 \longrightarrow \mathrm{U}(1) \longrightarrow G \longrightarrow \mathbb{R}^{2} \longrightarrow 0 \tag{19}
\end{equation*}
$$

- As a set:

Flat Kähler bands (cont.)

Heisenberg groups (cont.)

- Projective unitary representations of \mathbb{R}^{2} form unitary representations of central extensions G of \mathbb{R}^{2} by $U(1)$:

$$
\begin{equation*}
1 \longrightarrow \mathrm{U}(1) \longrightarrow G \longrightarrow \mathbb{R}^{2} \longrightarrow 0 \tag{19}
\end{equation*}
$$

- As a set: $G=\mathbb{R}^{2} \times \mathrm{U}(1)$

Flat Kähler bands (cont.)

Heisenberg groups (cont.)

- Projective unitary representations of \mathbb{R}^{2} form unitary representations of central extensions G of \mathbb{R}^{2} by $U(1)$:

$$
\begin{equation*}
1 \longrightarrow \mathrm{U}(1) \longrightarrow G \longrightarrow \mathbb{R}^{2} \longrightarrow 0 \tag{19}
\end{equation*}
$$

- As a set: $G=\mathbb{R}^{2} \times \mathrm{U}(1)$
- Product law:

Flat Kähler bands (cont.)

Heisenberg groups (cont.)

- Projective unitary representations of \mathbb{R}^{2} form unitary representations of central extensions G of \mathbb{R}^{2} by $\mathrm{U}(1)$:

$$
\begin{equation*}
1 \longrightarrow \mathrm{U}(1) \longrightarrow G \longrightarrow \mathbb{R}^{2} \longrightarrow 0 \tag{19}
\end{equation*}
$$

- As a set: $G=\mathbb{R}^{2} \times \mathrm{U}(1)$
- Product law: $\left(\mathbf{k}_{1}, \lambda_{1}\right) \cdot\left(\mathbf{k}_{2}, \lambda_{2}\right)=\left(\mathbf{k}_{1}+\mathbf{k}_{2}, \lambda_{1} \lambda_{2} \psi\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)\right)$.

Flat Kähler bands (cont.)

Heisenberg groups (cont.)

Flat Kähler bands (cont.)

Heisenberg groups (cont.)

- Central extensions of \mathbb{R}^{2} by $U(1)$ are determined, up to isomorphism, by the commutator $s\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)=\psi\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right) / \psi\left(\mathbf{k}_{2}, \mathbf{k}_{1}\right)=e^{i \omega\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)}$, for $\omega \in \operatorname{Alt}^{2}\left(\mathbb{R}^{2}\right)$.

Flat Kähler bands (cont.)

Heisenberg groups (cont.)

- Central extensions of \mathbb{R}^{2} by $\mathrm{U}(1)$ are determined, up to isomorphism, by the commutator $s\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)=\psi\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right) / \psi\left(\mathbf{k}_{2}, \mathbf{k}_{1}\right)=e^{i \omega\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)}$, for $\omega \in \operatorname{Alt}^{2}\left(\mathbb{R}^{2}\right)$.
- $\omega \in \operatorname{Alt}^{2}\left(\mathbb{R}^{2}\right)$ means

Flat Kähler bands (cont.)

Heisenberg groups (cont.)

- Central extensions of \mathbb{R}^{2} by $\mathrm{U}(1)$ are determined, up to isomorphism, by the commutator $s\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)=\psi\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right) / \psi\left(\mathbf{k}_{2}, \mathbf{k}_{1}\right)=e^{i \omega\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)}$, for $\omega \in \operatorname{Alt}^{2}\left(\mathbb{R}^{2}\right)$.
- $\omega \in \operatorname{Alt}^{2}\left(\mathbb{R}^{2}\right)$ means

$$
\begin{align*}
\omega\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right) & =D \mathbf{k}_{1}^{t}\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \mathbf{k}_{2} \\
& =D\left(k_{1, x} k_{2, y}-k_{1, y} k_{2, x}\right), \text { for some } D \in \mathbb{R} \tag{20}
\end{align*}
$$

Flat Kähler bands (cont.)

Heisenberg groups (cont.)

- Central extensions of \mathbb{R}^{2} by $\mathrm{U}(1)$ are determined, up to isomorphism, by the commutator $s\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)=\psi\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right) / \psi\left(\mathbf{k}_{2}, \mathbf{k}_{1}\right)=e^{i \omega\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)}$, for $\omega \in \operatorname{Alt}^{2}\left(\mathbb{R}^{2}\right)$.
- $\omega \in \operatorname{Alt}^{2}\left(\mathbb{R}^{2}\right)$ means

$$
\begin{align*}
\omega\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right) & =D \mathbf{k}_{1}^{t}\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \mathbf{k}_{2} \\
& =D\left(k_{1, x} k_{2, y}-k_{1, y} k_{2, x}\right), \text { for some } D \in \mathbb{R} \tag{20}
\end{align*}
$$

- If $D \neq 0$, then G is called a Heisenberg group.

Flat Kähler bands (cont.)
Heisenberg groups (cont.)

Flat Kähler bands (cont.)

