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Abstracting the concept of a Bloch wavefunction

Consider the real-space lattice Z2 ⊂ R2.

Then Z2 is the reciprocal
(dual) momentum-space lattice.

Definition (Bloch wavefunction)

A Bloch wavefunction in two dimensions is determined by a family
of nonvanishing vectors |uk⟩ ∈ H, where H is a fixed Hilbert space,
smoothly paramaterized by k ∈ R2, satisfying the following
quasiperiodicity relation:

|uk+G⟩ = eG(k)UG|uk⟩, for all G ∈ Z2, (1)

where (eG)G∈Z2 is a system of multipliers for a line bundle
L → BZ2 = R2/Z2 and (UG)G∈Z2 a unitary representation of the
reciprocal lattice.
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Abstracting the concept of a Bloch wavefunction (cont.)

Remark

L has a natural Hermitian inner product and a compatible
connection

h(k) :=
1

⟨uk|uk⟩
and A(k) = −⟨uk|d |uk⟩

⟨uk|uk⟩
, (2)

with d log h = Ā+ A; i.e. L is an Hermitian line bundle with
connection. Note that A(k) is the opposite of the Berry
connection.
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Abstracting the concept of a Bloch wavefunction (cont.)

Definition (Equivalence of Bloch wavefunctions)

Two families |uk⟩, |u′k⟩, in the same given Hilbert space H, are said
to determine equivalent Bloch wavefunctions if there exists a
smooth function g : R2 → C∗ such that |u′k⟩ = |uk⟩g(k).

Remark

The transformation |uk⟩ 7→ |uk⟩g(k) induces the transformations
eG(k) 7→ eG(k)

(
g(k+ G)g−1(k)

)
which produces isomorphic line

bundles.
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Abstracting the concept of a Bloch wavefunction (cont.)

Perhaps a weaker, more general, definition of equivalence would be:

Definition (Equivalence of Bloch wavefunctions)

Two families |uk⟩, |u′k⟩, in the same given Hilbert space H, are said
to determine equivalent Bloch wavefunctions if there exists a
smooth function g : R2 → C∗ and a constant unitary operator
U ∈ U(H) such that |u′k⟩ = (U|uk⟩) g(k).

Remark

The unitary operator U intertwines the unitary reps of Z2:
U ′
GU = UUG,∀G ∈ Z2.
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Spatial structure of Bloch wavefunctions

Characters

▶ Since UG determines a unitary rep of Z2 we can split it into
irreps.

▶ Unitary irreps of the reciprocal lattice, χ : Z2 → U(1), are
labelled by points r in the real unit cell, under the
identification r ∼ r + R with R ∈ Z2: χ(G) = e−2πiG·r.

▶ Then H ∼=
⊕

r Hr, where UG|Hr = χ(G) = e−2πiG·r.

Remark

The direct sum is over a collection of points r = (x , y) ∈ u.c.. This
collection can be the whole unit cell, in which case the direct sum
has to be replaced by the more general direct integral
H ∼=

∫ ⊕
d2r Hr.
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Spatial structure of Bloch wavefunctions (cont.)

Quasiperiodicity condition

The component uk(r) ∈ Hr of |uk⟩ satisfies

uk+G(r) = eG(k)χ(G)uk(r)

= eG(k)e
−2πiG·ruk(r). (3)
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Spatial structure of Bloch wavefunctions (cont.)

Coefficients determine smooth sections of line bundles
Lr → BZ2

▶ Fix an o.n. basis for Hr, say {|α, r⟩}α=1,2,..., and write

Hr ∋ uk(r) =
∑
α

fα,r(k)|α, r⟩. (4)

▶ The fα,r’s define functions fα,r : R2 → C satisfying

fα,r(k+ G) = eG(k)χ(G)fα,r(k), α = 1, 2, . . . , (5)

and so determine sections of a line bundle Lr → BZ2 whose
multipliers are eG(k)χ(G).

▶ For each r occurring in the decomposition H =
⊕

r Hr we
have one such line bundle.
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Spatial structure of Bloch wavefunctions (cont.)

Geometric interpretation

The positions r in the unit cell determine characters
χ(G) = e−2πiG·r, defining flat line bundles

Lr = R2 ×χ C → BZ2, (6)

which twist the original bundle L as

Lr = L⊗ Lr → BZ2. (7)

The uk(r)’s know of the spatial structure of the unit cell through
the holonomy on loops k(t) 7→ k+ tG, t ∈ [0, 1]: χ−1(G).
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Spatial structure of Bloch wavefunctions (cont.)

