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Warm-up and motivations



1.1 - IQHE on the plane

The model

Consider a system of electrons in the complex plane subject to a constant
perpendicular magnetic field B. If one restricts to the first NV states in the
lowest Landau level (LLL), the N-particle wavefunction is
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and its squared norm is interpreted as the joint density of the particle system.
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lowest Landau level (LLL), the N-particle wavefunction is
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and its squared norm is interpreted as the joint density of the particle system.

Complex Gaussian random matrices

Consider a N x N matrix A whose entries are A = x5 + iy;r, where
(1, y;%) are i.i.d. real random variables with distribution A/(0,/B). Then
(Ginibre, '65) the distribution density of the eigenvalues of A is given by
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1.1 - IQHE on the plane

Correlation functions

Using the well-known theory of Determinantal Point Processes (DPP)
developped by Macchi ('75), we know that the n-point correlation functions
(1 < n < N) of such process satisfy

pn(21, ...y 2n) = det(Kn (2i, 27))1<i,j<n
with
N—-1
K =15 L myedler -t
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» |f we let N — oo we obtain a DPP whose correlation kernel is
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Using the well-known theory of Determinantal Point Processes (DPP)
developped by Macchi ('75), we know that the n-point correlation functions
(1 < n < N) of such process satisfy
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» |f we let N — oo we obtain a DPP whose correlation kernel is

1\w|2
I

Keo(z,w) = lezwff‘ I~
™

called the infinite Ginibre ensemble.

» Still hot topic: various confining potentials, adiabatic transport...
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1.2 - IQHE on complex manifolds

Formal setting (Douglas—Klevtsov '08)

> Space: a Kahler manifold (M, w) of dimension d.

» Magnetic field: the curvature 2-form of a holomorphic Hermitian line
bundle (L, h) over M:

R = —9dlog |leL||7.
» Prequantization condition

i oL
= -— — L .
w 2ﬂ_R c1(L, h)



1.2 - IQHE on complex manifolds

Lowest Landau level
Replace L by L* := L®* and h by h*. The lowest Landau level is H°(M, L¥),
which is a Hilbert space of finite dimension Ny, for the L? inner product
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Given a basis {t;}, the Ny-particle wavefunction is the Slater determinant
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Lowest Landau level
Replace L by L* := L®* and h by h*. The lowest Landau level is H°(M, L¥),
which is a Hilbert space of finite dimension Ny, for the L? inner product

w(z)

e = [ B (o)

Given a basis {t;}, the Ny-particle wavefunction is the Slater determinant

Uz, ... o) = \/% det (e (zm)) -

Questions

» Does it yield a known point process?
» |If so, is it a DPP?
» What happens in the regime k — oo (= large-N limit)?



Determinantal point processes



2.1 - Definitions

Point processes

Let E be a locally compact Polish space, with its Borel o-algebra B(E) and a
reference Borel measure \. Let (92, F,P) be a probability space. A simple
point process (PP) is equivalently a random measure p : Q — .#1(E) defined

by
n= Z Oy s
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or a random configuration, i.e. a locally finite random subset X : Q — B(E).
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and the n-point correlation function is its density p, with respect to A®",
provided that p(™ <« A®",

Proposition (Johansson '05)
If (X1,...,XnN) has joint symmetric density p : E¥ — R, with respect to
A®N then for alln < N,

N! T
on(T1,. .. xn) = m/ENinp(ml,.,.,wN))\@N (dTnt1---dxN).
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Determinantal point processes

A point process y is called determinantal with kernel K : E? — C if for all
n > 1, its n-point correlation function satisfies
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2.1 - Definitions

Determinantal point processes
A point process y is called determinantal with kernel K : E? — C if for all
n > 1, its n-point correlation function satisfies

pn(@1,s. . zn) = det(K (@i, 7)) 1<i j<n-

Examples
> Eigenvalues of classical random matrix ensembles (random matrix theory)
> Zeros of some Gaussian analytic functions (random analytic functions)
» Uniform spanning trees (random graphs)

» Schur measures on Young diagrams (representation theory & statistical
mechanics)
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Orthogonal ensembles
An orthogonal ensemble is a particular case of DPP, given by a family
(X1,...,Xn) of random variables on E (often R or C) with joint density
1
p(z1,...,ZN) = ﬁ' det(¢i(x;))[2dA®N (21, ..., zN),
with (¢;) an orthonormal family in L?(E, \).

