Pr Raphaël Moeckli Institute of Radiation Physics

Medical physics of ultra-high dose rate electron beams

UNIL | Université de Lausanne

Conflicts of interest

Grant from Accuray (nothing to do with FLASH)

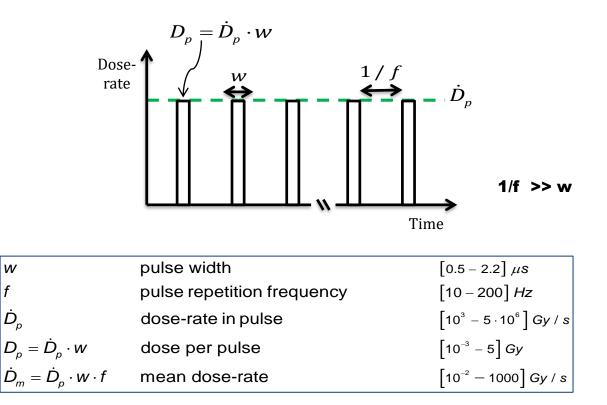
Collaborations with PMB Alcen IntraOp CERN

Canton de Ala Vaud

A word of caution

Difference between High Dose rate (HDR) and FLASH

FLASH effect is a biological effect that may happen when the dose is delivered in a very short time duration and therefore high dose rate (HDR) beams are used to trigger FLASH effect


FLASH effect is a biological effect and as long as one talks about physics, one should talk about HDR that may trigger FLASH effect

Beam structure

Flash RT

Conventional

Mean dose-rate ~ 4 Gy/min

Treatment time ~ minutes

Flash (HDR)

Mean dose-rate ~100 Gy/s

Treatment time < 1 s

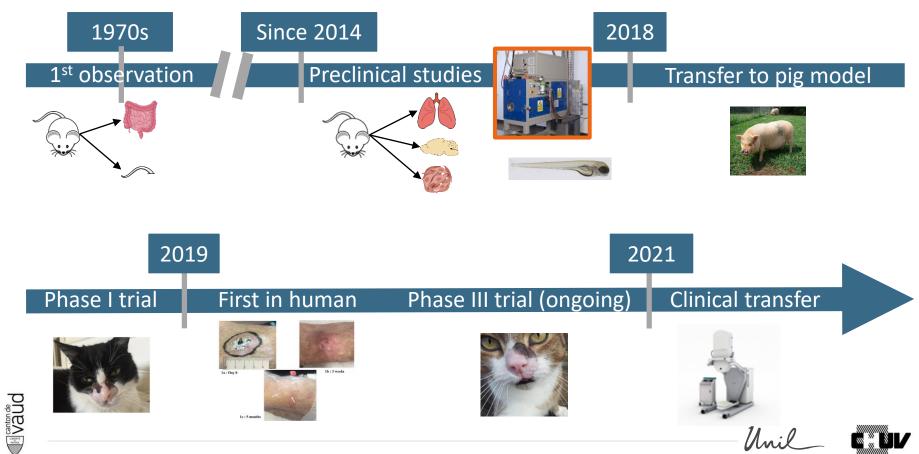
UNIL | Université de Lausanne

Flash is really a flash

Canton de Ala Canton de

Why is Flash RT of interest?

Increase in differential response between normal tissue and tumors


Short treatment times (<1s)
Motion management, i.e. remove intra-fraction
motion
Patient comfort
Improved treatment</pre>

FLASH timeline

UNIL | Université de Lausanne

Two important experiments

Memory testing in mice (whole brain irradiation)

34 Gy 31 Gy 28 Gy

UNIL | Université de Lausanne

C. 100p<0.005 (vs. ctrl) ns (vs. ctrl) 90p<0.001 Recognition Ratio (%) 80-70-60-53.0 56. Control 1 pulse 500 60 30 20 10 3.0 0.1 100 1.0 (n=13) (n=7)(n=12) (n=5) (n=12) (n=5) (n=7) (n=7) (n=7) (n=13) (n=7)

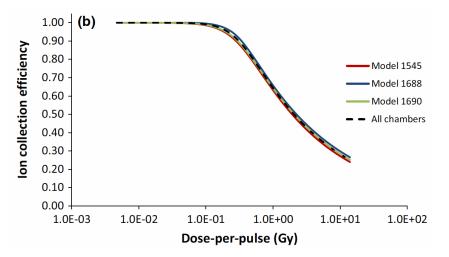
Dose rate (Gy/s)

