Integer Quantum Hall Effect on complex manifolds: a probabilistic view

Thibaut Lemoine

CNRS, Université de Lille

Based on: arXiv:2211.06955

Geometric and analytic aspects of the QHE - Les Diablerets, may 2023

LL Université de Lille

Summary

Warm-up and motivations
IQHE on the plane
IQHE on complex manifolds

Determinantal point processes
Definitions
Orthogonal ensembles

DPP on complex manifolds
Bergman kernel
The point process
Universality
Large deviations

Warm-up and motivations

1.1 - IQHE on the plane

The model
Consider a system of electrons in the complex plane subject to a constant perpendicular magnetic field B. If one restricts to the first N states in the lowest Landau level (LLL), the N-particle wavefunction is

$$
\Psi\left(z_{1}, \ldots, z_{N}\right)=\frac{1}{\sqrt{Z_{N}}} \prod_{i<j}\left(z_{i}-z_{j}\right) e^{-\frac{1}{4} B \sum_{i}\left|z_{i}\right|^{2}}
$$

and its squared norm is interpreted as the joint density of the particle system.

1.1 - IQHE on the plane

The model
Consider a system of electrons in the complex plane subject to a constant perpendicular magnetic field B. If one restricts to the first N states in the lowest Landau level (LLL), the N-particle wavefunction is

$$
\Psi\left(z_{1}, \ldots, z_{N}\right)=\frac{1}{\sqrt{Z_{N}}} \prod_{i<j}\left(z_{i}-z_{j}\right) e^{-\frac{1}{4} B \sum_{i}\left|z_{i}\right|^{2}}
$$

and its squared norm is interpreted as the joint density of the particle system.

Complex Gaussian random matrices

Consider a $N \times N$ matrix A whose entries are $A_{j k}=x_{j k}+i y_{j k}$, where $\left(x_{j k}, y_{j k}\right)$ are i.i.d. real random variables with distribution $\mathcal{N}(0, \sqrt{B})$. Then (Ginibre, '65) the distribution density of the eigenvalues of A is given by

$$
p\left(z_{1}, \ldots, z_{N}\right)=\frac{1}{Z_{N}} \prod_{i<j}\left|z_{i}-z_{j}\right|^{2} e^{-\frac{1}{2} B \sum_{i}\left|z_{i}\right|^{2}}=\left\|\Psi\left(z_{1}, \ldots, z_{N}\right)\right\|^{2}
$$

1.1 - IQHE on the plane

Correlation functions
Using the well-known theory of Determinantal Point Processes (DPP) developped by Macchi ('75), we know that the n-point correlation functions $(1 \leqslant n \leqslant N)$ of such process satisfy

$$
\rho_{n}\left(z_{1}, \ldots, z_{n}\right)=\operatorname{det}\left(K_{N}\left(z_{i}, z_{j}\right)\right)_{1 \leqslant i, j \leqslant n}
$$

with

$$
K_{N}(z, w)=\frac{1}{\pi} \sum_{j=0}^{N-1} \frac{1}{j!}(z \bar{w})^{j} e^{-\frac{1}{2}|z|^{2}-\frac{1}{2}|w|^{2}}
$$

1.1 - IQHE on the plane

Correlation functions
Using the well-known theory of Determinantal Point Processes (DPP) developped by Macchi ('75), we know that the n-point correlation functions $(1 \leqslant n \leqslant N)$ of such process satisfy

$$
\rho_{n}\left(z_{1}, \ldots, z_{n}\right)=\operatorname{det}\left(K_{N}\left(z_{i}, z_{j}\right)\right)_{1 \leqslant i, j \leqslant n}
$$

with

$$
K_{N}(z, w)=\frac{1}{\pi} \sum_{j=0}^{N-1} \frac{1}{j!}(z \bar{w})^{j} e^{-\frac{1}{2}|z|^{2}-\frac{1}{2}|w|^{2}}
$$

- If we let $N \rightarrow \infty$ we obtain a DPP whose correlation kernel is

$$
K_{\infty}(z, w)=\frac{1}{\pi} e^{z \bar{w}-\frac{1}{2}|z|^{2}-\frac{1}{2}|w|^{2}}
$$

called the infinite Ginibre ensemble.

1.1 - IQHE on the plane

Correlation functions

Using the well-known theory of Determinantal Point Processes (DPP) developped by Macchi ('75), we know that the n-point correlation functions $(1 \leqslant n \leqslant N)$ of such process satisfy

$$
\rho_{n}\left(z_{1}, \ldots, z_{n}\right)=\operatorname{det}\left(K_{N}\left(z_{i}, z_{j}\right)\right)_{1 \leqslant i, j \leqslant n}
$$

with

$$
K_{N}(z, w)=\frac{1}{\pi} \sum_{j=0}^{N-1} \frac{1}{j!}(z \bar{w})^{j} e^{-\frac{1}{2}|z|^{2}-\frac{1}{2}|w|^{2}}
$$

- If we let $N \rightarrow \infty$ we obtain a DPP whose correlation kernel is

$$
K_{\infty}(z, w)=\frac{1}{\pi} e^{z \bar{w}-\frac{1}{2}|z|^{2}-\frac{1}{2}|w|^{2}}
$$

called the infinite Ginibre ensemble.

- Still hot topic: various confining potentials, adiabatic transport...

1.2 - IQHE on complex manifolds

Formal setting (Douglas-Klevtsov '08)

- Space: a Kähler manifold (M, ω) of dimension d.

1.2 - IQHE on complex manifolds

Formal setting (Douglas-Klevtsov '08)

- Space: a Kähler manifold (M, ω) of dimension d.
- Magnetic field: the curvature 2-form of a holomorphic Hermitian line bundle (L, h) over M :

$$
R^{L}=-\partial \bar{\partial} \log \left\|e_{L}\right\|_{h}^{2}
$$

1.2 - IQHE on complex manifolds

Formal setting (Douglas-Klevtsov '08)

- Space: a Kähler manifold (M, ω) of dimension d.
- Magnetic field: the curvature 2-form of a holomorphic Hermitian line bundle (L, h) over M :

$$
R^{L}=-\partial \bar{\partial} \log \left\|e_{L}\right\|_{h}^{2}
$$

- Prequantization condition

$$
\omega=\frac{i}{2 \pi} R^{L}=c_{1}(L, h) .
$$

1.2 - IQHE on complex manifolds

Lowest Landau level
Replace L by $L^{k}:=L^{\otimes k}$ and h by h^{k}. The lowest Landau level is $H^{0}\left(M, L^{k}\right)$, which is a Hilbert space of finite dimension N_{k} for the L^{2} inner product

$$
\left\langle\psi_{1}, \psi_{2}\right\rangle=\int_{M} h_{x}^{k}\left(\psi_{1}(x), \psi_{2}(x)\right) \frac{\omega^{d}(x)}{d!} .
$$

