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1.1 - IQHE on the plane

The model
Consider a system of electrons in the complex plane subject to a constant
perpendicular magnetic field B. If one restricts to the first N states in the
lowest Landau level (LLL), the N -particle wavefunction is

Ψ(z1, . . . , zN ) =
1√
ZN

∏
i<j

(zi − zj)e
− 1

4
B

∑
i |zi|2 ,

and its squared norm is interpreted as the joint density of the particle system.

Complex Gaussian random matrices

Consider a N ×N matrix A whose entries are Ajk = xjk + iyjk, where
(xjk, yjk) are i.i.d. real random variables with distribution N (0,

√
B). Then

(Ginibre, ’65) the distribution density of the eigenvalues of A is given by

p(z1, . . . , zN ) =
1

ZN

∏
i<j

|zi − zj |2e−
1
2
B

∑
i |zi|2 = ∥Ψ(z1, . . . , zN )∥2.
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1.1 - IQHE on the plane

Correlation functions
Using the well-known theory of Determinantal Point Processes (DPP)
developped by Macchi (’75), we know that the n-point correlation functions
(1 ⩽ n ⩽ N) of such process satisfy

ρn(z1, . . . , zn) = det(KN (zi, zj))1⩽i,j⩽n

with

KN (z, w) =
1

π

N−1∑
j=0

1

j!
(zw)je−

1
2
|z|2− 1

2
|w|2 .

▶ If we let N → ∞ we obtain a DPP whose correlation kernel is

K∞(z, w) =
1

π
ezw− 1

2
|z|2− 1

2
|w|2 ,

called the infinite Ginibre ensemble.

▶ Still hot topic: various confining potentials, adiabatic transport...
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1.2 - IQHE on complex manifolds

Formal setting (Douglas–Klevtsov ’08)

▶ Space: a Kähler manifold (M,ω) of dimension d.

▶ Magnetic field: the curvature 2-form of a holomorphic Hermitian line
bundle (L, h) over M :

RL = −∂∂ log ∥eL∥2h.

▶ Prequantization condition

ω =
i

2π
RL = c1(L, h).
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1.2 - IQHE on complex manifolds

Lowest Landau level
Replace L by Lk := L⊗k and h by hk. The lowest Landau level is H0(M,Lk),
which is a Hilbert space of finite dimension Nk for the L2 inner product

⟨ψ1, ψ2⟩ =
∫
M

hk
x(ψ1(x), ψ2(x))

ωd(x)

d!
.

Given a basis {ψℓ}, the Nk-particle wavefunction is the Slater determinant

Ψ(x1, . . . , xNk ) =
1√
N !

det (ψℓ(xm)) .

Questions

▶ Does it yield a known point process?

▶ If so, is it a DPP?

▶ What happens in the regime k → ∞ (= large-N limit)?
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Determinantal point processes
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2.1 - Definitions

Point processes

Let E be a locally compact Polish space, with its Borel σ-algebra B(E) and a
reference Borel measure λ. Let (Ω,F ,P) be a probability space. A simple
point process (PP) is equivalently a random measure µ : Ω → M1(E) defined
by

µ =
∑
i∈I

δxi ,

or a random configuration, i.e. a locally finite random subset X : Ω → B(E).

Its n-th factorial moment measure is

µ(n) = E
[ ∑

1⩽i1,...,in⩽µ(E)
i1 ̸=···̸=in

δXi1
,...,Xin

]
,

and the n-point correlation function is its density ρn with respect to λ⊗n,
provided that µ(n) ≪ λ⊗n.

Proposition (Johansson ’05)

If (X1, . . . , XN ) has joint symmetric density p : EN → R+ with respect to
λ⊗N , then for all n ⩽ N ,

ρn(x1, . . . , xn) =
N !

(N − n)!

∫
EN−n

p(x1, . . . , xN )λ⊗N−n(dxn+1 · · · dxN ).
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2.1 - Definitions

Determinantal point processes

A point process µ is called determinantal with kernel K : E2 → C if for all
n ⩾ 1, its n-point correlation function satisfies

ρn(x1, . . . , xn) = det(K(xi, xj))1⩽i,j⩽n.