Heisenberg groups (cont.)

- Once a concrete realization of ψ for a given s, giving rise to a group G, all other realizations differ by an exact cochain:

Flat Kähler bands (cont.)

Heisenberg groups (cont.)

- Once a concrete realization of ψ for a given s, giving rise to a group G, all other realizations differ by an exact cochain:

$$
\begin{equation*}
\psi^{\prime}\left(\mathbf{k}_{1}, \mathbf{k}_{1}\right)=\psi\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right) \frac{g\left(\mathbf{k}_{1}+\mathbf{k}_{2}\right)}{g\left(\mathbf{k}_{1}\right) g\left(\mathbf{k}_{2}\right)} \tag{21}
\end{equation*}
$$

Flat Kähler bands (cont.)

Heisenberg groups (cont.)

- Once a concrete realization of ψ for a given s, giving rise to a group G, all other realizations differ by an exact cochain:

$$
\begin{equation*}
\psi^{\prime}\left(\mathbf{k}_{1}, \mathbf{k}_{1}\right)=\psi\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right) \frac{g\left(\mathbf{k}_{1}+\mathbf{k}_{2}\right)}{g\left(\mathbf{k}_{1}\right) g\left(\mathbf{k}_{2}\right)} \tag{21}
\end{equation*}
$$

for $g: \mathbb{R}^{2} \rightarrow \mathrm{U}(1)$, which gives the isomorphism of central extensions.

Flat Kähler bands (cont.)

Heisenberg groups (cont.)

- Once a concrete realization of ψ for a given s, giving rise to a group G, all other realizations differ by an exact cochain:

$$
\begin{equation*}
\psi^{\prime}\left(\mathbf{k}_{1}, \mathbf{k}_{1}\right)=\psi\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right) \frac{g\left(\mathbf{k}_{1}+\mathbf{k}_{2}\right)}{g\left(\mathbf{k}_{1}\right) g\left(\mathbf{k}_{2}\right)}, \tag{21}
\end{equation*}
$$

for $g: \mathbb{R}^{2} \rightarrow \mathrm{U}(1)$, which gives the isomorphism of central extensions.

- A concrete realization is provided by setting

Flat Kähler bands (cont.)

Heisenberg groups (cont.)

- Once a concrete realization of ψ for a given s, giving rise to a group G, all other realizations differ by an exact cochain:

$$
\begin{equation*}
\psi^{\prime}\left(\mathbf{k}_{1}, \mathbf{k}_{1}\right)=\psi\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right) \frac{g\left(\mathbf{k}_{1}+\mathbf{k}_{2}\right)}{g\left(\mathbf{k}_{1}\right) g\left(\mathbf{k}_{2}\right)}, \tag{21}
\end{equation*}
$$

for $g: \mathbb{R}^{2} \rightarrow \mathrm{U}(1)$, which gives the isomorphism of central extensions.

- A concrete realization is provided by setting

$$
\begin{equation*}
\psi\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)=e^{-i D k_{1, y} k_{2, x}} \tag{22}
\end{equation*}
$$

Flat Kähler bands (cont.)

Heisenberg groups (cont.)

- Once a concrete realization of ψ for a given s, giving rise to a group G, all other realizations differ by an exact cochain:

$$
\begin{equation*}
\psi^{\prime}\left(\mathbf{k}_{1}, \mathbf{k}_{1}\right)=\psi\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right) \frac{g\left(\mathbf{k}_{1}+\mathbf{k}_{2}\right)}{g\left(\mathbf{k}_{1}\right) g\left(\mathbf{k}_{2}\right)}, \tag{21}
\end{equation*}
$$

for $g: \mathbb{R}^{2} \rightarrow \mathrm{U}(1)$, which gives the isomorphism of central extensions.

- A concrete realization is provided by setting

$$
\begin{equation*}
\psi\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)=e^{-i D k_{1, y} k_{2, x}} \tag{22}
\end{equation*}
$$

Note that for $D=0$ this essentially says that $G=\mathbb{R}^{2} \times U(1)$ as a group.

Flat Kähler bands (cont.)

Theorem (Stone-von Neumann)

The Heisenberg group G has a unique, up to isomorphism, unitary irreducible representation $\mathcal{H}=L^{2}(\mathbb{R})$, for which $\mathrm{U}(1)$ acts as $(0, \lambda) \cdot \psi=\lambda \cdot \psi,(0, \lambda) \in \mathrm{U}(1) \subset G$, with

Flat Kähler bands (cont.)

Theorem (Stone-von Neumann)

The Heisenberg group G has a unique, up to isomorphism, unitary irreducible representation $\mathcal{H}=L^{2}(\mathbb{R})$, for which $\mathrm{U}(1)$ acts as $(0, \lambda) \cdot \psi=\lambda \cdot \psi,(0, \lambda) \in \mathrm{U}(1) \subset G$, with

$$
\begin{equation*}
(\mathbf{k}, \lambda) \cdot \psi(q):=\lambda U_{\mathbf{k}} \psi(q):=\lambda e^{-i D k_{x}\left(q+k_{y}\right)} \psi\left(q+k_{y}\right) \tag{23}
\end{equation*}
$$

Flat Kähler bands (cont.)