Figure: Geometric interpretation of the spatial structure of Bloch
wavefunctions.
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Quantum geometry in momentum space

▶ The assignment k 7→ |uk⟩ ∈ H − {0} determines a map
f : R2 → PH which uniquely defines the Bloch wavefunction.

▶ The space PH is a (possibly infinite dimensional) Kähler
manifold with respect to the Fubini-Study Kähler
structure—(PH, ωFS) (gFS = ω(·, JFS ·)).

▶ Over PH we have the Hermitian holomorphic line bundle
known as the tautological line bundle. Its Chern connection
has curvature 2iωFS .
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Quantum geometry in momentum space (cont.)

Definition (Berry curvature and quantum metric)

The Berry curvature F and quantum metric g of the Bloch
wavefunction determined by |uk⟩ are, respectively,

F := f ∗(2iωFS) and g := f ∗gFS . (8)
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Quantum geometry in momentum space (cont.)

Proposition (Quantum geometry in the Brillouin zone)

The tensors F ∈ Ω2(R2) and g ∈ Symm2(R2) go down to the
Brillouin zone BZ2 = R2/Z2.

The tensors F and g only depend on
the Bloch wavefunction and not the particular representative.

Proof.

Since |uk+G⟩ = UG|uk⟩eG(k), then for ϕG : k 7→ k+ G, G ∈ Z2, we
have

f ◦ ϕG = UG ◦ f , (9)

where in the above formula UG : PH → PH denotes the induced
map. Now UG ∈ Aut(PH, ωFS) as a Kähler manifold so ϕ∗GF = F
and ϕ∗Gg = g for all G ∈ Z2. The second part follows from the
equivalence of representatives being done through elements of
Aut(PH, ωFS).
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Kähler bands
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Kähler bands

Definition (Kähler band)

A Kähler band is determined by a Bloch wavefunction with the
property that f : R2 → PH is a holomorphic immersion with
respect to a complex structure J that is invariant under reciprocal
lattice translations (ϕ∗GJ = J for all G ∈ Z2).

Remark

For a Kähler band (f ∗ωFS , f
∗gFS , J) determines a Kähler structure

in the Brillouin zone BZ2, hence the adjective Kähler.
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Ideal Kähler bands/Ideal flatbands

18 / 38



Ideal Kähler bands

Definition (Ideal Kähler bands)

Ideal Kähler bands, also known as ideal flat bands, are Kähler
bands with respect to a translation invariant complex structure Jτ ,
determined by a modular parameter τ ∈ H = {τ ∈ C : Im (τ) > 0}
(complex coordinate zτ = kx + τky ).
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Structure theory of ideal Kähler bands

Holomorphicity condition

∂

∂z̄τ
|uk⟩ −

⟨uk| ∂
∂z̄τ

|uk⟩
⟨uk|uk⟩

|uk⟩ = 0, (10)

or, in an appropriate holomorphic gauge,

∂

∂z̄τ
|uk⟩ = 0. (11)

We can then assume holomorphic multipliers eγ(zτ ) with
γ ∈ Λτ = Z+ τZ ∼= Z2, so L → C/Λτ and, in fact, all the
Lr → C/Λτ are Hermitian holomorphic line bundles.
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Structure theory of ideal Kähler bands (cont.): Theta
functions

▶ Holomorphic line bundles over complex tori are always
isomorphic to holomorphic line bundles whose holomorphic
sections are described by suitable theta functions.

Recall:

ϑ

[
a
b

]
(z , τ) :=

∑
n∈Z

e iπτ(n+a)2+2πi(n+a)(z+b), a, b ∈ R. (12)

▶ We may assume after multiplying |uk⟩ by g(k) ∈ C∗ that

eγ(zτ ) = e−iπCτn2−2πinCzτ , for γ = m + nτ ∈ Λτ , (13)

C = deg(Lr) = dimH0(C/Λτ , Lr) is the Chern number
associated with the Bloch wavefunction |uk⟩.

▶ Then

fα,r(k) =
C−1∑
β=0

aα,β(r)ϑ

[
β
C − y

C
x

]
(Czτ , Cτ), α = 1, 2, . . .