Given a basis $\left\{\psi_{\ell}\right\}$, the N_{k}-particle wavefunction is the Slater determinant

$$
\Psi\left(x_{1}, \ldots, x_{N_{k}}\right)=\frac{1}{\sqrt{N!}} \operatorname{det}\left(\psi_{\ell}\left(x_{m}\right)\right) .
$$

1.2 - IQHE on complex manifolds

Lowest Landau level
Replace L by $L^{k}:=L^{\otimes k}$ and h by h^{k}. The lowest Landau level is $H^{0}\left(M, L^{k}\right)$, which is a Hilbert space of finite dimension N_{k} for the L^{2} inner product

$$
\left\langle\psi_{1}, \psi_{2}\right\rangle=\int_{M} h_{x}^{k}\left(\psi_{1}(x), \psi_{2}(x)\right) \frac{\omega^{d}(x)}{d!} .
$$

Given a basis $\left\{\psi_{\ell}\right\}$, the N_{k}-particle wavefunction is the Slater determinant

$$
\Psi\left(x_{1}, \ldots, x_{N_{k}}\right)=\frac{1}{\sqrt{N!}} \operatorname{det}\left(\psi_{\ell}\left(x_{m}\right)\right)
$$

Questions

- Does it yield a known point process?
- If so, is it a DPP?
- What happens in the regime $k \rightarrow \infty$ (= large- N limit)?

Determinantal point processes

2.1 - Definitions

Point processes

Let E be a locally compact Polish space, with its Borel σ-algebra $\mathcal{B}(E)$ and a reference Borel measure λ. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. A simple point process (PP) is equivalently a random measure $\mu: \Omega \rightarrow \mathscr{M}_{1}(E)$ defined by

$$
\mu=\sum_{i \in I} \delta_{x_{i}}
$$

or a random configuration, i.e. a locally finite random subset $X: \Omega \rightarrow \mathcal{B}(E)$.

2.1 - Definitions

Point processes

Let E be a locally compact Polish space, with its Borel σ-algebra $\mathcal{B}(E)$ and a reference Borel measure λ. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. A simple point process (PP) is equivalently a random measure $\mu: \Omega \rightarrow \mathscr{M}_{1}(E)$ defined by

$$
\mu=\sum_{i \in I} \delta_{x_{i}}
$$

or a random configuration, i.e. a locally finite random subset $X: \Omega \rightarrow \mathcal{B}(E)$. Its n-th factorial moment measure is

$$
\mu^{(n)}=\mathbb{E}\left[\sum_{\substack{1 \leqslant i_{1}, \ldots, i_{n} \leqslant \mu(E) \\ i_{1} \neq \cdots \neq i_{n}}} \delta_{X_{i_{1}}, \ldots, X_{i_{n}}}\right],
$$

and the n-point correlation function is its density ρ_{n} with respect to $\lambda^{\otimes n}$, provided that $\mu^{(n)} \ll \lambda^{\otimes n}$.

2.1 - Definitions

Point processes

Let E be a locally compact Polish space, with its Borel σ-algebra $\mathcal{B}(E)$ and a reference Borel measure λ. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. A simple point process (PP) is equivalently a random measure $\mu: \Omega \rightarrow \mathscr{M}_{1}(E)$ defined by

$$
\mu=\sum_{i \in I} \delta_{x_{i}}
$$

or a random configuration, i.e. a locally finite random subset $X: \Omega \rightarrow \mathcal{B}(E)$. Its n-th factorial moment measure is

$$
\mu^{(n)}=\mathbb{E}\left[\sum_{\substack{1 \leqslant i_{1}, \ldots, i_{n} \leqslant \mu(E) \\ i_{1} \neq \cdots \neq i_{n}}} \delta_{X_{i_{1}}, \ldots, X_{i_{n}}}\right],
$$

and the n-point correlation function is its density ρ_{n} with respect to $\lambda^{\otimes n}$, provided that $\mu^{(n)} \ll \lambda^{\otimes n}$.

Proposition (Johansson '05)

If $\left(X_{1}, \ldots, X_{N}\right)$ has joint symmetric density $p: E^{N} \rightarrow \mathbb{R}_{+}$with respect to $\lambda^{\otimes N}$, then for all $n \leqslant N$,

$$
\rho_{n}\left(x_{1}, \ldots, x_{n}\right)=\frac{N!}{(N-n)!} \int_{E^{N-n}} p\left(x_{1}, \ldots, x_{N}\right) \lambda^{\otimes N-n}\left(d x_{n+1} \cdots d x_{N}\right) .
$$

2.1 - Definitions

Determinantal point processes
A point process μ is called determinantal with kernel $K: E^{2} \rightarrow \mathbb{C}$ if for all $n \geqslant 1$, its n-point correlation function satisfies

$$
\rho_{n}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{det}\left(K\left(x_{i}, x_{j}\right)\right)_{1 \leqslant i, j \leqslant n} .
$$

2.1 - Definitions

Determinantal point processes

A point process μ is called determinantal with kernel $K: E^{2} \rightarrow \mathbb{C}$ if for all $n \geqslant 1$, its n-point correlation function satisfies

$$
\rho_{n}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{det}\left(K\left(x_{i}, x_{j}\right)\right)_{1 \leqslant i, j \leqslant n} .
$$

Examples

- Eigenvalues of classical random matrix ensembles (random matrix theory)
- Zeros of some Gaussian analytic functions (random analytic functions)
- Uniform spanning trees (random graphs)
- Schur measures on Young diagrams (representation theory \& statistical mechanics)

2.2 - Orthogonal ensembles

Orthogonal ensembles
An orthogonal ensemble is a particular case of DPP, given by a family (X_{1}, \ldots, X_{N}) of random variables on E (often \mathbb{R} or \mathbb{C}) with joint density

$$
p\left(x_{1}, \ldots, x_{N}\right)=\frac{1}{N!}\left|\operatorname{det}\left(\phi_{i}\left(x_{j}\right)\right)\right|^{2} d \lambda^{\otimes N}\left(x_{1}, \ldots, x_{N}\right),
$$

with $\left(\phi_{i}\right)$ an orthonormal family in $L^{2}(E, \lambda)$.