The point process j1 =, dx, is almost-surely simple, and it is determinantal

with kernel N
En(z,y) =Y o™ (@6 (v),
i=1
which is the reproducing kernel of H = Span(¢\™, ..., %V)) C LA(E).
Examples

The quantum Hele-Shaw flow (Wiegmann '02,
Agam-Bettelheim—Wiegmann—Zabrodin '02, Hedenmalm—Makarov '04), the
random normal matrix models (Ameur—-Hedenmalm—Makarov '11, '15)
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2.2 - Orthogonal ensembles

Christoffel-Darboux kernel
When (qﬁEN)) are orthonormal polynomials, K is called the
Christoffel-Darboux kernel.

Theorem (Christoffel 1858, Darboux 1878)

If (chN)) is a sequence of unitary orthonormal polynomials on R,

N (@08 () — o8 (2)0R" ()
z—y

KN(x7y) =

» The asymptotic study of the kernel K turns into a study of the
thonormal polynomials ¢(N) and ¢><N>
orthono poly N N1
» Similar formula for orthonormal polynomials on the unit circle, but no
general formula on C or C". Instead: heavy complex analysis.
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3.1 - Bergman kernel

Consider a compact complex manifold M, and a Hermitian holomorphic line
bundle L — M with a continuous metric h such that locally h = e~%.
The Hilbert space of holomorphic sections
If 14 is a finite positive measure on M, H°(M, L*) = {s € € (M, L¥),0s = 0}
is a Hilbert space of dimension Nj, < oo for the inner product

(51, 82)bony = /M<sl(x), 52(2) rodps(z).

Bergman kernel

The Bergman kernel is the Schwartz kernel Bj, of the orthogonal projection
Py : L*(M, L*) — H°(M, L*). If {1} is an ONB of H°(M, L*),

Z’W ) @ Ye(y) Z\W (]

By is a reproducing kernel on the Hilbert space H°(M, L¥) and generalizes the
Christoffel-Darboux kernel: if M = CP' and L = ¢/(—1), H*(M, L*) is the
space of homogeneous polynomials of degree k on C.



3.1 - Bergman kernel

Asymptotic expansion of the Bergman kernel
We now assume that p is the measure associated to a Riemannian volume form
on M, and that iR” is a positive (1,1)-form (or equivalently the matrix

(2:422) is positive definite for all ).
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Asymptotic expansion of the Bergman kernel

We now assume that p is the measure associated to a Riemannian volume form
on M, and that iR” is a positive (1,1)-form (or equivalently the matrix

824 . .. ..
(ng) is positive definite for all x).

» Diagonal expansion

Theorem (Tian '90, Catlin '97, Zelditch '98)

There exist smooth functions (bj);>1 such that for any r > 1,

N

Bi(z,z) =Y bi(x)k7 + Ok,

Jj=0

» Near-diagonal expansion:
Theorem (Bleher-Schiffman—Zelditch '00, Shiffman—Zelditch '02,
Ma—Marinescu '06, Berman—-Berndtsson-Sjdstrand '08)

Let (z1,...,2n) be a system of local coordinates in a neighborhood of
xo € M. There exists a limit kernel B such that

By, (% %) = Boo(2, 2 )k + O(k* 7).
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Determinant of the Bergman kernel

Formally,
Np, n
det(Br (@i, 25))1<iien = 3 €(0) D> Q) si;(2) @55, (2a())-
cEG, i1yeyin=1j=1

» |ll-defined because the summands live in different vector spaces!



3.1 - Bergman kernel

Determinant of the Bergman kernel

Formally,
Np, n
det(Br (@i, 25))1<iien = 3 €(0) D> Q) si;(2) @55, (2a())-
cEG, i1yeyin=1j=1

» |ll-defined because the summands live in different vector spaces!