Theorem (Stone-von Neumann)

The Heisenberg group G has a unique, up to isomorphism, unitary irreducible representation $\mathcal{H}=L^{2}(\mathbb{R})$, for which $\mathrm{U}(1)$ acts as $(0, \lambda) \cdot \psi=\lambda \cdot \psi,(0, \lambda) \in \mathrm{U}(1) \subset G$, with

$$
\begin{equation*}
(\mathbf{k}, \lambda) \cdot \psi(q):=\lambda U_{\mathbf{k}} \psi(q):=\lambda e^{-i D k_{x}\left(q+k_{y}\right)} \psi\left(q+k_{y}\right) \tag{23}
\end{equation*}
$$

which is the standard Hilbert space of a particle moving in one dimension with coordinate q for which the momentum is $p=\frac{1}{i D} \frac{\partial}{\partial q}$, with $[q, p]=\frac{i}{D}$.

Constructing the flat Kähler bands

The Bloch wavefunction

Constructing the flat Kähler bands

The Bloch wavefunction

- We build a translation-invariant Bloch wavefunction as

Constructing the flat Kähler bands

The Bloch wavefunction

- We build a translation-invariant Bloch wavefunction as

$$
\begin{equation*}
\left|u_{\mathbf{k}}\right\rangle=U_{\mathbf{k}}\left|u_{0}\right\rangle . \tag{24}
\end{equation*}
$$

Constructing the flat Kähler bands

The Bloch wavefunction

- We build a translation-invariant Bloch wavefunction as

$$
\begin{equation*}
\left|u_{\mathbf{k}}\right\rangle=U_{\mathbf{k}}\left|u_{0}\right\rangle . \tag{24}
\end{equation*}
$$

- But recall that we have a holomorphicity constraint.

Constructing the flat Kähler bands

The Bloch wavefunction

- We build a translation-invariant Bloch wavefunction as

$$
\begin{equation*}
\left|u_{\mathbf{k}}\right\rangle=U_{\mathbf{k}}\left|u_{0}\right\rangle . \tag{24}
\end{equation*}
$$

- But recall that we have a holomorphicity constraint. To understand how to deal with that we write

Constructing the flat Kähler bands

The Bloch wavefunction

- We build a translation-invariant Bloch wavefunction as

$$
\begin{equation*}
\left|u_{\mathbf{k}}\right\rangle=U_{\mathbf{k}}\left|u_{0}\right\rangle . \tag{24}
\end{equation*}
$$

- But recall that we have a holomorphicity constraint. To understand how to deal with that we write

$$
\begin{align*}
U_{\mathbf{k}} & =e^{i D k_{y} p} e^{-i D k_{x} x}=e^{i D\left(k_{y} p-k_{x} q\right)} e^{\frac{i}{2} D k_{x} k_{y}} \\
& =e^{i \frac{D}{2} k_{x} k_{y}} e^{-\frac{1}{4 \tau_{2} D}\left|z_{\tau}\right|^{2}} e^{\frac{1}{\sqrt{2 D \tau_{2}}} z_{\tau} a_{\tau}^{\dagger}} e^{-\frac{1}{\sqrt{2 D \tau_{2}}} \bar{z}_{\tau} a_{\tau}} \tag{25}
\end{align*}
$$

Constructing the flat Kähler bands

The Bloch wavefunction

- We build a translation-invariant Bloch wavefunction as

$$
\begin{equation*}
\left|u_{\mathbf{k}}\right\rangle=U_{\mathbf{k}}\left|u_{0}\right\rangle . \tag{24}
\end{equation*}
$$

- But recall that we have a holomorphicity constraint. To understand how to deal with that we write

$$
\begin{align*}
U_{\mathbf{k}} & =e^{i D k_{y} p} e^{-i D k_{x} x}=e^{i D\left(k_{y} p-k_{x} q\right)} e^{\frac{i}{2} D k_{x} k_{y}} \\
& =e^{i \frac{D}{2} k_{x} k_{y}} e^{-\frac{1}{4 \tau_{2} D}\left|z_{\tau}\right|^{2}} e^{\frac{1}{\sqrt{2 D \tau_{2}}} z_{\tau} a_{\tau}^{\dagger}} e^{-\frac{1}{\sqrt{2 D \tau_{2}}} \bar{z}_{\tau} a_{\tau}} \tag{25}
\end{align*}
$$

with

Constructing the flat Kähler bands

The Bloch wavefunction

- We build a translation-invariant Bloch wavefunction as

$$
\begin{equation*}
\left|u_{\mathbf{k}}\right\rangle=U_{\mathbf{k}}\left|u_{0}\right\rangle . \tag{24}
\end{equation*}
$$