Examples

▶ Eigenvalues of classical random matrix ensembles (random matrix theory)

▶ Zeros of some Gaussian analytic functions (random analytic functions)

▶ Uniform spanning trees (random graphs)

▶ Schur measures on Young diagrams (representation theory & statistical
mechanics)



10/25

2.1 - Definitions

Determinantal point processes

A point process µ is called determinantal with kernel K : E2 → C if for all
n ⩾ 1, its n-point correlation function satisfies

ρn(x1, . . . , xn) = det(K(xi, xj))1⩽i,j⩽n.

Examples

▶ Eigenvalues of classical random matrix ensembles (random matrix theory)

▶ Zeros of some Gaussian analytic functions (random analytic functions)

▶ Uniform spanning trees (random graphs)

▶ Schur measures on Young diagrams (representation theory & statistical
mechanics)



11/25

2.2 - Orthogonal ensembles

Orthogonal ensembles

An orthogonal ensemble is a particular case of DPP, given by a family
(X1, . . . , XN ) of random variables on E (often R or C) with joint density

p(x1, . . . , xN ) =
1

N !
| det(ϕi(xj))|2dλ⊗N (x1, . . . , xN ),

with (ϕi) an orthonormal family in L2(E, λ).

The point process µ =
∑

i δXi is almost-surely simple, and it is determinantal
with kernel

KN (x, y) =

N∑
i=1

ϕ
(N)
i (x)ϕ

(N)
i (y),

which is the reproducing kernel of H = Span(ϕ
(N)
1 , . . . , ϕ

(N)
N ) ⊂ L2(E).

Examples

The quantum Hele–Shaw flow (Wiegmann ’02,
Agam–Bettelheim–Wiegmann–Zabrodin ’02, Hedenmalm–Makarov ’04), the
random normal matrix models (Ameur–Hedenmalm–Makarov ’11, ’15)
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2.2 - Orthogonal ensembles

Christoffel–Darboux kernel
When (ϕ

(N)
i ) are orthonormal polynomials, KN is called the

Christoffel–Darboux kernel.

Theorem (Christoffel 1858, Darboux 1878)

If (ϕ
(N)
i ) is a sequence of unitary orthonormal polynomials on R,

KN (x, y) =
ϕ
(N)
N (x)ϕ

(N)
N−1(y)− ϕ

(N)
N−1(x)ϕ

(N)
N (y)

x− y
.

▶ The asymptotic study of the kernel KN turns into a study of the
orthonormal polynomials ϕ

(N)
N and ϕ

(N)
N−1.

▶ Similar formula for orthonormal polynomials on the unit circle, but no
general formula on C or Cn. Instead: heavy complex analysis.
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DPP on complex manifolds
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3.1 - Bergman kernel

Consider a compact complex manifold M , and a Hermitian holomorphic line
bundle L→M with a continuous metric h such that locally h = e−ϕ.

The Hilbert space of holomorphic sections

If µ is a finite positive measure on M , H0(M,Lk) = {s ∈ C ∞(M,Lk), ∂s = 0}
is a Hilbert space of dimension Nk <∞ for the inner product

⟨s1, s2⟩(kϕ,µ) =
∫
M

⟨s1(x), s2(x)⟩kϕdµ(x).

Bergman kernel

The Bergman kernel is the Schwartz kernel Bk of the orthogonal projection
Pk : L2(M,Lk) → H0(M,Lk). If {ψℓ} is an ONB of H0(M,Lk),

Bk(x, y) =

Nk∑
ℓ=1

ψℓ(x)⊗ ψℓ(y) =

Nk∑
ℓ=1

|ψℓ⟩⟨ψℓ|

Bk is a reproducing kernel on the Hilbert space H0(M,Lk) and generalizes the
Christoffel–Darboux kernel: if M = CP 1 and L = O(−1), H0(M,Lk) is the
space of homogeneous polynomials of degree k on C.
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3.1 - Bergman kernel

Asymptotic expansion of the Bergman kernel

We now assume that µ is the measure associated to a Riemannian volume form
on M , and that iRL is a positive (1, 1)-form (or equivalently the matrix(

∂2ϕ(x)
∂zi∂zj

)
is positive definite for all x).

▶ Diagonal expansion

Theorem (Tian ’90, Catlin ’97, Zelditch ’98)

There exist smooth functions (bj)j⩾1 such that for any r ⩾ 1,

Bk(x, x) =

r∑
j=0

bj(x)k
d−j +O(kd−r−1).