2.2 - Orthogonal ensembles

Orthogonal ensembles

An orthogonal ensemble is a particular case of DPP, given by a family $\left(X_{1}, \ldots, X_{N}\right)$ of random variables on E (often \mathbb{R} or \mathbb{C}) with joint density

$$
p\left(x_{1}, \ldots, x_{N}\right)=\frac{1}{N!}\left|\operatorname{det}\left(\phi_{i}\left(x_{j}\right)\right)\right|^{2} d \lambda^{\otimes N}\left(x_{1}, \ldots, x_{N}\right)
$$

with $\left(\phi_{i}\right)$ an orthonormal family in $L^{2}(E, \lambda)$.
The point process $\mu=\sum_{i} \delta_{X_{i}}$ is almost-surely simple, and it is determinantal with kernel

$$
K_{N}(x, y)=\sum_{i=1}^{N} \phi_{i}^{(N)}(x) \overline{\phi_{i}^{(N)}}(y)
$$

which is the reproducing kernel of $\mathcal{H}=\operatorname{Span}\left(\phi_{1}^{(N)}, \ldots, \phi_{N}^{(N)}\right) \subset L^{2}(E)$.

2.2 - Orthogonal ensembles

Orthogonal ensembles

An orthogonal ensemble is a particular case of DPP, given by a family (X_{1}, \ldots, X_{N}) of random variables on E (often \mathbb{R} or \mathbb{C}) with joint density

$$
p\left(x_{1}, \ldots, x_{N}\right)=\frac{1}{N!}\left|\operatorname{det}\left(\phi_{i}\left(x_{j}\right)\right)\right|^{2} d \lambda^{\otimes N}\left(x_{1}, \ldots, x_{N}\right),
$$

with (ϕ_{i}) an orthonormal family in $L^{2}(E, \lambda)$.
The point process $\mu=\sum_{i} \delta_{X_{i}}$ is almost-surely simple, and it is determinantal with kernel

$$
K_{N}(x, y)=\sum_{i=1}^{N} \phi_{i}^{(N)}(x) \overline{\phi_{i}^{(N)}}(y),
$$

which is the reproducing kernel of $\mathcal{H}=\operatorname{Span}\left(\phi_{1}^{(N)}, \ldots, \phi_{N}^{(N)}\right) \subset L^{2}(E)$.

Examples

The quantum Hele-Shaw flow (Wiegmann '02, Agam-Bettelheim-Wiegmann-Zabrodin '02, Hedenmalm-Makarov '04), the random normal matrix models (Ameur-Hedenmalm-Makarov '11, '15)
2.2 - Orthogonal ensembles

Christoffel-Darboux kernel When $\left(\phi_{i}^{(N)}\right)$ are orthonormal polynomials, K_{N} is called the Christoffel-Darboux kernel.

2.2 - Orthogonal ensembles

Christoffel-Darboux kernel When $\left(\phi_{i}^{(N)}\right)$ are orthonormal polynomials, K_{N} is called the Christoffel-Darboux kernel.

Theorem (Christoffel 1858, Darboux 1878) If $\left(\phi_{i}^{(N)}\right)$ is a sequence of unitary orthonormal polynomials on \mathbb{R},

$$
K_{N}(x, y)=\frac{\phi_{N}^{(N)}(x) \phi_{N-1}^{(N)}(y)-\phi_{N-1}^{(N)}(x) \phi_{N}^{(N)}(y)}{x-y}
$$

2.2 - Orthogonal ensembles

Christoffel-Darboux kernel
When $\left(\phi_{i}^{(N)}\right)$ are orthonormal polynomials, K_{N} is called the Christoffel-Darboux kernel.

Theorem (Christoffel 1858, Darboux 1878)
If $\left(\phi_{i}^{(N)}\right)$ is a sequence of unitary orthonormal polynomials on \mathbb{R},

$$
K_{N}(x, y)=\frac{\phi_{N}^{(N)}(x) \phi_{N-1}^{(N)}(y)-\phi_{N-1}^{(N)}(x) \phi_{N}^{(N)}(y)}{x-y}
$$

- The asymptotic study of the kernel K_{N} turns into a study of the orthonormal polynomials $\phi_{N}^{(N)}$ and $\phi_{N-1}^{(N)}$.

2.2 - Orthogonal ensembles

Christoffel-Darboux kernel
When $\left(\phi_{i}^{(N)}\right)$ are orthonormal polynomials, K_{N} is called the
Christoffel-Darboux kernel.
Theorem (Christoffel 1858, Darboux 1878)
If $\left(\phi_{i}^{(N)}\right)$ is a sequence of unitary orthonormal polynomials on \mathbb{R},

$$
K_{N}(x, y)=\frac{\phi_{N}^{(N)}(x) \phi_{N-1}^{(N)}(y)-\phi_{N-1}^{(N)}(x) \phi_{N}^{(N)}(y)}{x-y}
$$

- The asymptotic study of the kernel K_{N} turns into a study of the orthonormal polynomials $\phi_{N}^{(N)}$ and $\phi_{N-1}^{(N)}$.
- Similar formula for orthonormal polynomials on the unit circle, but no general formula on \mathbb{C} or \mathbb{C}^{n}. Instead: heavy complex analysis.

DPP on complex manifolds

Consider a compact complex manifold M, and a Hermitian holomorphic line bundle $L \rightarrow M$ with a continuous metric h such that locally $h=e^{-\phi}$.

3.1 - Bergman kernel

Consider a compact complex manifold M, and a Hermitian holomorphic line bundle $L \rightarrow M$ with a continuous metric h such that locally $h=e^{-\phi}$.
The Hilbert space of holomorphic sections
If μ is a finite positive measure on $M, H^{0}\left(M, L^{k}\right)=\left\{s \in \mathscr{C}^{\infty}\left(M, L^{k}\right), \bar{\partial} s=0\right\}$ is a Hilbert space of dimension $N_{k}<\infty$ for the inner product

$$
\left\langle s_{1}, s_{2}\right\rangle_{(k \phi, \mu)}=\int_{M}\left\langle s_{1}(x), s_{2}(x)\right\rangle_{k \phi} d \mu(x) .
$$

3.1 - Bergman kernel

Consider a compact complex manifold M, and a Hermitian holomorphic line bundle $L \rightarrow M$ with a continuous metric h such that locally $h=e^{-\phi}$.

The Hilbert space of holomorphic sections
If μ is a finite positive measure on $M, H^{0}\left(M, L^{k}\right)=\left\{s \in \mathscr{C}^{\infty}\left(M, L^{k}\right), \bar{\partial} s=0\right\}$ is a Hilbert space of dimension $N_{k}<\infty$ for the inner product

$$
\left\langle s_{1}, s_{2}\right\rangle_{(k \phi, \mu)}=\int_{M}\left\langle s_{1}(x), s_{2}(x)\right\rangle_{k \phi} d \mu(x)
$$

Bergman kernel

The Bergman kernel is the Schwartz kernel B_{k} of the orthogonal projection $P_{k}: L^{2}\left(M, L^{k}\right) \rightarrow H^{0}\left(M, L^{k}\right)$. If $\left\{\psi_{\ell}\right\}$ is an ONB of $H^{0}\left(M, L^{k}\right)$,

$$
B_{k}(x, y)=\sum_{\ell=1}^{N_{k}} \psi_{\ell}(x) \otimes \overline{\psi_{\ell}(y)}
$$

3.1 - Bergman kernel

Consider a compact complex manifold M, and a Hermitian holomorphic line bundle $L \rightarrow M$ with a continuous metric h such that locally $h=e^{-\phi}$.