- But recall that we have a holomorphicity constraint. To understand how to deal with that we write

$$
\begin{align*}
U_{\mathbf{k}} & =e^{i D k_{y} p} e^{-i D k_{x} x}=e^{i D\left(k_{y} p-k_{x} q\right)} e^{\frac{i}{2} D k_{x} k_{y}} \\
& =e^{i \frac{D}{2} k_{x} k_{y}} e^{-\frac{1}{4 \tau_{2} D}\left|z_{\tau}\right|^{2}} e^{\frac{1}{\sqrt{2 D \tau_{2}}} z_{\tau} a_{\tau}^{\dagger}} e^{-\frac{1}{\sqrt{2 D \tau_{2}}} \bar{z}_{\tau} a_{\tau}}, \tag{25}
\end{align*}
$$

with $a_{\tau}:=\sqrt{\frac{D}{2 \tau_{2}}}(\tau q+p)$ and $a_{\tau}^{\dagger}:=\sqrt{\frac{D}{2 \tau_{2}}}(\bar{\tau} q+p)$,

Constructing the flat Kähler bands

The Bloch wavefunction

- We build a translation-invariant Bloch wavefunction as

$$
\begin{equation*}
\left|u_{\mathbf{k}}\right\rangle=U_{\mathbf{k}}\left|u_{0}\right\rangle . \tag{24}
\end{equation*}
$$

- But recall that we have a holomorphicity constraint. To understand how to deal with that we write

$$
\begin{align*}
U_{\mathbf{k}} & =e^{i D k_{y} p} e^{-i D k_{x} x}=e^{i D\left(k_{y} p-k_{x} q\right)} e^{\frac{i}{2} D k_{x} k_{y}} \\
& =e^{i \frac{D}{2} k_{x} k_{y}} e^{-\frac{1}{4 \tau_{2} D}\left|z_{\tau}\right|^{2}} e^{\frac{1}{\sqrt{2 D \tau_{2}}} z_{\tau} a_{\tau}^{\dagger}} e^{-\frac{1}{\sqrt{2 D \tau_{2}}} \bar{z}_{\tau} a_{\tau}}, \tag{25}
\end{align*}
$$

with $a_{\tau}:=\sqrt{\frac{D}{2 \tau_{2}}}(\tau q+p)$ and $a_{\tau}^{\dagger}:=\sqrt{\frac{D}{2 \tau_{2}}}(\bar{\tau} q+p)$, which satisfy the canonical commutation relations $\left[a_{\tau}, a_{\tau}^{\dagger}\right]=1$.

Constructing the flat Kähler bands

The Bloch wavefunction (cont.)

Constructing the flat Kähler bands

The Bloch wavefunction (cont.)

- To satisfy the holomorphicity condition we need

$$
\begin{equation*}
\frac{\partial}{\partial \bar{z}_{\tau}}\left(e^{-\frac{1}{\sqrt{2 D \tau_{2}}} \bar{z}_{\tau} a_{\tau}}\left|u_{0}\right\rangle\right)=0 \Longleftrightarrow a_{\tau}\left|u_{0}\right\rangle=0 \tag{26}
\end{equation*}
$$

Constructing the flat Kähler bands

The Bloch wavefunction (cont.)

- To satisfy the holomorphicity condition we need

$$
\begin{equation*}
\frac{\partial}{\partial \bar{z}_{\tau}}\left(e^{-\frac{1}{\sqrt{2 D \tau_{2}}} \bar{z}_{\tau} a_{\tau}}\left|u_{0}\right\rangle\right)=0 \Longleftrightarrow a_{\tau}\left|u_{0}\right\rangle=0 \tag{26}
\end{equation*}
$$

Explicitly

Constructing the flat Kähler bands

The Bloch wavefunction (cont.)

- To satisfy the holomorphicity condition we need

$$
\begin{equation*}
\frac{\partial}{\partial \bar{z}_{\tau}}\left(e^{-\frac{1}{\sqrt{2 D \tau_{2}}} \bar{z}_{\tau} a_{\tau}}\left|u_{0}\right\rangle\right)=0 \Longleftrightarrow a_{\tau}\left|u_{0}\right\rangle=0 \tag{26}
\end{equation*}
$$

Explicitly

$$
\begin{equation*}
(-i D \tau q) u_{0}(q)=\frac{\partial u_{0}}{\partial q}(q) \Longrightarrow u_{0}(q)=A e^{-\frac{i D}{2} \tau q^{2}}, A \in \mathbb{C} \tag{27}
\end{equation*}
$$

Constructing the flat Kähler bands

The Bloch wavefunction (cont.)

- To satisfy the holomorphicity condition we need

$$
\begin{equation*}
\frac{\partial}{\partial \bar{z}_{\tau}}\left(e^{-\frac{1}{\sqrt{2 D \tau_{2}}} \bar{z}_{\tau} a_{\tau}}\left|u_{0}\right\rangle\right)=0 \Longleftrightarrow a_{\tau}\left|u_{0}\right\rangle=0 \tag{26}
\end{equation*}
$$

Explicitly

$$
\begin{equation*}
(-i D \tau q) u_{0}(q)=\frac{\partial u_{0}}{\partial q}(q) \Longrightarrow u_{0}(q)=A e^{-\frac{i D}{2} \tau q^{2}}, A \in \mathbb{C} \tag{27}
\end{equation*}
$$

for $\tau \in \mathbb{H}, u_{0} \in L^{2}(\mathbb{R})$ iff $D<0$.