Lanton de L

Montay-Gruel 2017; Vozenin 2018

Metrology

Canton de Vaud



UNIL Université de Lausanne

Ion chamber

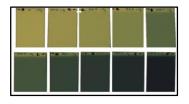
Usual tool not available For traceability For usual measurements

Petersson 2018

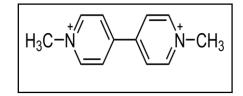
UNIL | Université de Lausann

Traceability

Absolute dosimetry


Calibration to a national standard There is no standard for HDR beams No usual traceability possible


Use of redundancy

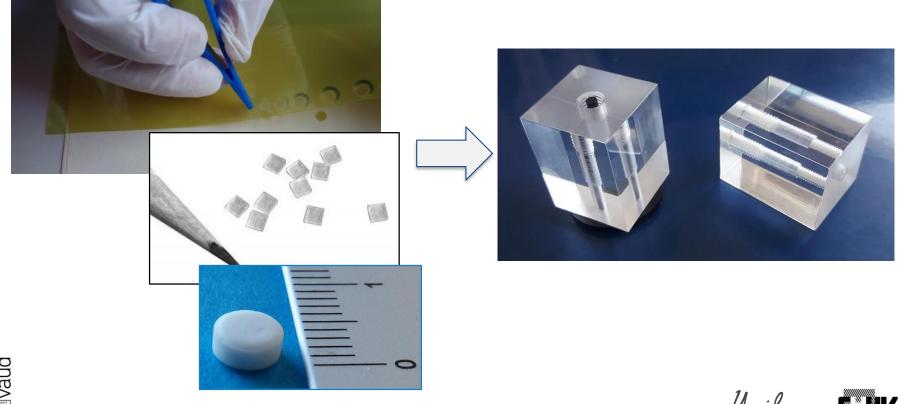


Redundancy of dosimetric measurements □□□□□ ⇒ traceability

Take dosimeters with different detecting principles → different dose rate dependency

Start with reference conditions (conventional LINAC) → extrapolate to UHDR

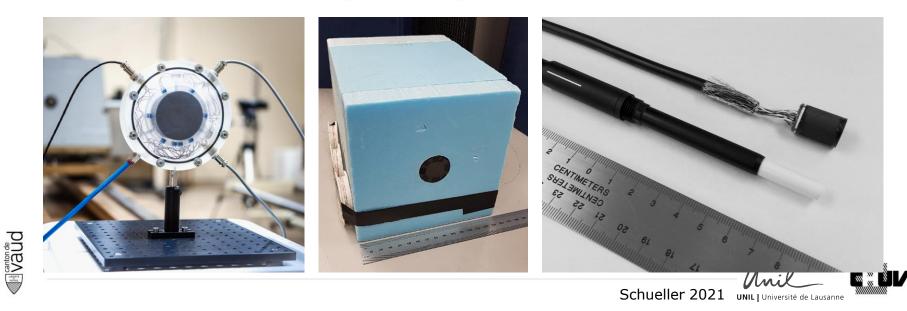
Canton de Vaud


Agreement within 3 % for UHDR and within 2 % for CONV

UNIL | Université de Lausanne

Gonçalves Jorge 2019

UHDR dosimetric intercomparison


The second de secondaria de se

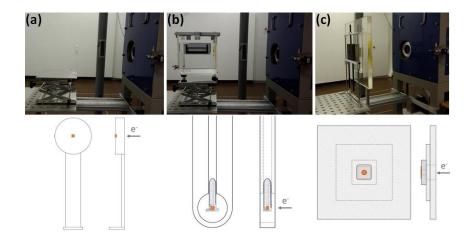
Towards primary standards

The European Joint Research Project UHDpulse – Metrology for advanced radiotherapy using particle beams with ultra-high pulse dose rates

Andreas Schüller^{a,*}, Sophie Heinrich^b, Charles Fouillade^b, Anna Subiel^c, Ludovic De Marzi^{b,d}, Francesco Romano^{e,c}, Peter Peier^f, Maria Trachsel^f, Celeste Fleta^g, Rafael Kranzer^{h,i}, Marco Caresana^j, Samuel Salvador^k, Simon Busold¹, Andreas Schönfeld^m, Malcolm McEwenⁿ, Faustino Gomez^o, Jaroslav Solc^p, Claude Bailat^q, Vladimir Linhart^r, Jan Jakubek^r, Jörg Pawelke^{s,t}, Marco Borghesi^u, Ralf-Peter Kapsch^a, Adrian Knyziak^v, Alberto Boso^c, Veronika Olsovcova^w, Christian Kottler^f, Daniela Poppinga^h, Iva Ambrozova^x, Claus-Stefan Schmitzer^y, Severine Rossomme^z, Marie-Catherine Vozenin^q