▶ Near-diagonal expansion:

Theorem (Bleher–Schiffman–Zelditch ’00, Shiffman–Zelditch ’02,
Ma–Marinescu ’06, Berman–Berndtsson–Sjöstrand ’08)

Let (z1, . . . , zN ) be a system of local coordinates in a neighborhood of
x0 ∈M . There exists a limit kernel B∞ such that

Bk

(
z√
k
,
z′√
k

)
= B∞(z, z′)kd +O(kd−

1
2 ).
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3.1 - Bergman kernel

Asymptotic expansion of the Bergman kernel

We now assume that µ is the measure associated to a Riemannian volume form
on M , and that iRL is a positive (1, 1)-form (or equivalently the matrix(

∂2ϕ(x)
∂zi∂zj

)
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3.1 - Bergman kernel

Determinant of the Bergman kernel

Formally,

det(Bk(xi, xj))1⩽i,j⩽n =
∑

σ∈Sn

ε(σ)

Nk∑
i1,...,in=1

n⊗
j=1

sij (xj)⊗ sij (xσ(j)).

▶ Ill-defined because the summands live in different vector spaces!

Duality and tensor products

For any finite-dimensional Hilbert space E, the following contraction is a
canonical isomorphism:{

Lx ⊗ E ⊗ Lx −→ E
ux ⊗ u⊗ vx 7−→ ⟨ux, vx⟩ϕu

,

where vx satisfies (vx, ux) = ⟨ux, vx⟩ϕ by the Riesz representation theorem.
We can then set

det(Bk(xi, xj))1⩽i,j⩽n =
∑

σ∈Sn

ε(σ)

Nk∑
i1,...,in=1

n∏
j=1

⟨sij (xj), siσ−1(j)
(xj)⟩kϕ.
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3.2 - The point process

The random process

We consider a family (X1, . . . , XNk ) of M -valued random variables with joint
distribution

dPϕ(x1, . . . , xNk ) =
1

Nk!
∥ det(ψi(xj))∥2kϕdµ⊗Nk (x1, . . . , xNk ),

where (ψi) ONB of H0(M,Lk).

Example: S2

If we take M = S2 the Riemann sphere with its round metric, such a process
corresponds in stereographic coordinates to

1

(k + 1)!
| det(zm−1

ℓ )|2
k+1∏
ℓ=1

idzℓ ∧ dzℓ
2(1 + |zi|2)k+2

▶ Relation to random matrices: distribution of the eigenvalues of AB−1,
where A,B independent Ginibre matrices (Krishnapur ’09)

▶ Bergman kernel:

Bk(z1, z2) = (k + 1)
(1 + z1z2)

k

(1 + |z1|2)
k
2 (1 + |z2|2)

k
2

.
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3.3 - Universality

Theorem (TL ’22)

Let M be a compact complex manifold of dimension d, L→M be a positive
Hermitian line bundle over M , and µ be the volume measure associated to a
Riemannian volume form on M . The associated point process is determinantal
with kernel Bk, and its n-point correlation functions admit the following scaling
limit in local coordinates around x ∈M :

1

knd
ρn

(
u1√
k
, . . . ,

un√
k

)
= det(B∞(ui, uj)) +O(k−

1
2 ).

Ideas of the proof

▶ Check that all combinatorial techniques used on orthogonal ensembles are
compatible with our definition of det(Bk(xi, xj)).

▶ Use the asymptotic expansion of Bk and a control of the fluctuations
when performing the Laplace expansion of det(Bk).

Note
The results holds if we replace Lk by Lk ⊗ F , where F trivial bundle endowed
with a continuous metric.
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3.3 - Universality

About universality

Universality is a conjecture, or a meta-theorem, stating that the scaling limit of
the observables of many random objects has a universal form, often related to
the Gaussian distribution.