Constructing the flat Kähler bands

The Bloch wavefunction (cont.)

- To satisfy the holomorphicity condition we need

$$
\begin{equation*}
\frac{\partial}{\partial \bar{z}_{\tau}}\left(e^{-\frac{1}{\sqrt{2 D \tau_{2}}} \bar{z}_{\tau} a_{\tau}}\left|u_{0}\right\rangle\right)=0 \Longleftrightarrow a_{\tau}\left|u_{0}\right\rangle=0 \tag{26}
\end{equation*}
$$

Explicitly

$$
\begin{equation*}
(-i D \tau q) u_{0}(q)=\frac{\partial u_{0}}{\partial q}(q) \Longrightarrow u_{0}(q)=A e^{-\frac{i D}{2} \tau q^{2}}, A \in \mathbb{C} \tag{27}
\end{equation*}
$$

for $\tau \in \mathbb{H}, u_{0} \in L^{2}(\mathbb{R})$ iff $D<0$.

- Thus $\left|u_{\mathbf{k}}\right\rangle=U_{\mathbf{k}}\left|u_{0}\right\rangle,\left|u_{0}\right\rangle$ the vacuum of the bosonic mode a_{τ}

Constructing the flat Kähler bands

The Bloch wavefunction (cont.)

- To satisfy the holomorphicity condition we need

$$
\begin{equation*}
\frac{\partial}{\partial \bar{z}_{\tau}}\left(e^{-\frac{1}{\sqrt{2 D \tau_{2}}} \bar{z}_{\tau} a_{\tau}}\left|u_{0}\right\rangle\right)=0 \Longleftrightarrow a_{\tau}\left|u_{0}\right\rangle=0 \tag{26}
\end{equation*}
$$

Explicitly

$$
\begin{equation*}
(-i D \tau q) u_{0}(q)=\frac{\partial u_{0}}{\partial q}(q) \Longrightarrow u_{0}(q)=A e^{-\frac{i D}{2} \tau q^{2}}, A \in \mathbb{C} \tag{27}
\end{equation*}
$$

for $\tau \in \mathbb{H}, u_{0} \in L^{2}(\mathbb{R})$ iff $D<0$.

- Thus $\left|u_{\mathbf{k}}\right\rangle=U_{\mathbf{k}}\left|u_{0}\right\rangle,\left|u_{0}\right\rangle$ the vacuum of the bosonic mode a_{τ} \Longrightarrow

Constructing the flat Kähler bands

The Bloch wavefunction (cont.)

- To satisfy the holomorphicity condition we need

$$
\begin{equation*}
\frac{\partial}{\partial \bar{z}_{\tau}}\left(e^{-\frac{1}{\sqrt{2 D \tau_{2}}} \bar{z}_{\tau} a_{\tau}}\left|u_{0}\right\rangle\right)=0 \Longleftrightarrow a_{\tau}\left|u_{0}\right\rangle=0 \tag{26}
\end{equation*}
$$

Explicitly

$$
\begin{equation*}
(-i D \tau q) u_{0}(q)=\frac{\partial u_{0}}{\partial q}(q) \Longrightarrow u_{0}(q)=A e^{-\frac{i D}{2} \tau q^{2}}, A \in \mathbb{C} \tag{27}
\end{equation*}
$$

for $\tau \in \mathbb{H}, u_{0} \in L^{2}(\mathbb{R})$ iff $D<0$.

- Thus $\left|u_{\mathbf{k}}\right\rangle=U_{\mathbf{k}}\left|u_{0}\right\rangle,\left|u_{0}\right\rangle$ the vacuum of the bosonic mode a_{τ} $\Longrightarrow\left|u_{\mathbf{k}}\right\rangle$ is a bosonic coherent state.

Constructing the flat Kähler bands

Quantization of D

Constructing the flat Kähler bands

Quantization of D

Because $\left|u_{\mathbf{k}}\right\rangle$ must determine a line bundle over BZ^{2}, D is constrained.

Constructing the flat Kähler bands

Quantization of D

Because $\left|u_{\mathbf{k}}\right\rangle$ must determine a line bundle over BZ^{2}, D is constrained. Indeed,

Constructing the flat Kähler bands

Quantization of D

Because $\left|u_{\mathbf{k}}\right\rangle$ must determine a line bundle over BZ^{2}, D is constrained. Indeed,

$$
\begin{align*}
\left|u_{\mathbf{k}+\mathbf{G}}\right\rangle & =U_{\mathbf{k}+\mathbf{G}}\left|u_{0}\right\rangle=U_{\mathbf{G}} \psi^{-1}(\mathbf{G}, \mathbf{k}) U_{\mathbf{k}}\left|u_{0}\right\rangle=U_{\mathbf{G}} \psi^{-1}(\mathbf{G}, \mathbf{k})\left|u_{\mathbf{k}}\right\rangle \\
& =e_{\mathbf{G}}(\mathbf{k}) U_{\mathbf{G}}\left|u_{\mathbf{k}}\right\rangle \tag{28}
\end{align*}
$$