Pre-clinical

Canton de



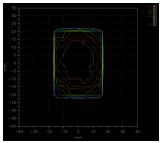
UNIL Université de Lausanne

Dosimetric procedure for UHDR

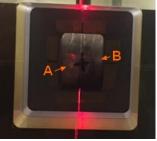
Procedure developed for three setups

- a) PMMA box (mice)
- b) Water Tank (zebrafish)
- c) Collimator (mini-pig)

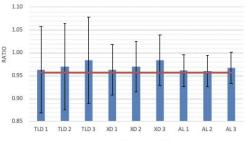
→ Procedure applied to biological irradiations with *in vivo* dosimeters
 Without procedure : dose deviations up to 15%
 With procedure : dose deviations <3%


Dosimetry of first patient

Pre-treatment


Treatment

Dosimetry check



	Pre-treatment	Alanine A	Alanine B
	[Gy]	[Gy]	[Gy]
Dose [Gy]	14.9	14.9	14.9

PASSIVE DOSIMETERS

Additional safety measures Pulses and time counter device (independent)

Bourhis 2019

Clinical transfer

Canton de A

UNIL Université de Lausanne

Electron UHDR

Device	Mobetron [®] (IntraOp)	Oriatron eRT6 (PMB Alcen)	Kinetron (CGRMeV)	Modified Elekta	Modified Varian	Novac7 (Sordina)
Reference	This publication	Jaccard ¹⁴ Petersson ²⁶	Lansonneur ¹⁶	Lempart ¹⁵	Schüler ^{8,17}	Felici ²⁵
Available beam energy [MeV]	6 and 9	6	4.5	10	9, 16, and 20	7
Maximum average dose rate [Gy/s]	>700 @ 6 MeV >800 @ 9 MeV	1000	NA*	≥ 300	74 @ 9 MeV 300 @ 16 MeV 200 @ 20 MeV	540
Maximum dose per pulse [Gy]	>8 @ 6 MeV >9 @ 9 MeV	10	1	1.9	1.67 @ 16 MeV 1.85 @ 20 MeV	18.2
Max. beam size @ max. dose rate [cm]	4 @ 90% isodose	NA	NA	2 (5% flatness)	1 (90% isodose)	0.5 (FWHM)
Short-term stability [%]	0.8	< 1	NA	1 to 4**	NA	NA
Long-term stability	1.8 @ 6 MeV 2.3 @ 9 MeV	4.1%	NA	NA	NA	NA

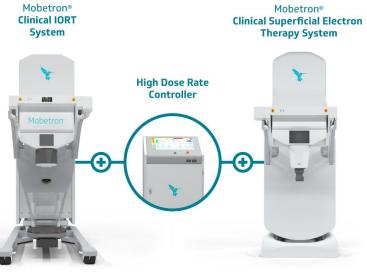
TABLE VI. Characteristics reported in the literature for electron UHDR devices.