Duality and tensor products
For any finite-dimensional Hilbert space F, the following contraction is a
canonical isomorphism:

k]

L:®E®L, — E
U QU Tz > Uz, Vz) U

where v, satisfies (U7, uz) = (uz, Vz)e by the Riesz representation theorem.
We can then set

det(Bu(wi, @) icigen = »_ (0) > [[lsi;(@i)ysi i, (@))ko-

cEG, i1,eyin=1j=1
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3.2 - The point process
The random process

We consider a family (X1,...,Xn, ) of M-valued random variables with joint
distribution

1
d’P¢(x1, s 7INk) = W” det(w’i(xj))HiCﬁd/j’@Nk (1‘1, BN me)?

where (1;) ONB of H°(M, L*).
Example: S2

If we take M = S? the Riemann sphere with its round metric, such a process
corresponds in stereographic coordinates to

1 m—1v12 idze N\ dzg
(k+ 1)!|det(2’g ) e:l_[1 2(1 + |2 |2)F+2

> Relation to random matrices: distribution of the eigenvalues of AB~1,
where A, B independent Ginibre matrices (Krishnapur '09)

» Bergman kernel:

(1 =+ Zlfg)k

B(z1,22) = (k+ 1) : .
(14 [21[2)3 (1 + |22]2)%




3.3 - Universality

Theorem (TL '22)

Let M be a compact complex manifold of dimension d, L. — M be a positive
Hermitian line bundle over M, and p be the volume measure associated to a
Riemannian volume form on M. The associated point process is determinantal
with kernel By, and its n-point correlation functions admit the following scaling
limit in local coordinates around x € M :
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3.3 - Universality

Theorem (TL '22)

Let M be a compact complex manifold of dimension d, L. — M be a positive
Hermitian line bundle over M, and p be the volume measure associated to a
Riemannian volume form on M. The associated point process is determinantal
with kernel By, and its n-point correlation functions admit the following scaling
limit in local coordinates around x € M :

[NE

).

1 Ul Un \ o _
an <ﬁ77ﬁ> = det(Boo(uz,UJ)) +O(k'

Ideas of the proof
» Check that all combinatorial techniques used on orthogonal ensembles are
compatible with our definition of det(Bx(z;,x;)).

» Use the asymptotic expansion of By and a control of the fluctuations
when performing the Laplace expansion of det(By).

Note

The results holds if we replace L* by L* ® F, where F trivial bundle endowed
with a continuous metric.
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Universality is a conjecture, or a meta-theorem, stating that the scaling limit of
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> “[Universality] is widely found in the field of random matrix theory. The

universality principle loosely states that the eigenvalues statistics of
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About universality

Universality is a conjecture, or a meta-theorem, stating that the scaling limit of
the observables of many random objects has a universal form, often related to
the Gaussian distribution.

> “[Universality] is widely found in the field of random matrix theory. The
universality principle loosely states that the eigenvalues statistics of
interest will behave asymptotically as if the matrix elements were
Gaussian” [Edelman—Guionnet—Péché '16]

In our setting

» Scaling limits of correlation functions are universal due to the properties of
the Bergman kernel. In particular, relaxing the assumptions for the
Bergman kernel expansion leads to a direct generalization (see Berman
'18)

» The process with kernel B, if M is a Kahler compact surface, is the
infinite Ginibre ensemble, the asymptotic eigenvalue distribution of
complex Gaussian matrices.
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New point process

Consider a random family (X1, ..., X, ) with joint distribution
APy (21,...,aN,) = | det(i(2)))llRge "= VI ApENe (21, ),
Zn,, (¢: V)

where {1;} ONB of H°(M, L¥) for (-, ) (ké..)-
In other terms: we replace the metric k by a new metric he™" without
changing the Hilbert space.

Consequences

» The partition function now depends on V' and ¢:
Zny (¢, V) =Ni! det ((vi, ¥5) (6+v,)

=Ng! / e X VENap, (21, ... zN,).
MMk

» The process is not a DPP anymore.
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Convergence of Bergman measures
Define the Bergman measure on M by

Bi(x) = NikBk(x,x)du(x).

Theorem (Berman '09)

Let (i, ¢) be a weighted measure on M satisfying the Bernstein—Markov
condition. The Bergman measures converge weakly in the sense of currents to
the equilibrium measure pg, = (w + i(?gd))d

Heq 27 :
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Theorem (Berman '09)
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ey s ¢ _ i a9

the equilibrium measure p&, = (w + 5=00¢)".