Constructing the flat Kähler bands

Quantization of D

Because $\left|u_{\mathbf{k}}\right\rangle$ must determine a line bundle over BZ^{2}, D is constrained. Indeed,

$$
\begin{align*}
\left|u_{\mathbf{k}+\mathbf{G}}\right\rangle & =U_{\mathbf{k}+\mathbf{G}}\left|u_{0}\right\rangle=U_{\mathbf{G}} \psi^{-1}(\mathbf{G}, \mathbf{k}) U_{\mathbf{k}}\left|u_{0}\right\rangle=U_{\mathbf{G}} \psi^{-1}(\mathbf{G}, \mathbf{k})\left|u_{\mathbf{k}}\right\rangle \\
& =e_{\mathbf{G}}(\mathbf{k}) U_{\mathbf{G}}\left|u_{\mathbf{k}}\right\rangle \tag{28}
\end{align*}
$$

and we identify

Constructing the flat Kähler bands

Quantization of D

Because $\left|u_{\mathbf{k}}\right\rangle$ must determine a line bundle over BZ^{2}, D is constrained. Indeed,

$$
\begin{align*}
\left|u_{\mathbf{k}+\mathbf{G}}\right\rangle & =U_{\mathbf{k}+\mathbf{G}}\left|u_{0}\right\rangle=U_{\mathbf{G}} \psi^{-1}(\mathbf{G}, \mathbf{k}) U_{\mathbf{k}}\left|u_{0}\right\rangle=U_{\mathbf{G}} \psi^{-1}(\mathbf{G}, \mathbf{k})\left|u_{\mathbf{k}}\right\rangle \\
& =e_{\mathbf{G}}(\mathbf{k}) U_{\mathbf{G}}\left|u_{\mathbf{k}}\right\rangle \tag{28}
\end{align*}
$$

and we identify

$$
\begin{equation*}
e_{\mathbf{G}}(\mathbf{k}):=\psi^{-1}(\mathbf{G}, \mathbf{k})=e^{i D n k x}, \text { with } \mathbf{G}=(m, n) \in \mathbb{Z}^{2} \tag{29}
\end{equation*}
$$

Constructing the flat Kähler bands

Quantization of D

Because $\left|u_{\mathbf{k}}\right\rangle$ must determine a line bundle over BZ^{2}, D is constrained. Indeed,

$$
\begin{align*}
\left|u_{\mathbf{k}+\mathbf{G}}\right\rangle & =U_{\mathbf{k}+\mathbf{G}}\left|u_{0}\right\rangle=U_{\mathbf{G}} \psi^{-1}(\mathbf{G}, \mathbf{k}) U_{\mathbf{k}}\left|u_{0}\right\rangle=U_{\mathbf{G}} \psi^{-1}(\mathbf{G}, \mathbf{k})\left|u_{\mathbf{k}}\right\rangle \\
& =e_{\mathbf{G}}(\mathbf{k}) U_{\mathbf{G}}\left|u_{\mathbf{k}}\right\rangle \tag{28}
\end{align*}
$$

and we identify

$$
\begin{equation*}
e_{\mathbf{G}}(\mathbf{k}):=\psi^{-1}(\mathbf{G}, \mathbf{k})=e^{i D n k x}, \text { with } \mathbf{G}=(m, n) \in \mathbb{Z}^{2} \tag{29}
\end{equation*}
$$

A connection and curvature consistent with this system of multipliers is

Constructing the flat Kähler bands

Quantization of D

Because $\left|u_{\mathbf{k}}\right\rangle$ must determine a line bundle over BZ^{2}, D is constrained. Indeed,

$$
\begin{align*}
\left|u_{\mathbf{k}+\mathbf{G}}\right\rangle & =U_{\mathbf{k}+\mathbf{G}}\left|u_{0}\right\rangle=U_{\mathbf{G}} \psi^{-1}(\mathbf{G}, \mathbf{k}) U_{\mathbf{k}}\left|u_{0}\right\rangle=U_{\mathbf{G}} \psi^{-1}(\mathbf{G}, \mathbf{k})\left|u_{\mathbf{k}}\right\rangle \\
& =e_{\mathbf{G}}(\mathbf{k}) U_{\mathbf{G}}\left|u_{\mathbf{k}}\right\rangle \tag{28}
\end{align*}
$$

and we identify

$$
\begin{equation*}
e_{\mathbf{G}}(\mathbf{k}):=\psi^{-1}(\mathbf{G}, \mathbf{k})=e^{i D n k x}, \text { with } \mathbf{G}=(m, n) \in \mathbb{Z}^{2} \tag{29}
\end{equation*}
$$

A connection and curvature consistent with this system of multipliers is

$$
\begin{equation*}
A=-i D k_{y} d k_{x} \Longrightarrow F=d A=i D d k_{x} \wedge d k_{y} \Longrightarrow D=-2 \pi \mathcal{C} \tag{30}
\end{equation*}
$$

Constructing the flat Kähler bands

Explicit form of $u_{k}(r)$

Constructing the flat Kähler bands

Explicit form of $u_{k}(r)$

The explicit form of the wavefunction is obtained by decomposing $L^{2}(\mathbb{R})=\int_{\text {u.c. }}^{\oplus} d^{2} \mathbf{r} \mathcal{H}_{\mathbf{r}}$, the decomposition being determined by the Bloch-Zak transform