An example of commissioning

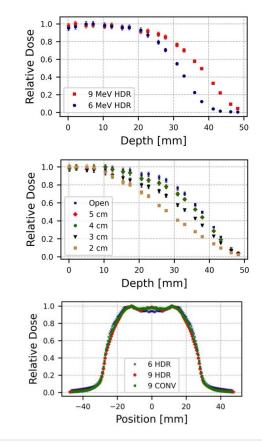
Canton de Vaud

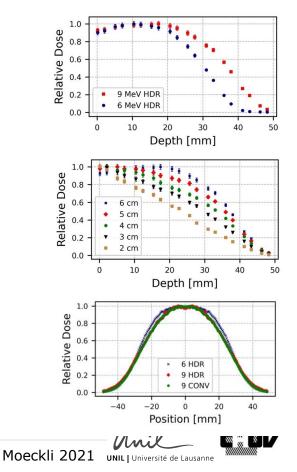
UNIL Université de Lausanne

FLASH with Electrons at IntraOp

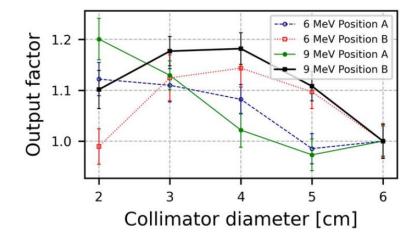

Attribute	Std Mode	FLASH (HDR) Mode
Energy config. (3 Modes)	6/9/12 MeV Conv (3)	6 & 9 MeV FLASH (2) 6 or 9 MeV Conv. (1)
Pulse Width	1.2µs	0.5 — 4.0 µs (manual adj.)
Pulse Frequency	30 pps	10 — 100 pps (manual adj.)
Dose Delivery	Monitor Units	# of Pulses and Distance

HDR Pulse Structure Control User Interface




Screen for Entering Number of Pulses in High Dose Rate mode

Beam commissioning



Beam commissioning


Position	A (PW: 4 μs 60 Hz; 2 pul		B (PW: 4 μs; PRF 60 Hz; 7 pulses)		
Energy [MeV]	6	9	6	9	
Film dose [Gy]	16.9 ± 0.2	18.7 ± 0.1	20.9 ± 0.2	23.4 ± 0.4	
Alanine dose [Gy]	16.6 ± 0.2	18.3 ± 0.1	20.9 ± 0.3	22.9 ± 0.2	
Difference [%]	1.8	2.2	0	2.2	
Dose per pulse [Gy]	8.3	9.2	3.0	3.3	

FlashKnife, PMB/CHUV

Canton de A

UNIL Université de Lausanne

FlashKnife – PMB/CHUV

- Pre-clinical prototype
 - Partly commisioned
- Next
 - Clinical prototype for IORT end of 2022
 - Commissioning
 - Start clinical protocol in IORT

AAPM – ESTRO joint WG

AAPM COMMITTEE TREE

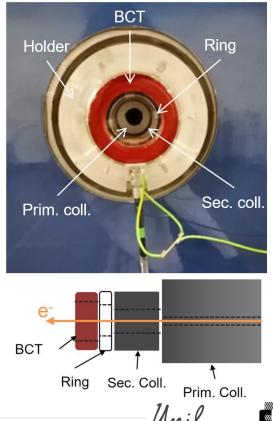
Task Group No. 359 - FLASH (ultra-high dose rate) radiation dosimetry (TG359) - bookmark this page (bookmarks show under "My AAPM" in the menu to left) Committee Website | Directory: Committee | Membership **Email** You may send email to this group now using gmail or outlook. - or -You may save the address 2021.TG359@aapm.org to your local address book. This alias updates hourly from the AAPM Directory. **Charge** 1. Review the uncertainty in determining the dose and need for standardization in dosimetry for FLASH beams to be used in experiments, research and potentially in pre-clinical applications. a. Assess the factors that would affect the beam dosimetric characteristics in FLASH mode, compared to standard delivery. 2. Assess the suitability of radiation measurement equipment (ion chambers, film, diodes, Faraday cap, etc) for FLASH mode. 3. Provide general guidelines on calibration, dosimetry and reporting of beams in FLASH mode. Bylaws: Not Referenced. Rules: Not Referenced. Approved 1/1/2021 - 12/31/2021 Date(s) Committee No Keywords Entered Keywords: Most recent - Click to view more or update. status update:

