Marie-Catherine Vozenin,

Marie-catherine.vozenin@chuv.ch

Normal tissue and tumor response to FLASH-RT Biological mechanisms

Disclosures

Collaborative Research project with PSI-Varian (CH) Advisory Board IBA Research project ROCHE pharma Learning objectives

- Become familiar with the research strategies and the preclinical models
- Compare tumor response to CONV and FLASH-RT
- Identify the clinically relevant issues Identify the relevant biological mechanisms
- Identify the needs and limitations

Enhancing the therapeutic ratio: a balance between tumour control and toxicity

What are the tools to improve the therapeutic ratio

Biology

Technology

Copyright @ 2009 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Fractionation and Enhanced precision

1930-1970

Target volume

2D planning

3D Conformal

High Precision

6

FLASH radiotherapy

Irradiation at ultra high dose rate

Very fast delivery of the dose Shift from minute of exposure to milli- and even micro-second

eRT6 Oriatron PBM/Alcen Electron beam, 5.5 MeV energy Pulsed beam

THE FLASH EFFECT is a biological effect

Normal tissue sparing

FLASH-RT does not induce Normal tissue toxicity When CONV-RT does

Electron

Chabi et al. **IJROBP**2020 Montay-Gruel et al. **Rad Res**, 2020 Allen et al. **Rad Res**, 2020 Alaghban et al. **Cancers**, 2020 Bourhis J et al. **Radiother Oncol.** 2019. Jorge PG et al. **Radiother Oncol.** 2019 Oct. Montay-Gruel P et al. **Proc Natl Acad Sci U S A**. 2019. Vozenin et al. **Clin Can Res**, 2019. Montay-Gruel P et al. **Radiother&Oncol.**, 2017. Jaccard M et al. **Med Phys**, 2018. Favaudon V et al. **Sci Transl Med**. 2014.

X-ray-synchrotron

Montay-Gruel P et al. Radiother Oncol. 2018.

Electron

Ruan et al, **IJROBP**, 2021 Beyreuther et al., **Radiother Oncol**, 2021 Levy et al, **Sc Rep**, 2020 Soto et al. **Rad Res**, 2020. Fouillade C et al. **CCR**, 2019. Simmons et al. **Radiother Oncol**. 2019. Loo B et al. **IJROBP**, 2017, abst. Hendry et al. **Rad Res**, 1982.

Proton

Kim et al, **Cancers**, 2021 (BI) Evans et al, **IJPT**, 2021 Cunningham et al., **Cancers**, 2021 (PBS) Zhang et al. **Rad Res**, 2020. Diffenderfer et al. **IJROBP**, 2020. Girdhani et al. **Can Res**, 2019, abst.

X -ray synchrotron

Smyth et al. Sci Rep, 2018. Proton Beyreuther et al. Radiother Oncol. 2019. Electron Venkatesulu at al. Sc Rep, 2019.

And FLASH-RT is equally able to eradicate tumors compared to CONV-RT

Electron

Chabi et al. **IJROBP**, 2020. Montay-Gruel P et al. **CCR**, 2020. Bourhis J et al. **Radiother Oncol.** 2019. Jorge PG et al. **Radiother Oncol.** 2019. Favaudon V et al. **Sci Transl Med**. 2014.

Electron

Kim et al. **IJROBP**, 2020 Levy et al, **Sc Rep**, 2020

Proton

Kim et al, **Cancers**, 2021 (BI) Velalopoulou et al, **Can Res**, **2021** Cunningham et al., **Cancers**, **2021** Diffenderfer et al. **IJROBP**, 2020. Girdhani et al. **Can Res**, 2019, abst.

FLASH-RT enhances the therapeutic window

Dose →

Physica Medica 80 (2020) 134–150

Original paper

The European Joint Research Project UHDpulse – Metrology for advanced radiotherapy using particle beams with ultra-high pulse dose rates

Andreas Schüller^{6,*}, Sophie Heinrich⁶, Charles Fouillade⁹, Anna Subiel⁷, Ludovic De Marzi^{8,4}, Francesco Romano^{6,*}, Peter Pietr¹, Maria Trachsel¹, Celeste Fleta⁸, Rafael Kranzer^{1,0,1}, Marco Caresana¹, Samuel Salvador¹, Simon Busoid¹, Andreas Schönfeld¹, Malcolm McEwen¹, Faustino Gomez¹, Jaroslav Solc⁹, Claude Ballat⁴, Vladimir Linhart¹, Jan Jakubek¹, Jörg Pawelle⁴, ¹Marco Borgise¹, Rafi-Peter Kapsch¹, ⁴Admin Kuyiat¹, ¹Albetro Boso⁵, Veronika Olsovcova³, ¹Christian Kottler¹, Daniela Poppinga¹, ¹Va Ambrozova⁴, Claus-Stefan Schmitzer¹, ⁵Servine Rossonmer⁶, ⁴Mait-Catherine Vozenin⁶

- Field S, Bewley D. Effects of dose-rate on the radiation response of rat skin. *International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine.* 1974;26(3):259-267.
- Inada T, Nishio H, Amino S, Abe K, Saito K. High dose-rate dependence of early skin reaction in mouse. International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine. 1980;38(2):139-145.
- Hendry JH, Moore JV, Hodgson BW, Keene JP. The constant low oxygen concentration in all the target cells for mouse tail radionecrosis [published online ahead of print 1982/10/01]. *Radiat Res.* 1982;92(1):172-181.