The Hilbert space of holomorphic sections
If μ is a finite positive measure on $M, H^{0}\left(M, L^{k}\right)=\left\{s \in \mathscr{C}^{\infty}\left(M, L^{k}\right), \bar{\partial} s=0\right\}$ is a Hilbert space of dimension $N_{k}<\infty$ for the inner product

$$
\left\langle s_{1}, s_{2}\right\rangle_{(k \phi, \mu)}=\int_{M}\left\langle s_{1}(x), s_{2}(x)\right\rangle_{k \phi} d \mu(x)
$$

Bergman kernel

The Bergman kernel is the Schwartz kernel B_{k} of the orthogonal projection $P_{k}: L^{2}\left(M, L^{k}\right) \rightarrow H^{0}\left(M, L^{k}\right)$. If $\left\{\psi_{\ell}\right\}$ is an ONB of $H^{0}\left(M, L^{k}\right)$,

$$
B_{k}(x, y)=\sum_{\ell=1}^{N_{k}} \psi_{\ell}(x) \otimes \overline{\psi_{\ell}(y)}=\sum_{\ell=1}^{N_{k}}\left|\psi_{\ell}\right\rangle\left\langle\psi_{\ell}\right|
$$

3.1 - Bergman kernel

Consider a compact complex manifold M, and a Hermitian holomorphic line bundle $L \rightarrow M$ with a continuous metric h such that locally $h=e^{-\phi}$.

The Hilbert space of holomorphic sections
If μ is a finite positive measure on $M, H^{0}\left(M, L^{k}\right)=\left\{s \in \mathscr{C}^{\infty}\left(M, L^{k}\right), \bar{\partial} s=0\right\}$ is a Hilbert space of dimension $N_{k}<\infty$ for the inner product

$$
\left\langle s_{1}, s_{2}\right\rangle_{(k \phi, \mu)}=\int_{M}\left\langle s_{1}(x), s_{2}(x)\right\rangle_{k \phi} d \mu(x)
$$

Bergman kernel

The Bergman kernel is the Schwartz kernel B_{k} of the orthogonal projection $P_{k}: L^{2}\left(M, L^{k}\right) \rightarrow H^{0}\left(M, L^{k}\right)$. If $\left\{\psi_{\ell}\right\}$ is an ONB of $H^{0}\left(M, L^{k}\right)$,

$$
B_{k}(x, y)=\sum_{\ell=1}^{N_{k}} \psi_{\ell}(x) \otimes \overline{\psi_{\ell}(y)}=\sum_{\ell=1}^{N_{k}}\left|\psi_{\ell}\right\rangle\left\langle\psi_{\ell}\right|
$$

B_{k} is a reproducing kernel on the Hilbert space $H^{0}\left(M, L^{k}\right)$ and generalizes the Christoffel-Darboux kernel: if $M=\mathbb{C} P^{1}$ and $L=\mathscr{O}(-1), H^{0}\left(M, L^{k}\right)$ is the space of homogeneous polynomials of degree k on \mathbb{C}.

3.1 - Bergman kernel

Asymptotic expansion of the Bergman kernel
We now assume that μ is the measure associated to a Riemannian volume form on M, and that $i R^{L}$ is a positive (1,1)-form (or equivalently the matrix $\left(\frac{\partial^{2} \phi(x)}{\partial z_{i} \partial \bar{z}_{j}}\right)$ is positive definite for all $\left.x\right)$.

3.1 - Bergman kernel

Asymptotic expansion of the Bergman kernel
We now assume that μ is the measure associated to a Riemannian volume form on M, and that $i R^{L}$ is a positive (1,1)-form (or equivalently the matrix $\left(\frac{\partial^{2} \phi(x)}{\partial z_{i} \partial \bar{z}_{j}}\right)$ is positive definite for all $\left.x\right)$.

- Diagonal expansion

Theorem (Tian '90, Catlin '97, Zelditch '98)
There exist smooth functions $\left(b_{j}\right)_{j \geqslant 1}$ such that for any $r \geqslant 1$,

$$
B_{k}(x, x)=\sum_{j=0}^{r} b_{j}(x) k^{d-j}+O\left(k^{d-r-1}\right)
$$

3.1 - Bergman kernel

Asymptotic expansion of the Bergman kernel

We now assume that μ is the measure associated to a Riemannian volume form on M, and that $i R^{L}$ is a positive (1,1)-form (or equivalently the matrix $\left(\frac{\partial^{2} \phi(x)}{\partial z_{i} \partial \bar{z}_{j}}\right)$ is positive definite for all $\left.x\right)$.

- Diagonal expansion

Theorem (Tian '90, Catlin '97, Zelditch '98)
There exist smooth functions $\left(b_{j}\right)_{j \geqslant 1}$ such that for any $r \geqslant 1$,

$$
B_{k}(x, x)=\sum_{j=0}^{r} b_{j}(x) k^{d-j}+O\left(k^{d-r-1}\right)
$$

- Near-diagonal expansion:

Theorem (Bleher-Schiffman-Zelditch '00, Shiffman-Zelditch '02, Ma-Marinescu '06, Berman-Berndtsson-Sjöstrand '08) Let $\left(z_{1}, \ldots, z_{N}\right)$ be a system of local coordinates in a neighborhood of $x_{0} \in M$. There exists a limit kernel B_{∞} such that

$$
B_{k}\left(\frac{z}{\sqrt{k}}, \frac{z^{\prime}}{\sqrt{k}}\right)=B_{\infty}\left(z, z^{\prime}\right) k^{d}+O\left(k^{d-\frac{1}{2}}\right)
$$

3.1 - Bergman kernel

Determinant of the Bergman kernel
Formally,

$$
\operatorname{det}\left(B_{k}\left(x_{i}, x_{j}\right)\right)_{1 \leqslant i, j \leqslant n}=\sum_{\sigma \in \mathfrak{G}_{n}} \varepsilon(\sigma) \sum_{i_{1}, \ldots, i_{n}=1}^{N_{k}} \bigotimes_{j=1}^{n} s_{i_{j}}\left(x_{j}\right) \otimes \overline{s_{i_{j}}}\left(x_{\sigma(j)}\right) .
$$

- III-defined because the summands live in different vector spaces!