UNIL Université de Lausanne

Canton de Vaud

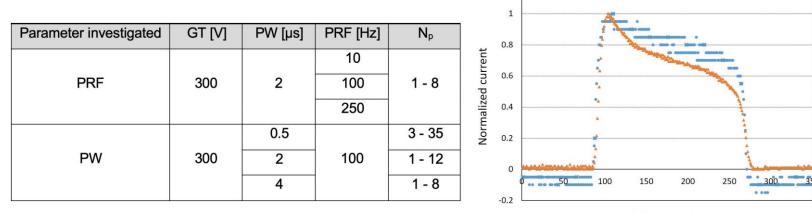
Beam monitoring

Canton de Vaude



UNIL Université de Lausanne

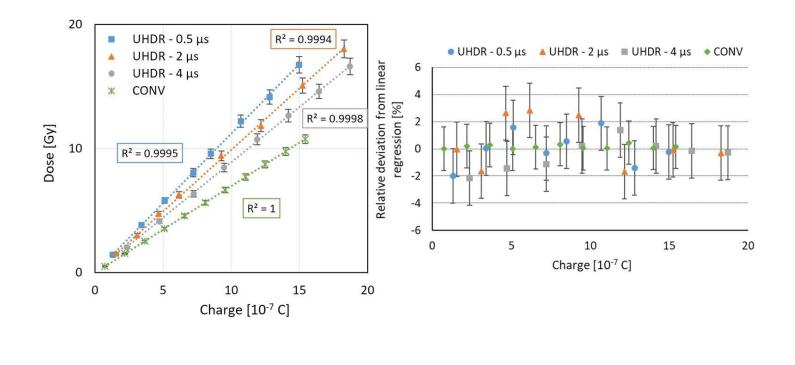
Beam monitoring / eRT6


Canton de Vaud

Jorge, submitted UNIL Université de Lausanne

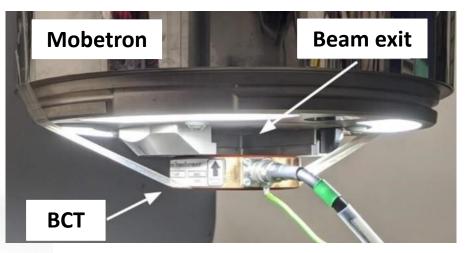
té de Lausanne

Beam monitoring / eRT6


Time sample

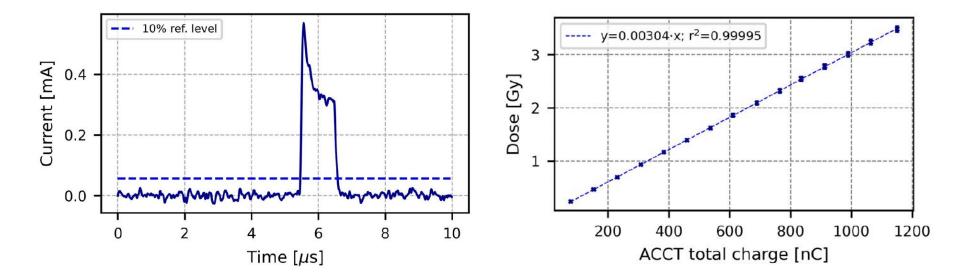
Jorge, submitted UNIL | Université de Lausanne

Beam monitoring / eRT6



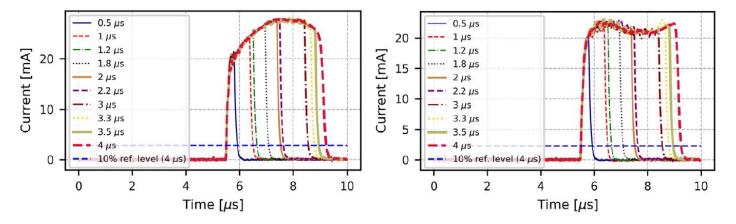
Jorge, submitted UNIL | Université de Lausanne

Beam monitoring / Mobetron



Oesterle, 2021 UNIL Université de Lausann

Linearity CONV

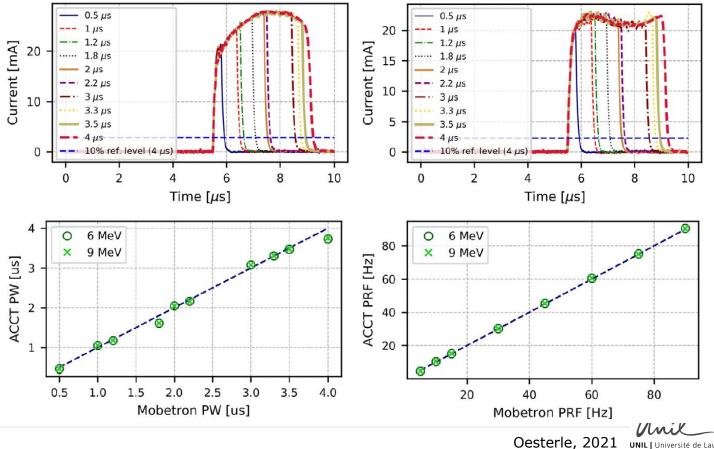


Oesterle, 2021 UNIL | Univer

Pulse shape and monitoring

	Nominal	
	values	ACCT values
ΡW [μs]	1.2	1.14 ± 0.02
PRF [µs]	30	30.3 ± 0.1
Number of pulses []	180	179 <u>+</u> 3

Abbreviations: ACCT, AC current transformer; PW, pulse width; PRF, pulse repetition frequency.