Favaudon V, Caplier L, Monceau V, et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. *Science translational medicine.* 2014;6(245):245ra293-245ra293.

Tumor and Normal tissue response should be investigated in parallel and *in vivo* models should be used

Normal tissue response

Differential DNA damage in vivo

NI MRC5 MRC5 IMR90 IMR90 A549 A549 CONV FLASH CONV FLASH CONV FLASH

Intrapulse DR > 10⁵ Gy/s

Levy et al. 2020

"Normal cells" in tumor-LLC

D

Intrapulse DR > 10⁵ Gy/s Kim et al. 2020

Differential cell death in vivo

Apoptosis

Differential effect on Stem cells and progenitors in vivo

Intrapulse DR > 10⁵ Gy/s

Chabi et al. 2020

FLASH

NI

CONV FLASH

Differential effect on the vascular system

+ work on the **tumor** vasculature, Kim et al. 2021

Differential inflammatory response

Montay-Gruel et al. 2019

TGF-B1

O Control

30

20

IL-6 (pg/ml)

Velalopoulou et al. 2021

Organ outcome and function

Pierre Montay-Gruel, PhD

Tumor response

With Electron beam- from simple SubQ model to orthotopic and GEMMs

SubQ breast and H&N cancer (immunocompromised mice) 60 Gy/s (2Fx HBCx and 1 Fx for HEp)

SubQ GBM models (immunocompromised mice)

Bourhis J et al. Radiother Oncol. 2019. Jorge PG et al. Radiother Oncol. 2019.

SubQ LLC model (immunocompotent mice)

Kim et al. IJROBP, 2021

Orthotopic ovarian cancer (ID8): 216 Gy/s, 2 Gy/pulse

Orthotopic GBM

Montay-Gruel P et al. CCR, 2020.

Levy et al, Sc Rep, 2020 In immunocompetent mice

Transgenic GBM

GFAP-HRas^{V12}; GFAP-CRE; p53^{flox/wt} 8.3x10⁵ Gy/s

Limoli et al., Book review: *The Modern Technology of Radiation Oncology—a Compendium for Medical Physicists and Radiation Oncologists (Volume 4)* edited by Jacob Van Dyk **In immunocompetent mice**

With Proton beam- double scattered beam

Diffenderfer et al. IJROBP, 2020

Velalopoulou et al. Cancer Res, 2021

With Proton beam- pencil beam scanning

SubQ MOC cells immunologically cold vs hot

62 Gy/s average and 207 Gy/s in the spot

FLASH-RT can be fractionated

CLINICAL CANCER RESEARCH | TRANSLATIONAL CANCER MECHANISMS AND THERAPY

Hypofractionated FLASH-RT as an Effective Treatment against Glioblastoma that Reduces Neurocognitive Side Effects in Mice 🔤

Pierre Montay-Gruel¹, Munjal M. Acharya², Patrik Gonçalves Jorge^{1,3}, Benoit Petit¹, Ioannis G. Petridis¹, Philippe Fuchs¹, Ron Leavitt¹, Kristoffer Petersson^{1,3}, Maude Gondre^{1,3}, Jonathan Ollivier¹, Raphael Moeckli³, François Bochud³, Claude Bailat³, Jean Bourhis¹, Jean-François Germond³, Charles L. Limoli², and Marie-Catherine Vozenin¹

CLINICAL CANCER RESEARCH | CCR TRANSLATIONS

News FLASH-RT: To Treat GBM and Spare Cognition, Fraction Size and Total Dose Matter

Christina C. Huang¹ and Marc S. Mendonca^{1,2}

Human Tumors

All tumors are not equally sensitive to FLASH-RT

Human T-ALL with different susceptibility profile to FLASH-RT

Rv in Kacem et al., IJRB, 2021

At the biology level

What is known about the FLASH effect

FLASH-RT spares normal tissue and is equally able to eradicate tumors compared to CONV-RT Using TGD assay (no TCD50 assay has been published)

- Using electron, photon and proton beams
 - In pre-clinical mouse model
 - Small volume
- Single dose and hypofractionated regimen

What is currently being explored

- Modality of cell death
 - Immune component
 - Metabolism
 - DNA repair
 - Cell signaling

What remains to be understood

Thinking outside the box ... New radiobiology

FLASH could be an unique tool to explore the fundamental difference between normal tissues and tumors

At the physics level

The higher the better