3.1 - Bergman kernel

Determinant of the Bergman kernel
Formally,

$$
\operatorname{det}\left(B_{k}\left(x_{i}, x_{j}\right)\right)_{1 \leqslant i, j \leqslant n}=\sum_{\sigma \in \mathfrak{S}_{n}} \varepsilon(\sigma) \sum_{i_{1}, \ldots, i_{n}=1}^{N_{k}} \bigotimes_{j=1}^{n} s_{i_{j}}\left(x_{j}\right) \otimes \overline{s_{i j}}\left(x_{\sigma(j)}\right) .
$$

- III-defined because the summands live in different vector spaces!

Duality and tensor products

For any finite-dimensional Hilbert space E, the following contraction is a canonical isomorphism:

$$
\left\{\begin{array}{ccc}
L_{x} \otimes E \otimes \overline{L_{x}} & \longrightarrow & E \\
u_{x} \otimes u \otimes \overline{v_{x}} & \longmapsto & \left\langle u_{x}, v_{x}\right\rangle_{\phi} u
\end{array},\right.
$$

where v_{x} satisfies $\left(\overline{v_{x}}, u_{x}\right)=\left\langle u_{x}, v_{x}\right\rangle_{\phi}$ by the Riesz representation theorem. We can then set

$$
\operatorname{det}\left(B_{k}\left(x_{i}, x_{j}\right)\right)_{1 \leqslant i, j \leqslant n}=\sum_{\sigma \in \mathfrak{G}_{n}} \varepsilon(\sigma) \sum_{i_{1}, \ldots, i_{n}=1}^{N_{k}} \prod_{j=1}^{n}\left\langle s_{i_{j}}\left(x_{j}\right), s_{i_{\sigma-1}(j)}\left(x_{j}\right)\right\rangle_{k \phi} .
$$

3.2 - The point process

The random process
We consider a family ($X_{1}, \ldots, X_{N_{k}}$) of M-valued random variables with joint distribution

$$
d \mathcal{P}_{\phi}\left(x_{1}, \ldots, x_{N_{k}}\right)=\frac{1}{N_{k}!}\left\|\operatorname{det}\left(\psi_{i}\left(x_{j}\right)\right)\right\|_{k \phi}^{2} d \mu^{\otimes N_{k}}\left(x_{1}, \ldots, x_{N_{k}}\right),
$$

where $\left(\psi_{i}\right)$ ONB of $H^{0}\left(M, L^{k}\right)$.

3.2 - The point process

The random process
We consider a family ($X_{1}, \ldots, X_{N_{k}}$) of M-valued random variables with joint distribution

$$
d \mathcal{P}_{\phi}\left(x_{1}, \ldots, x_{N_{k}}\right)=\frac{1}{N_{k}!}\left\|\operatorname{det}\left(\psi_{i}\left(x_{j}\right)\right)\right\|_{k \phi}^{2} d \mu^{\otimes N_{k}}\left(x_{1}, \ldots, x_{N_{k}}\right),
$$

where $\left(\psi_{i}\right)$ ONB of $H^{0}\left(M, L^{k}\right)$.
Example: S^{2}
If we take $M=S^{2}$ the Riemann sphere with its round metric, such a process corresponds in stereographic coordinates to

$$
\frac{1}{(k+1)!}\left|\operatorname{det}\left(z_{\ell}^{m-1}\right)\right|^{2} \prod_{\ell=1}^{k+1} \frac{i d z_{\ell} \wedge d \overline{\ell_{\ell}}}{2\left(1+\left|z_{i}\right|^{2}\right)^{k+2}}
$$

3.2 - The point process

The random process

We consider a family ($X_{1}, \ldots, X_{N_{k}}$) of M-valued random variables with joint distribution

$$
d \mathcal{P}_{\phi}\left(x_{1}, \ldots, x_{N_{k}}\right)=\frac{1}{N_{k}!}\left\|\operatorname{det}\left(\psi_{i}\left(x_{j}\right)\right)\right\|_{k \phi}^{2} d \mu^{\otimes N_{k}}\left(x_{1}, \ldots, x_{N_{k}}\right),
$$

where $\left(\psi_{i}\right)$ ONB of $H^{0}\left(M, L^{k}\right)$.

Example: S^{2}

If we take $M=S^{2}$ the Riemann sphere with its round metric, such a process corresponds in stereographic coordinates to

$$
\frac{1}{(k+1)!}\left|\operatorname{det}\left(z_{\ell}^{m-1}\right)\right|^{2} \prod_{\ell=1}^{k+1} \frac{i d z_{\ell} \wedge d \overline{z \ell}}{2\left(1+\left|z_{i}\right|^{2}\right)^{k+2}}
$$

- Relation to random matrices: distribution of the eigenvalues of $A B^{-1}$, where A, B independent Ginibre matrices (Krishnapur '09)

3.2 - The point process

The random process

We consider a family ($X_{1}, \ldots, X_{N_{k}}$) of M-valued random variables with joint distribution

$$
d \mathcal{P}_{\phi}\left(x_{1}, \ldots, x_{N_{k}}\right)=\frac{1}{N_{k}!}\left\|\operatorname{det}\left(\psi_{i}\left(x_{j}\right)\right)\right\|_{k \phi}^{2} d \mu^{\otimes N_{k}}\left(x_{1}, \ldots, x_{N_{k}}\right),
$$

where $\left(\psi_{i}\right)$ ONB of $H^{0}\left(M, L^{k}\right)$.

Example: S^{2}

If we take $M=S^{2}$ the Riemann sphere with its round metric, such a process corresponds in stereographic coordinates to

$$
\frac{1}{(k+1)!}\left|\operatorname{det}\left(z_{\ell}^{m-1}\right)\right|^{2} \prod_{\ell=1}^{k+1} \frac{i d z_{\ell} \wedge d \overline{\ell_{\ell}}}{2\left(1+\left|z_{i}\right|^{2}\right)^{k+2}}
$$

- Relation to random matrices: distribution of the eigenvalues of $A B^{-1}$, where A, B independent Ginibre matrices (Krishnapur '09)
- Bergman kernel:

$$
B_{k}\left(z_{1}, z_{2}\right)=(k+1) \frac{\left(1+z_{1} \bar{z}_{2}\right)^{k}}{\left(1+\left|z_{1}\right|^{2}\right)^{\frac{k}{2}}\left(1+\left|z_{2}\right|^{2}\right)^{\frac{k}{2}}}
$$

3.3 - Universality

Theorem (TL '22)

Let M be a compact complex manifold of dimension $d, L \rightarrow M$ be a positive Hermitian line bundle over M, and μ be the volume measure associated to a Riemannian volume form on M. The associated point process is determinantal with kernel B_{k}, and its n-point correlation functions admit the following scaling limit in local coordinates around $x \in M$:

$$
\frac{1}{k^{n d}} \rho_{n}\left(\frac{u_{1}}{\sqrt{k}}, \ldots, \frac{u_{n}}{\sqrt{k}}\right)=\operatorname{det}\left(B_{\infty}\left(u_{i}, u_{j}\right)\right)+O\left(k^{-\frac{1}{2}}\right) .
$$

3.3 - Universality

Theorem (TL '22)

Let M be a compact complex manifold of dimension $d, L \rightarrow M$ be a positive Hermitian line bundle over M, and μ be the volume measure associated to a Riemannian volume form on M. The associated point process is determinantal with kernel B_{k}, and its n-point correlation functions admit the following scaling limit in local coordinates around $x \in M$:

$$
\frac{1}{k^{n d}} \rho_{n}\left(\frac{u_{1}}{\sqrt{k}}, \ldots, \frac{u_{n}}{\sqrt{k}}\right)=\operatorname{det}\left(B_{\infty}\left(u_{i}, u_{j}\right)\right)+O\left(k^{-\frac{1}{2}}\right) .
$$

Ideas of the proof

- Check that all combinatorial techniques used on orthogonal ensembles are compatible with our definition of $\operatorname{det}\left(B_{k}\left(x_{i}, x_{j}\right)\right)$.