Oesterle, 2021 UNIL | Université de Lausanne

Linearity with PW and PRF

UNIL | Université de Lausanne

Stability

	9 MeV CONV	6 MeV UHDR	9 MeV UHDR
Short-term stability [%]	0.43	1.79	2.09
Long-term stability [%]	2.38	2.85	3.98

Abbreviation: UHDR, ultra high dose rate.

Clinical trial

Canton de Vaud

Unil

Clinical trial

IntraOp Announces First Patients Enrolled in FLASH Clinical Trial

July 08, 2021

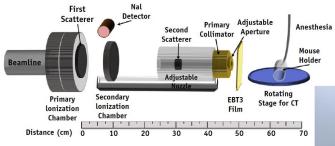
IntraOp Medical Corporation announced today that <u>Lausanne University Hospital</u> (CHUV, Switzerland) enrolled the first patients in the **Impulse Trial: A phase I dose-escalation study of high dose rate radiotherapy with electrons in patients with skin metastases from melanoma**. The trial is a key milestone for the groundbreaking research collaboration agreement between IntraOp and the CHUV, executed in 2020. The Impulse Trial is the first in the world to evaluate the potential of leveraging the biological phenomenon known as the "FLASH Effect" to provide radiotherapy with curative intent to radio-resistant cancers.

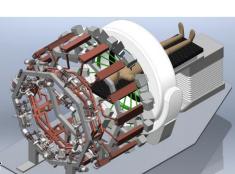
Clinical protocole

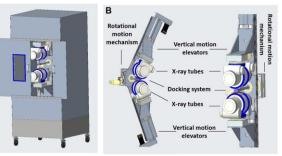
A phase I dose finding study of high dose rate radiotherapy in patients with skin metastases from melanoma

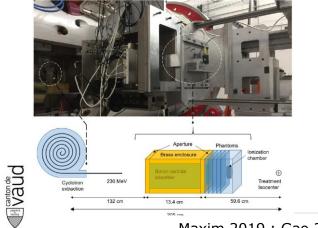
Dose level	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Level 7
FLASH dose	22 Gy	24 Gy	26 Gy	28 Gy	30 Gy	32 Gy	34 Gy

Duration of Dose Limiting Toxicity (DLT) period: 4 weeks post-irradiation


OTHER DEVICES

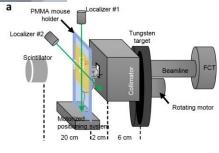

Canton de Vaud




Non electron UHDR

h

13.4 cm


205 cm

extraction

132 cm

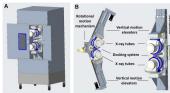
Isocenter

59.6 cm

Maxim 2019 ; Gao 2020 ; Diffenderfer 2020 ; Darafsheh 2020 ; Resaee 2021 UNIL | Université de Lausanne

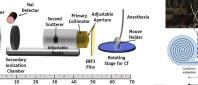
The future

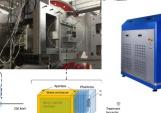
Canton de A

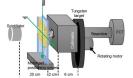


Which beam ?

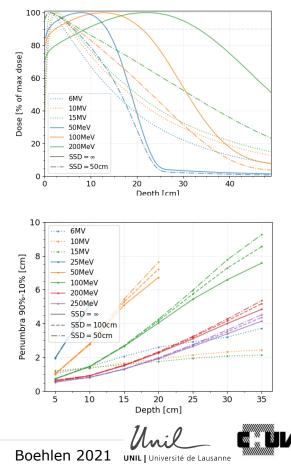
The «dream beam»