(14)
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Structure theory of ideal Kähler bands (cont.)

Structure of ideal Kähler bands

For an ideal Kähler band with flat complex structure determined by
τ ∈ H and Chern number C, we have |uk⟩ =

∫ ⊕
u.c. d

2r uk(r), with

uk(r) =
∑
α

fα,r(k)|α, r⟩ ∈ Hr, (15)

and

fα,r(k) =
C−1∑
β=0

aα,β(r)ϑ

[
β
C − y

C
x

]
(Cz , Cτ), α = 1, 2, . . . , (16)

where aα,β(r), α = 1, 2, . . . , dimHr, β = 0, . . . , C − 1, depend on
the particular ideal Kähler band (also on the particular choice of
basis {|α, r⟩} chosen for the Hr’s).
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Flat Kähler bands
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Flat Kähler bands

Definition (Flat Kähler bands)

Flat Kähler bands are Kähler bands for which the quantum
geometry is translation-invariant.
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Flat Kähler bands (cont.)

Consequences of the definition

▶ For every q ∈ R2, we have a diffeomorphism of BZ2 given by
ϕq : k 7→ k+ q mod Z2. Translation-invariance of the
quantum geometry means

ϕ∗qg = g and ϕ∗qF = F , for all q ∈ R2 (17)

▶ g = f ∗gFS , and ϕq can be associated with an isometry of gFS
which then lifts to H to act as a unitary or anti-unitary
operator Uq—Wigner’s theorem: quantum symmetries
(isometries of the Fubini-Study metric) are represented by
unitary or anti-unitary operators in the Hilbert space.

▶ Since an anti-unitary operator would change the sign of F it
follows that Uq is unitary.
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unitary or anti-unitary operators in the Hilbert space.

▶ Since an anti-unitary operator would change the sign of F it
follows that Uq is unitary.
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Flat Kähler bands (cont.)

Heisenberg groups

▶ The lifted unitaries form a projective unitary representation of
R2:

Uk1Uk2 = Uk1+k2

∈U(1)︷ ︸︸ ︷
ψ(k1, k2) . (18)
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Flat Kähler bands (cont.)

Heisenberg groups (cont.)

▶ Projective unitary representations of R2 form unitary
representations of central extensions G of R2 by U(1):

1 −→ U(1) −→ G −→ R2 −→ 0. (19)

▶ As a set: G = R2 ×U(1)

▶ Product law: (k1, λ1) · (k2, λ2) = (k1 + k2, λ1λ2ψ(k1, k2)).
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Flat Kähler bands (cont.)

Heisenberg groups (cont.)

▶ Central extensions of R2 by U(1) are determined, up to
isomorphism, by the commutator
s(k1, k2) = ψ(k1, k2)/ψ(k2, k1) = e iω(k1,k2), for ω ∈ Alt2(R2).

▶ ω ∈ Alt2(R2) means

ω(k1, k2) = Dkt1

[
0 1
−1 0

]
k2

= D (k1,xk2,y − k1,yk2,x) , for some D ∈ R. (20)

▶ If D ̸= 0, then G is called a Heisenberg group.
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Flat Kähler bands (cont.)

Heisenberg groups (cont.)

▶ Once a concrete realization of ψ for a given s, giving rise to a
group G , all other realizations differ by an exact cochain:

ψ′(k1, k1) = ψ(k1, k2)
g(k1 + k2)

g(k1)g(k2)
, (21)

for g : R2 → U(1), which gives the isomorphism of central
extensions.

▶ A concrete realization is provided by setting

ψ(k1, k2) = e−iDk1,yk2,x (22)

Note that for D = 0 this essentially says that G = R2 ×U(1)
as a group.
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Flat Kähler bands (cont.)