3.3 - Universality

Theorem (TL '22)

Let M be a compact complex manifold of dimension $d, L \rightarrow M$ be a positive Hermitian line bundle over M, and μ be the volume measure associated to a Riemannian volume form on M. The associated point process is determinantal with kernel B_{k}, and its n-point correlation functions admit the following scaling limit in local coordinates around $x \in M$:

$$
\frac{1}{k^{n d}} \rho_{n}\left(\frac{u_{1}}{\sqrt{k}}, \ldots, \frac{u_{n}}{\sqrt{k}}\right)=\operatorname{det}\left(B_{\infty}\left(u_{i}, u_{j}\right)\right)+O\left(k^{-\frac{1}{2}}\right)
$$

Ideas of the proof

- Check that all combinatorial techniques used on orthogonal ensembles are compatible with our definition of $\operatorname{det}\left(B_{k}\left(x_{i}, x_{j}\right)\right)$.
- Use the asymptotic expansion of B_{k} and a control of the fluctuations when performing the Laplace expansion of $\operatorname{det}\left(B_{k}\right)$.

3.3 - Universality

Theorem (TL '22)

Let M be a compact complex manifold of dimension $d, L \rightarrow M$ be a positive Hermitian line bundle over M, and μ be the volume measure associated to a Riemannian volume form on M. The associated point process is determinantal with kernel B_{k}, and its n-point correlation functions admit the following scaling limit in local coordinates around $x \in M$:

$$
\frac{1}{k^{n d}} \rho_{n}\left(\frac{u_{1}}{\sqrt{k}}, \ldots, \frac{u_{n}}{\sqrt{k}}\right)=\operatorname{det}\left(B_{\infty}\left(u_{i}, u_{j}\right)\right)+O\left(k^{-\frac{1}{2}}\right)
$$

Ideas of the proof

- Check that all combinatorial techniques used on orthogonal ensembles are compatible with our definition of $\operatorname{det}\left(B_{k}\left(x_{i}, x_{j}\right)\right)$.
- Use the asymptotic expansion of B_{k} and a control of the fluctuations when performing the Laplace expansion of $\operatorname{det}\left(B_{k}\right)$.

Note

The results holds if we replace L^{k} by $L^{k} \otimes F$, where F trivial bundle endowed with a continuous metric.

3.3 - Universality

About universality

Universality is a conjecture, or a meta-theorem, stating that the scaling limit of the observables of many random objects has a universal form, often related to the Gaussian distribution.

- "[Universality] is widely found in the field of random matrix theory. The universality principle loosely states that the eigenvalues statistics of interest will behave asymptotically as if the matrix elements were Gaussian" [Edelman-Guionnet-Péché '16]

3.3 - Universality

About universality

Universality is a conjecture, or a meta-theorem, stating that the scaling limit of the observables of many random objects has a universal form, often related to the Gaussian distribution.

- "[Universality] is widely found in the field of random matrix theory. The universality principle loosely states that the eigenvalues statistics of interest will behave asymptotically as if the matrix elements were Gaussian" [Edelman-Guionnet-Péché '16]

In our setting

- Scaling limits of correlation functions are universal due to the properties of the Bergman kernel. In particular, relaxing the assumptions for the Bergman kernel expansion leads to a direct generalization (see Berman '18)

3.3 - Universality

About universality

Universality is a conjecture, or a meta-theorem, stating that the scaling limit of the observables of many random objects has a universal form, often related to the Gaussian distribution.

- "[Universality] is widely found in the field of random matrix theory. The universality principle loosely states that the eigenvalues statistics of interest will behave asymptotically as if the matrix elements were Gaussian" [Edelman-Guionnet-Péché '16]

In our setting

- Scaling limits of correlation functions are universal due to the properties of the Bergman kernel. In particular, relaxing the assumptions for the Bergman kernel expansion leads to a direct generalization (see Berman '18)
- The process with kernel B_{∞}, if M is a Kähler compact surface, is the infinite Ginibre ensemble, the asymptotic eigenvalue distribution of complex Gaussian matrices.

3.4 - Large deviations

New point process
Consider a random family ($X_{1}, \ldots, X_{N_{k}}$) with joint distribution
$d \mathcal{P}_{\phi}^{V}\left(x_{1}, \ldots, x_{N_{k}}\right)=\frac{1}{Z_{N_{k}}(\phi, V)}\left\|\operatorname{det}\left(\psi_{i}\left(z_{j}\right)\right)\right\|_{k \phi}^{2} e^{-k \sum_{i} V\left(x_{i}\right)} d \mu^{\otimes N_{k}}\left(x_{1}, \ldots, x_{N_{k}}\right)$,
where $\left\{\psi_{i}\right\}$ ONB of $H^{0}\left(M, L^{k}\right)$ for $\langle\cdot, \cdot\rangle_{(k \phi, \mu)}$.

In other terms: we replace the metric h by a new metric $h e^{-V}$ without changing the Hilbert space.

3.4 - Large deviations

New point process
Consider a random family ($X_{1}, \ldots, X_{N_{k}}$) with joint distribution
$d \mathcal{P}_{\phi}^{V}\left(x_{1}, \ldots, x_{N_{k}}\right)=\frac{1}{Z_{N_{k}}(\phi, V)}\left\|\operatorname{det}\left(\psi_{i}\left(z_{j}\right)\right)\right\|_{k \phi}^{2} e^{-k \sum_{i} V\left(x_{i}\right)} d \mu^{\otimes N_{k}}\left(x_{1}, \ldots, x_{N_{k}}\right)$,
where $\left\{\psi_{i}\right\}$ ONB of $H^{0}\left(M, L^{k}\right)$ for $\langle\cdot, \cdot\rangle_{(k \phi, \mu)}$.

In other terms: we replace the metric h by a new metric $h e^{-V}$ without changing the Hilbert space.