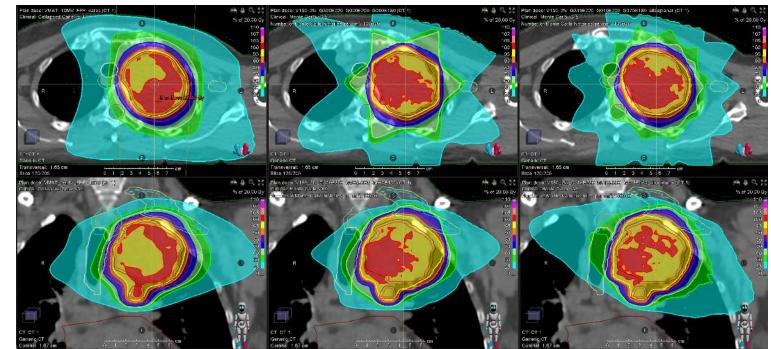

So what is the "dream beam" for FLASH

- Able to treat superficial and deep seated tumours
- Cheap with a compact design (fit in to space of a conventional linac)
- Move the beam not the patient
- Not sensitive to tissue heterogeneity or air gaps
- Able to treat in conventional and FLASH modes?
- Treatment planning system in place or under development
- Treatment Workflow can be integrated in to clinic
- · Commercial system exists now or can be reterofitted
- Optimised to key FLASH parameters
 - Dose
 - Dose rate
 - Fractionation



Kirkby ESTRO 2021 UNIL JU

VHEE CHUV/CERN project



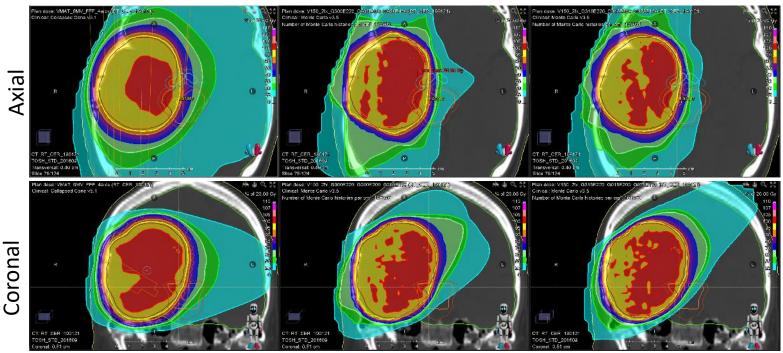
Lung T4 190cc, spherical shape

3B: 180-220MeV

6B: 180-220MeV

Axial

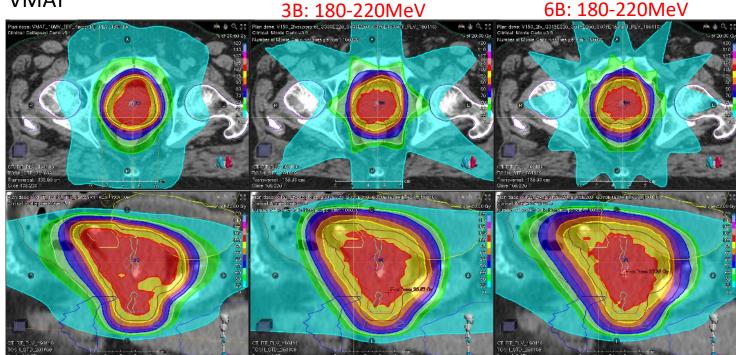
Coronal



Brain 190cc, spherical shape

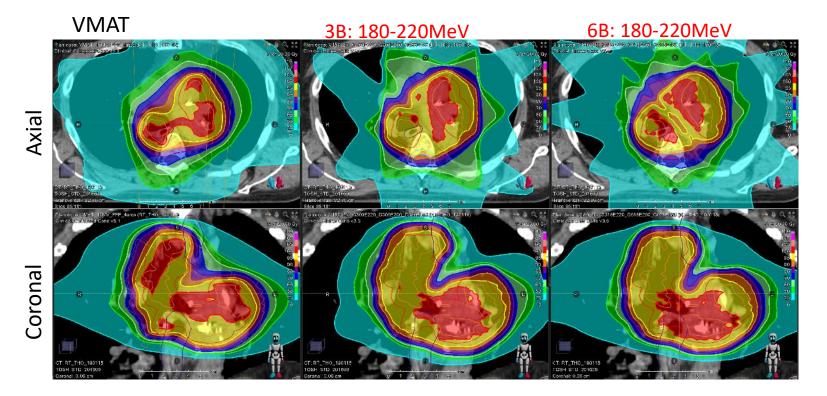
VMAT

Canton de Vaud 3B: 180-220MeV


6B: 180-220MeV

Prostate 104cc, spherical shape

VMAT


Axial

Canton de A

Mediastinum 173cc, concave

Canton de

Conclusions

FLASH-RT is a promising technique Imprvement needed in Metrological traceability Monitoring and control of the beam Safety issues to be solved Capability to treat deep seated tumors