▶ “[Universality] is widely found in the field of random matrix theory. The
universality principle loosely states that the eigenvalues statistics of
interest will behave asymptotically as if the matrix elements were
Gaussian” [Edelman–Guionnet–Péché ’16]

In our setting

▶ Scaling limits of correlation functions are universal due to the properties of
the Bergman kernel. In particular, relaxing the assumptions for the
Bergman kernel expansion leads to a direct generalization (see Berman
’18)

▶ The process with kernel B∞, if M is a Kähler compact surface, is the
infinite Ginibre ensemble, the asymptotic eigenvalue distribution of
complex Gaussian matrices.
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3.4 - Large deviations

New point process

Consider a random family (X1, . . . , XNk ) with joint distribution

dPV
ϕ (x1, . . . , xNk ) =

1

ZNk (ϕ, V )
∥ det(ψi(zj))∥2kϕe−k

∑
i V (xi)dµ⊗Nk (x1, . . . , xNk ),

where {ψi} ONB of H0(M,Lk) for ⟨·, ·⟩(kϕ,µ).

In other terms: we replace the metric h by a new metric he−V without
changing the Hilbert space.

Consequences

▶ The partition function now depends on V and ϕ:

ZNk (ϕ, V ) =Nk! det(⟨ψi, ψj⟩(ϕ+V,µ)

=Nk!

∫
MNk

e−
∑

i V (xi)dPϕ(x1, . . . , xNk ).

▶ The process is not a DPP anymore.
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3.4 - Large deviations

Convergence of Bergman measures

Define the Bergman measure on M by

βk(x) =
1

Nk
Bk(x, x)dµ(x).

Theorem (Berman ’09)

Let (µ, ϕ) be a weighted measure on M satisfying the Bernstein–Markov
condition. The Bergman measures converge weakly in the sense of currents to

the equilibrium measure µϕ
eq =

(
ω + i

2π
∂∂ϕ

)d
.

▶ Expectation of the empirical measures of the unweighted process (V = 0):

E [µ̂k] = βk(x) → µϕ
eq.

▶ Using the scaling limit of the correlation functions and standard limit
theorems in probability, we can replace the convergence of the expectation
by a convergence in probability.

▶ What about the new weighted process?
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3.4 - Large deviations

Mabuchi functional
The equilibrium energy is the energy Eeq : C 0(M) → R associated with the
equilibrium measure:

d

dt

∣∣∣∣
t=0

Eeq(ϕ+ tU) =

∫
M

U(x)dµϕ
eq(x).

The Mabuchi functional (Mabuchi ’86, Donaldson ’05) arises from a variational
approach of this energy:

Leq(ϕ,U) =

∫ 1

0

∫
M

U(x)dµϕ+tU
eq (x)dt = Eeq(ϕ+ U)− Eeq(ϕ).

Rate function

Iϕ,V
eq (ν) = sup

U∈C0(M)

(∫
M

U(x)dν(x)− Leq(ϕ+ V,−U)

)
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3.4 - Large deviations

Theorem (TL ’22)

The empirical measures µk = 1
Nk

∑
i δXi of the weighted process satisfy a large

deviation principle with good rate function Iϕ,V
eq and speed kNk ∼ N

1+ 1
d

k : for
any Borel set Γ ⊂ M1(M),

− inf
ν∈

◦
Γ

Iϕ,V
eq (ν) ⩽ limk

1

kNk
log P[µ̂k ∈ Γ] ⩽ limk

1

kNk
log P[µ̂k ∈ Γ] ⩽ − inf

ν∈Γ
Iϕ,V
eq (ν)

▶ In particular, the empirical measures converge weakly in expectation to the
unique minimizer of the rate function.

Similar results

▶ Bloom–Levenberg ’13 (in Cd)

▶ Berman ’18 (for the unweighted process)
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3.4 - Large deviations

Elements of proof

The cumulant-generating function associated with a Borel probability measure
µ on E is the function

Λµ : λ ∈ E∗ 7→ logE[e⟨λ,X1⟩] = log

∫
E
e⟨λ,x⟩dµ(x).

Theorem (Gärtner–Ellis)

Let (µϵ) be an exponentially tight family of probability measures on a Banach
space E . Suppose Λ(·) = limϵ→0 ϵΛµϵ(·/ϵ) is finite-valued, Gateaux
differentiable and lower semicontinuous in E∗ with respect to the weak-∗

topology. Then (µϵ) satisfies a LDP in E with speed 1
ϵ
and with good rate

function Λ∗.

▶ The cumulant-generating function of the empirical measures is

ΛV
kϕ(f) =

1

kNk
logEV

kϕ

[
e
∑

i kf(Xi)
]

▶ Combine with estimates by Berman–Boucksom ’10 → Mabuchi functional.
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Thank You!
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