Consequences

- The partition function now depends on V and ϕ :

$$
\begin{aligned}
Z_{N_{k}}(\phi, V) & =N_{k}!\operatorname{det}\left(\left\langle\psi_{i}, \psi_{j}\right\rangle_{(\phi+V, \mu)}\right. \\
& =N_{k}!\int_{M^{N_{k}}} e^{-\sum_{i} V\left(x_{i}\right)} d \mathcal{P}_{\phi}\left(x_{1}, \ldots, x_{N_{k}}\right) .
\end{aligned}
$$

- The process is not a DPP anymore.

3.4 - Large deviations

Convergence of Bergman measures
Define the Bergman measure on M by

$$
\beta_{k}(x)=\frac{1}{N_{k}} B_{k}(x, x) d \mu(x)
$$

Theorem (Berman '09)
Let (μ, ϕ) be a weighted measure on M satisfying the Bernstein-Markov condition. The Bergman measures converge weakly in the sense of currents to the equilibrium measure $\mu_{\mathrm{eq}}^{\phi}=\left(\omega+\frac{i}{2 \pi} \partial \bar{\partial} \phi\right)^{d}$.

3.4 - Large deviations

Convergence of Bergman measures
Define the Bergman measure on M by

$$
\beta_{k}(x)=\frac{1}{N_{k}} B_{k}(x, x) d \mu(x)
$$

Theorem (Berman '09)
Let (μ, ϕ) be a weighted measure on M satisfying the Bernstein-Markov condition. The Bergman measures converge weakly in the sense of currents to the equilibrium measure $\mu_{\mathrm{eq}}^{\phi}=\left(\omega+\frac{i}{2 \pi} \partial \bar{\partial} \phi\right)^{d}$.

- Expectation of the empirical measures of the unweighted process $(V=0)$:

$$
\mathbb{E}\left[\hat{\mu}_{k}\right]=\beta_{k}(x) \rightarrow \mu_{\mathrm{eq}}^{\phi} .
$$

3.4 - Large deviations

Convergence of Bergman measures

Define the Bergman measure on M by

$$
\beta_{k}(x)=\frac{1}{N_{k}} B_{k}(x, x) d \mu(x)
$$

Theorem (Berman '09)

Let (μ, ϕ) be a weighted measure on M satisfying the Bernstein-Markov condition. The Bergman measures converge weakly in the sense of currents to the equilibrium measure $\mu_{\mathrm{eq}}^{\phi}=\left(\omega+\frac{i}{2 \pi} \partial \bar{\partial} \phi\right)^{d}$.

- Expectation of the empirical measures of the unweighted process $(V=0)$:

$$
\mathbb{E}\left[\hat{\mu}_{k}\right]=\beta_{k}(x) \rightarrow \mu_{\mathrm{eq}}^{\phi} .
$$

- Using the scaling limit of the correlation functions and standard limit theorems in probability, we can replace the convergence of the expectation by a convergence in probability.

3.4 - Large deviations

Convergence of Bergman measures

Define the Bergman measure on M by

$$
\beta_{k}(x)=\frac{1}{N_{k}} B_{k}(x, x) d \mu(x)
$$

Theorem (Berman '09)

Let (μ, ϕ) be a weighted measure on M satisfying the Bernstein-Markov condition. The Bergman measures converge weakly in the sense of currents to the equilibrium measure $\mu_{\mathrm{eq}}^{\phi}=\left(\omega+\frac{i}{2 \pi} \partial \bar{\partial} \phi\right)^{d}$.

- Expectation of the empirical measures of the unweighted process $(V=0)$:

$$
\mathbb{E}\left[\hat{\mu}_{k}\right]=\beta_{k}(x) \rightarrow \mu_{\mathrm{eq}}^{\phi} .
$$

- Using the scaling limit of the correlation functions and standard limit theorems in probability, we can replace the convergence of the expectation by a convergence in probability.
- What about the new weighted process?

3.4 - Large deviations

Mabuchi functional

The equilibrium energy is the energy $\mathcal{E}_{\text {eq }}: \mathscr{C}^{0}(M) \rightarrow \mathbb{R}$ associated with the equilibrium measure:

$$
\left.\frac{d}{d t}\right|_{t=0} \mathcal{E}_{\mathrm{eq}}(\phi+t U)=\int_{M} U(x) d \mu_{\mathrm{eq}}^{\phi}(x)
$$

The Mabuchi functional (Mabuchi '86, Donaldson '05) arises from a variational approach of this energy:

$$
\mathcal{L}_{\mathrm{eq}}(\phi, U)=\int_{0}^{1} \int_{M} U(x) d \mu_{\mathrm{eq}}^{\phi+t U}(x) d t=\mathcal{E}_{\mathrm{eq}}(\phi+U)-\mathcal{E}_{\mathrm{eq}}(\phi)
$$

3.4 - Large deviations

Mabuchi functional

The equilibrium energy is the energy $\mathcal{E}_{\text {eq }}: \mathscr{C}^{0}(M) \rightarrow \mathbb{R}$ associated with the equilibrium measure:

$$
\left.\frac{d}{d t}\right|_{t=0} \mathcal{E}_{\mathrm{eq}}(\phi+t U)=\int_{M} U(x) d \mu_{\mathrm{eq}}^{\phi}(x) .
$$

The Mabuchi functional (Mabuchi '86, Donaldson '05) arises from a variational approach of this energy:

$$
\mathcal{L}_{\mathrm{eq}}(\phi, U)=\int_{0}^{1} \int_{M} U(x) d \mu_{\mathrm{eq}}^{\phi+t U}(x) d t=\mathcal{E}_{\mathrm{eq}}(\phi+U)-\mathcal{E}_{\mathrm{eq}}(\phi) .
$$

Rate function

$$
\mathcal{I}_{\mathrm{eq}}^{\phi, V}(\nu)=\sup _{U \in \mathscr{C} 0}(M)=\left(\int_{M} U(x) d \nu(x)-\mathcal{L}_{\mathrm{eq}}(\phi+V,-U)\right)
$$

3.4 - Large deviations

Theorem (TL '22)
The empirical measures $\mu_{k}=\frac{1}{N_{k}} \sum_{i} \delta_{X_{i}}$ of the weighted process satisfy a large deviation principle with good rate function $\mathcal{I}_{\text {eq }}^{\phi, V}$ and speed $k N_{k} \sim N_{k}^{1+\frac{1}{d}}$: for any Borel set $\Gamma \subset \mathscr{M}_{1}(M)$,
$-\inf _{\nu \in \Gamma} \mathcal{I}_{\mathrm{eq}}^{\phi, V}(\nu) \leqslant \underline{\lim }_{k} \frac{1}{k N_{k}} \log \mathbb{P}\left[\widehat{\mu}_{k} \in \Gamma\right] \leqslant \overline{\lim }_{k} \frac{1}{k N_{k}} \log \mathbb{P}\left[\widehat{\mu}_{k} \in \Gamma\right] \leqslant-\inf _{\nu \in \bar{\Gamma}} \mathcal{I}_{\mathrm{eq}}^{\phi, V}(\nu)$