Constructing the flat Kähler bands

Explicit form of $u_{k}(r)$

The explicit form of the wavefunction is obtained by decomposing $L^{2}(\mathbb{R})=\int_{\text {u.c. }}^{\oplus} d^{2} \mathbf{r} \mathcal{H}_{\mathbf{r}}$, the decomposition being determined by the Bloch-Zak transform

$$
\begin{equation*}
L^{2}(\mathbb{R}) \ni f \mapsto f_{\mathbf{r}}=\sum_{\mathbf{G} \in \mathbb{Z}^{2}}\left(U_{\mathbf{G}} f\right) e^{2 \pi i \mathbf{G} \cdot \mathbf{r}} \tag{31}
\end{equation*}
$$

Constructing the flat Kähler bands

Explicit form of $u_{k}(r)$

The explicit form of the wavefunction is obtained by decomposing $L^{2}(\mathbb{R})=\int_{\text {u.c. }}^{\oplus} d^{2} \mathbf{r} \mathcal{H}_{r}$, the decomposition being determined by the Bloch-Zak transform

$$
\begin{equation*}
L^{2}(\mathbb{R}) \ni f \mapsto f_{\mathbf{r}}=\sum_{\mathbf{G} \in \mathbb{Z}^{2}}\left(U_{\mathbf{G}} f\right) e^{2 \pi i \mathbf{G} \cdot \mathbf{r}} \tag{31}
\end{equation*}
$$

Here f_{r} determines a square-integrable section of a Hilbert bundle over the unit cell torus $\mathcal{H} \rightarrow \mathbb{R}^{2} / \mathbb{Z}^{2}$, whose fiber over \mathbf{r} is $\mathcal{H}_{\mathbf{r}}$, which is a space spanned by \mathcal{C} independent distributions,

Constructing the flat Kähler bands

Explicit form of $u_{k}(r)$

The explicit form of the wavefunction is obtained by decomposing $L^{2}(\mathbb{R})=\int_{\text {u.c. }}^{\oplus} d^{2} \mathbf{r} \mathcal{H}_{\mathbf{r}}$, the decomposition being determined by the Bloch-Zak transform

$$
\begin{equation*}
L^{2}(\mathbb{R}) \ni f \mapsto f_{\mathbf{r}}=\sum_{\mathbf{G} \in \mathbb{Z}^{2}}\left(U_{\mathbf{G}} f\right) e^{2 \pi i \mathbf{G} \cdot \mathbf{r}} \tag{31}
\end{equation*}
$$

Here f_{r} determines a square-integrable section of a Hilbert bundle over the unit cell torus $\mathcal{H} \rightarrow \mathbb{R}^{2} / \mathbb{Z}^{2}$, whose fiber over \mathbf{r} is $\mathcal{H}_{\mathbf{r}}$, which is a space spanned by \mathcal{C} independent distributions,

$$
\begin{equation*}
\delta_{\alpha}^{r}(q)=\sum_{p \in \mathbb{Z}} \delta(\mathcal{C} q+x-\alpha-\mathcal{C} p) e^{-2 \pi i \frac{1}{\mathcal{C}} y(-x+\alpha+\mathcal{C} p)} \tag{32}
\end{equation*}
$$

Constructing the flat Kähler bands

Explicit form of $u_{k}(r)$

The explicit form of the wavefunction is obtained by decomposing $L^{2}(\mathbb{R})=\int_{\text {u.c. }}^{\oplus} d^{2} \mathbf{r} \mathcal{H}_{\mathbf{r}}$, the decomposition being determined by the Bloch-Zak transform

$$
\begin{equation*}
L^{2}(\mathbb{R}) \ni f \mapsto f_{\mathbf{r}}=\sum_{\mathbf{G} \in \mathbb{Z}^{2}}\left(U_{\mathbf{G}} f\right) e^{2 \pi i \mathbf{G} \cdot \mathbf{r}} \tag{31}
\end{equation*}
$$

Here f_{r} determines a square-integrable section of a Hilbert bundle over the unit cell torus $\mathcal{H} \rightarrow \mathbb{R}^{2} / \mathbb{Z}^{2}$, whose fiber over \mathbf{r} is $\mathcal{H}_{\mathbf{r}}$, which is a space spanned by \mathcal{C} independent distributions,

$$
\begin{equation*}
\delta_{\alpha}^{r}(q)=\sum_{p \in \mathbb{Z}} \delta(\mathcal{C} q+x-\alpha-\mathcal{C} p) e^{-2 \pi i \frac{1}{\mathcal{C}} y(-x+\alpha+\mathcal{C} p)} \tag{32}
\end{equation*}
$$

$\alpha=0, \ldots, \mathcal{C}-1$, and isomorphic (through a coherent-state transform) to $H^{0}\left(\mathrm{BZ}^{2}, L_{r}\right)$.

Constructing the flat Kähler bands

Explicit form of $u_{r}(k)$ (cont.)

Constructing the flat Kähler bands

Explicit form of $u_{r}(k)$ (cont.)