Theorem (Stone-von Neumann)

The Heisenberg group G has a unique, up to isomorphism, unitary
irreducible representation H = L2(R), for which U(1) acts as
(0, λ) · ψ = λ · ψ, (0, λ) ∈ U(1) ⊂ G, with

(k, λ) · ψ(q) := λUkψ(q) := λe−iDkx (q+ky )ψ(q + ky ), (23)

which is the standard Hilbert space of a particle moving in one
dimension with coordinate q for which the momentum is
p = 1

iD
∂
∂q , with [q, p] = i

D .
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Constructing the flat Kähler bands

The Bloch wavefunction

▶ We build a translation-invariant Bloch wavefunction as

|uk⟩ = Uk|u0⟩. (24)

▶ But recall that we have a holomorphicity constraint. To
understand how to deal with that we write

Uk = e iDkype−iDkxx = e iD(kyp−kxq)e
i
2
Dkxky

= e i
D
2
kxky e

− 1
4τ2D

|zτ |2e
1√
2Dτ2

zτa
†
τ
e
− 1√

2Dτ2
z̄τaτ

, (25)

with aτ :=
√

D
2τ2

(τq + p) and a†τ :=
√

D
2τ2

(τ̄q + p),which

satisfy the canonical commutation relations [aτ , a
†
τ ] = 1.
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Constructing the flat Kähler bands

The Bloch wavefunction (cont.)

▶ To satisfy the holomorphicity condition we need

∂

∂z̄τ

(
e
− 1√

2Dτ2
z̄τaτ |u0⟩

)
= 0 ⇐⇒ aτ |u0⟩ = 0, (26)

Explicitly

(−iDτq) u0(q) =
∂u0
∂q

(q) =⇒ u0(q) = Ae−
iD
2
τq2 , A ∈ C,

(27)

for τ ∈ H, u0 ∈ L2(R) iff D < 0.

▶ Thus |uk⟩ = Uk|u0⟩, |u0⟩ the vacuum of the bosonic mode aτ
=⇒ |uk⟩ is a bosonic coherent state.
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=⇒ |uk⟩ is a bosonic coherent state.
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Constructing the flat Kähler bands

Quantization of D

Because |uk⟩ must determine a line bundle over BZ2, D is
constrained. Indeed,

|uk+G⟩ = Uk+G|u0⟩ = UGψ
−1(G, k)Uk|u0⟩ = UGψ

−1(G, k)|uk⟩
= eG(k)UG|uk⟩, (28)

and we identify

eG(k) := ψ−1(G, k) = e iDnkx , with G = (m, n) ∈ Z2. (29)

A connection and curvature consistent with this system of
multipliers is

A = −iDkydkx =⇒ F = dA = iDdkx ∧ dky =⇒ D = −2πC.
(30)
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Constructing the flat Kähler bands

Explicit form of uk(r)

The explicit form of the wavefunction is obtained by decomposing
L2(R) =

∫ ⊕
u.c. d

2r Hr, the decomposition being determined by the
Bloch-Zak transform

L2(R) ∋ f 7→ fr =
∑
G∈Z2

(UGf ) e
2πiG·r. (31)

Here fr determines a square-integrable section of a Hilbert bundle
over the unit cell torus H → R2/Z2, whose fiber over r is Hr,
which is a space spanned by C independent distributions,

δrα(q) =
∑
p∈Z

δ(Cq + x − α− Cp)e−2πi 1C y(−x+α+Cp), (32)

α = 0, . . . , C − 1, and isomorphic (through a coherent-state
transform) to H0(BZ2, Lr).
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Constructing the flat Kähler bands

Explicit form of ur(k) (cont.)

Applying the Bloch-Zak transform to |uk⟩ reveals that, in the
global (multi-valued) frame field of H determined by the δα’s

uk(r) =

(
ϑ

[
− y

C
x

]
(Cz , Cτ), . . . , ϑ

[ C−1
C − y

C
x

]
(Cz , Cτ)

)
,

(33)

which for C = 1 coincides with the LLL Bloch wavefunction and for
C > 1 determines the so-called color-entangled Landau level type
wavefunctions.
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Gauge transformations

▶ The unirrep of the Heisenberg group is unique up to unitary
isomorphism.

The isomorphism will be an intertwiner, and, in
particular, it will preserve the quantum number r. In practise,
this means that we can do real space U(C)-gauge
transformations:

uk(r) 7→ S(r)uk(r), S(r) ∈ U(C). (34)

▶ Besides that, we are free to perform momentum space
C∗-gauge transformations:

uk(r) 7→ g(k)uk(r), g(k) ∈ C∗. (35)
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Summary

▶ Upon fixing a flat complex structure in the Brillouin zone,
parametrized by τ ∈ H, and fixing a Chern number C, flat
Kähler bands are unique.
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Thank you!
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