> Expectation of the empirical measures of the unweighted process (V' = 0):
E ] = Bi(2) — péy.
» Using the scaling limit of the correlation functions and standard limit

theorems in probability, we can replace the convergence of the expectation
by a convergence in probability.



3.4 - Large deviations

Convergence of Bergman measures
Define the Bergman measure on M by

1) = - B, ().
Theorem (Berman '09)

Let (i, ¢) be a weighted measure on M satisfying the Bernstein—Markov
condition. The Bergman measures converge weakly in the sense of currents to

the equilibrium measure pg, = (w + ﬁ(?gd))d.

> Expectation of the empirical measures of the unweighted process (V' = 0):

E ] = Bi(2) — péy.

» Using the scaling limit of the correlation functions and standard limit
theorems in probability, we can replace the convergence of the expectation
by a convergence in probability.

» What about the new weighted process?
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Mabuchi functional
The equilibrium energy is the energy Eoq : €°(M) — R associated with the
equilibrium measure:
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Mabuchi functional
The equilibrium energy is the energy Eoq : €°(M) — R associated with the
equilibrium measure:

d

Gl ea@r) = [ v@ai.

t=0

The Mabuchi functional (Mabuchi '86, Donaldson '05) arises from a variational
approach of this energy:

Log(d,U / U (@)dpi ™ (2)dt = Euq(6+ U) — Eoq(d).
M

Rate function

0= sw ([ U@ - Lalo+v-0))

Ue€0 (M)



3.4 - Large deviations

Theorem (TL '22)

The empirical measures p, = Nik >, 0x, of the weighted process satisfy a large

1
deviation principle with good rate function If(iv and speed kN ~ N ; T for
any Borel set T' C .41 (M),

1 — 1
log P[fix € I'] < limg —— logP[fix € T] < — inf 72V
7, logPliix € I < Timy - log Plfix € T < inf 7o v)

— inf 75" (v) < limy
vel



3.4 - Large deviations

Theorem (TL '22)

The empirical measures p, = N%c >, 0x, of the weighted process satisfy a large

1
deviation principle with good rate function Ifciv and speed kN ~ N ; T for
any Borel set T' C .41 (M),

~ inf 5" (v) < lim,

log P[fi, € T] < mkﬁ log P[fi. € T] < — inf 72" (v)
k

vel vel

» In particular, the empirical measures converge weakly in expectation to the
unique minimizer of the rate function.



3.4 - Large deviations

Theorem (TL '22)

The empirical measures p, = N%c >, 0x, of the weighted process satisfy a large

1
deviation principle with good rate function Ifciv and speed kN ~ N ; T for
any Borel set T' C .41 (M),

~ inf 5" (v) < lim,

log P[fi, € T] < mkﬁ log P[fi. € T] < — inf 72" (v)
k

vel vel

» In particular, the empirical measures converge weakly in expectation to the
unique minimizer of the rate function.

Similar results
> Bloom-Levenberg '13 (in C%)
> Berman '18 (for the unweighted process)



3.4 - Large deviations

Elements of proof

The cumulant-generating function associated with a Borel probability measure
w1 on & is the function

Ay X €& logEle™ )] = log/ e du(z).
£

Theorem (Gartner—Ellis)

Let (ue) be an exponentially tight family of probability measures on a Banach
space . Suppose A(-) = lime_,0 €Ay, (-/€) is finite-valued, Gateaux
differentiable and lower semicontinuous in £* with respect to the weak-*
topology. Then (u.) satisfies a LDP in £ with speed % and with good rate
function A*.
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3.4 - Large deviations

Elements of proof

The cumulant-generating function associated with a Borel probability measure
w1 on & is the function

Ay X €& logEle™ )] = log/ e du(z).
£

Theorem (Gartner—Ellis)

Let (ue) be an exponentially tight family of probability measures on a Banach
space . Suppose A(-) = lime_,0 €Ay, (-/€) is finite-valued, Gateaux
differentiable and lower semicontinuous in £* with respect to the weak-*
topology. Then (u.) satisfies a LDP in £ with speed % and with good rate
function A*.

» The cumulant-generating function of the empirical measures is

As(f) = log EY, [ Zikf(Xi):|

kN

» Combine with estimates by Berman—Boucksom '10 — Mabuchi functional.



Thank You!
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