Applying the Bloch-Zak transform to $\left|u_{\mathbf{k}}\right\rangle$ reveals that, in the global (multi-valued) frame field of \mathcal{H} determined by the δ_{α} 's

Constructing the flat Kähler bands

Explicit form of $u_{r}(k)$ (cont.)

Applying the Bloch-Zak transform to $\left|u_{\mathbf{k}}\right\rangle$ reveals that, in the global (multi-valued) frame field of \mathcal{H} determined by the δ_{α} 's

$$
u_{\mathbf{k}}(\mathbf{r})=\left(\vartheta\left[\begin{array}{c}
-\frac{y}{\mathcal{C}} \tag{33}\\
x
\end{array}\right](\mathcal{C} z, \mathcal{C} \tau), \ldots, \vartheta\left[\begin{array}{c}
\frac{\mathcal{C}-1}{\mathcal{C}}-\frac{y}{\mathcal{C}} \\
x
\end{array}\right](\mathcal{C} z, \mathcal{C} \tau)\right)
$$

Constructing the flat Kähler bands

Explicit form of $u_{r}(k)$ (cont.)

Applying the Bloch-Zak transform to $\left|u_{\mathbf{k}}\right\rangle$ reveals that, in the global (multi-valued) frame field of \mathcal{H} determined by the δ_{α} 's

$$
u_{\mathbf{k}}(\mathbf{r})=\left(\vartheta\left[\begin{array}{c}
-\frac{y}{\mathcal{C}} \tag{33}\\
x
\end{array}\right](\mathcal{C} z, \mathcal{C} \tau), \ldots, \vartheta\left[\begin{array}{c}
\frac{\mathcal{C}-1}{\mathcal{C}}-\frac{y}{\mathcal{C}} \\
x
\end{array}\right](\mathcal{C} z, \mathcal{C} \tau)\right)
$$

which for $\mathcal{C}=1$ coincides with the LLL Bloch wavefunction and for $\mathcal{C}>1$ determines the so-called color-entangled Landau level type wavefunctions.

Gauge transformations

- The unirrep of the Heisenberg group is unique up to unitary isomorphism.

Gauge transformations

- The unirrep of the Heisenberg group is unique up to unitary isomorphism. The isomorphism will be an intertwiner, and, in particular, it will preserve the quantum number \mathbf{r}.

Gauge transformations

- The unirrep of the Heisenberg group is unique up to unitary isomorphism. The isomorphism will be an intertwiner, and, in particular, it will preserve the quantum number \mathbf{r}. In practise, this means that we can do real space $\mathrm{U}(\mathcal{C})$-gauge transformations:

Gauge transformations

- The unirrep of the Heisenberg group is unique up to unitary isomorphism. The isomorphism will be an intertwiner, and, in particular, it will preserve the quantum number \mathbf{r}. In practise, this means that we can do real space $\mathrm{U}(\mathcal{C})$-gauge transformations:

$$
\begin{equation*}
u_{\mathbf{k}}(\mathbf{r}) \mapsto S(\mathbf{r}) u_{\mathbf{k}}(\mathbf{r}), \quad S(\mathbf{r}) \in \mathrm{U}(\mathcal{C}) \tag{34}
\end{equation*}
$$

Gauge transformations

- The unirrep of the Heisenberg group is unique up to unitary isomorphism. The isomorphism will be an intertwiner, and, in particular, it will preserve the quantum number \mathbf{r}. In practise, this means that we can do real space $\mathrm{U}(\mathcal{C})$-gauge transformations:

$$
\begin{equation*}
u_{\mathbf{k}}(\mathbf{r}) \mapsto S(\mathbf{r}) u_{\mathbf{k}}(\mathbf{r}), \quad S(\mathbf{r}) \in \mathrm{U}(\mathcal{C}) \tag{34}
\end{equation*}
$$

- Besides that, we are free to perform momentum space \mathbb{C}^{*}-gauge transformations:

Gauge transformations

- The unirrep of the Heisenberg group is unique up to unitary isomorphism. The isomorphism will be an intertwiner, and, in particular, it will preserve the quantum number \mathbf{r}. In practise, this means that we can do real space $\mathrm{U}(\mathcal{C})$-gauge transformations:

$$
\begin{equation*}
u_{\mathbf{k}}(\mathbf{r}) \mapsto S(\mathbf{r}) u_{\mathbf{k}}(\mathbf{r}), \quad S(\mathbf{r}) \in \mathrm{U}(\mathcal{C}) \tag{34}
\end{equation*}
$$

- Besides that, we are free to perform momentum space \mathbb{C}^{*}-gauge transformations:

$$
\begin{equation*}
u_{\mathbf{k}}(\mathbf{r}) \mapsto g(\mathbf{k}) u_{\mathbf{k}}(\mathbf{r}), g(\mathbf{k}) \in \mathbb{C}^{*} \tag{35}
\end{equation*}
$$

Summary

- Upon fixing a flat complex structure in the Brillouin zone, parametrized by $\tau \in \mathbb{H}$, and fixing a Chern number \mathcal{C}, flat Kähler bands are unique.

Thank you!