3.4 - Large deviations

Theorem (TL '22)
The empirical measures $\mu_{k}=\frac{1}{N_{k}} \sum_{i} \delta_{X_{i}}$ of the weighted process satisfy a large deviation principle with good rate function $\mathcal{I}_{\text {eq }}^{\phi, V}$ and speed $k N_{k} \sim N_{k}^{1+\frac{1}{d}}$: for any Borel set $\Gamma \subset \mathscr{M}_{1}(M)$,
$-\inf _{\nu \in \Gamma} \mathcal{I}_{\mathrm{eq}}^{\phi, V}(\nu) \leqslant \underline{\lim }_{k} \frac{1}{k N_{k}} \log \mathbb{P}\left[\widehat{\mu}_{k} \in \Gamma\right] \leqslant \overline{\lim }_{k} \frac{1}{k N_{k}} \log \mathbb{P}\left[\widehat{\mu}_{k} \in \Gamma\right] \leqslant-\inf _{\nu \in \bar{\Gamma}} \mathcal{I}_{\mathrm{eq}}^{\phi, V}(\nu)$

- In particular, the empirical measures converge weakly in expectation to the unique minimizer of the rate function.

3.4 - Large deviations

Theorem (TL '22)

The empirical measures $\mu_{k}=\frac{1}{N_{k}} \sum_{i} \delta_{X_{i}}$ of the weighted process satisfy a large deviation principle with good rate function $\mathcal{I}_{\text {eq }}^{\phi, V}$ and speed $k N_{k} \sim N_{k}^{1+\frac{1}{d}}:$ for any Borel set $\Gamma \subset \mathscr{M}_{1}(M)$,
$-\inf _{\nu \in \Gamma} \mathcal{I}_{\mathrm{eq}}^{\phi, V}(\nu) \leqslant \underline{\lim }_{k} \frac{1}{k N_{k}} \log \mathbb{P}\left[\widehat{\mu}_{k} \in \Gamma\right] \leqslant \overline{\lim }_{k} \frac{1}{k N_{k}} \log \mathbb{P}\left[\widehat{\mu}_{k} \in \Gamma\right] \leqslant-\inf _{\nu \in \bar{\Gamma}} \mathcal{I}_{\mathrm{eq}}^{\phi, V}(\nu)$

- In particular, the empirical measures converge weakly in expectation to the unique minimizer of the rate function.

Similar results

- Bloom-Levenberg '13 (in \mathbb{C}^{d})
- Berman '18 (for the unweighted process)

3.4 - Large deviations

Elements of proof

The cumulant-generating function associated with a Borel probability measure μ on \mathcal{E} is the function

$$
\Lambda_{\mu}: \lambda \in \mathcal{E}^{*} \mapsto \log \mathbb{E}\left[e^{\left\langle\lambda, X_{1}\right\rangle}\right]=\log \int_{\mathcal{E}} e^{\langle\lambda, x\rangle} d \mu(x)
$$

Theorem (Gärtner-Ellis)

Let $\left(\mu_{\epsilon}\right)$ be an exponentially tight family of probability measures on a Banach space \mathcal{E}. Suppose $\Lambda(\cdot)=\lim _{\epsilon \rightarrow 0} \epsilon \Lambda_{\mu_{\epsilon}}(\cdot / \epsilon)$ is finite-valued, Gateaux differentiable and lower semicontinuous in \mathcal{E}^{*} with respect to the weak-* topology. Then $\left(\mu_{\epsilon}\right)$ satisfies a LDP in \mathcal{E} with speed $\frac{1}{\epsilon}$ and with good rate function Λ^{*}.

3.4 - Large deviations

Elements of proof

The cumulant-generating function associated with a Borel probability measure μ on \mathcal{E} is the function

$$
\Lambda_{\mu}: \lambda \in \mathcal{E}^{*} \mapsto \log \mathbb{E}\left[e^{\left\langle\lambda, X_{1}\right\rangle}\right]=\log \int_{\mathcal{E}} e^{\langle\lambda, x\rangle} d \mu(x)
$$

Theorem (Gärtner-Ellis)

Let $\left(\mu_{\epsilon}\right)$ be an exponentially tight family of probability measures on a Banach space \mathcal{E}. Suppose $\Lambda(\cdot)=\lim _{\epsilon \rightarrow 0} \epsilon \Lambda_{\mu_{\epsilon}}(\cdot / \epsilon)$ is finite-valued, Gateaux differentiable and lower semicontinuous in \mathcal{E}^{*} with respect to the weak-* topology. Then $\left(\mu_{\epsilon}\right)$ satisfies a LDP in \mathcal{E} with speed $\frac{1}{\epsilon}$ and with good rate function Λ^{*}.

- The cumulant-generating function of the empirical measures is

$$
\Lambda_{k \phi}^{V}(f)=\frac{1}{k N_{k}} \log \mathbb{E}_{k \phi}^{V}\left[e^{\sum_{i} k f\left(X_{i}\right)}\right]
$$

3.4 - Large deviations

Elements of proof

The cumulant-generating function associated with a Borel probability measure μ on \mathcal{E} is the function

$$
\Lambda_{\mu}: \lambda \in \mathcal{E}^{*} \mapsto \log \mathbb{E}\left[e^{\left\langle\lambda, X_{1}\right\rangle}\right]=\log \int_{\mathcal{E}} e^{\langle\lambda, x\rangle} d \mu(x)
$$

Theorem (Gärtner-Ellis)

Let $\left(\mu_{\epsilon}\right)$ be an exponentially tight family of probability measures on a Banach space \mathcal{E}. Suppose $\Lambda(\cdot)=\lim _{\epsilon \rightarrow 0} \epsilon \Lambda_{\mu_{\epsilon}}(\cdot / \epsilon)$ is finite-valued, Gateaux differentiable and lower semicontinuous in \mathcal{E}^{*} with respect to the weak-* topology. Then $\left(\mu_{\epsilon}\right)$ satisfies a LDP in \mathcal{E} with speed $\frac{1}{\epsilon}$ and with good rate function Λ^{*}.

- The cumulant-generating function of the empirical measures is

$$
\Lambda_{k \phi}^{V}(f)=\frac{1}{k N_{k}} \log \mathbb{E}_{k \phi}^{V}\left[e^{\sum_{i} k f\left(X_{i}\right)}\right]
$$

- Combine with estimates by Berman-Boucksom '10 \rightarrow Mabuchi functional.

Thank You!

