Amplitude/Operator Basis from Mathematica
 - package ABC4EFT ${ }^{1}$

April 30, 2022 @ PIKIMO 12, University of Notre Dame

[^0]
Basis of Effective Operators

- Operator Redundancies
\square Equation of Motion (EOM):

$$
\mathcal{O} \sim \mathcal{O}+\mathcal{O}_{a}^{\prime} \frac{\delta S}{\delta \phi_{a}} \quad \Leftrightarrow \quad \phi_{a} \rightarrow F\left(\phi_{a}\right)
$$

\square Integration By Part (IBP):

$$
\mathcal{O} \sim \mathcal{O}+d \mathcal{O}^{\prime}
$$

\square Operator Identities: Fierz rearrangement, Covariant Derivative Commutator (CDC), Cayley-Hamilton, Gram Determinant ...

Basis of Effective Operators

- Operator Redundancies
\square Equation of Motion (EOM):

$$
\mathcal{O} \sim \mathcal{O}+\mathcal{O}_{a}^{\prime} \frac{\delta S}{\delta \phi_{a}} \quad \Leftrightarrow \quad \phi_{a} \rightarrow F\left(\phi_{a}\right)
$$

\square Integration By Part (IBP):

$$
\mathcal{O} \sim \mathcal{O}+d \mathcal{O}^{\prime}
$$

\square Operator Identities: Fierz rearrangement, Covariant Derivative Commutator (CDC), Cayley-Hamilton, Gram Determinant ...

- Weinberg Operator (79') \rightarrow Warsaw Basis (10') \rightarrow Hilbert Series (15')
\rightarrow Young Tensor Basis (20') [2005.00008]

Basis of Effective Operators

- Operator Redundancies
\square Equation of Motion (EOM):

$$
\mathcal{O} \sim \mathcal{O}+\mathcal{O}_{a}^{\prime} \frac{\delta S}{\delta \phi_{a}} \quad \Leftrightarrow \quad \phi_{a} \rightarrow F\left(\phi_{a}\right)
$$

\square Integration By Part (IBP):

$$
\mathcal{O} \sim \mathcal{O}+d \mathcal{O}^{\prime}
$$

\square Operator Identities: Fierz rearrangement, Covariant Derivative Commutator (CDC), Cayley-Hamilton, Gram Determinant ...

- Weinberg Operator (79') \rightarrow Warsaw Basis (10') \rightarrow Hilbert Series (15')
\rightarrow Young Tensor Basis (20') [2005.00008]
- Conversion among various bases

$$
\mathcal{L}=\sum_{i} C_{i} \mathcal{O}_{i}=\sum_{i} C_{i}^{\prime} \mathcal{O}_{i}^{\prime} \quad \rightarrow \quad f\left(C_{i}\right)=f^{\prime}\left(C_{i}^{\prime}\right)
$$

Amplitude-Operator Correspondence

- Amplitude from minimal form factor: $\mathcal{O} \sim \mathcal{B} \equiv \int \mathrm{d}^{4} x\langle 0| \mathcal{O}(x)\left|\Psi_{i}\left(p_{i}\right)\right\rangle$
$\square \mathcal{O}_{1} \sim \mathcal{O}_{2} \quad \Leftrightarrow \quad \mathcal{B}_{1}=\mathcal{B}_{2}$
ㅁ $\sum_{i} p_{i}=0$
$\square \mathcal{B}$ is gauge invariant, $D_{\mu} \sim \partial_{\mu} \rightarrow-i p_{\mu}$
$\square\left|\Psi_{i}\right\rangle$ defines the type of the operator.

Amplitude-Operator Correspondence

- Amplitude from minimal form factor: $\mathcal{O} \sim \mathcal{B} \equiv \int \mathrm{d}^{4} x\langle 0| \mathcal{O}(x)\left|\Psi_{i}\left(p_{i}\right)\right\rangle$
- Remove the "off-shell" pieces: $D^{2} \phi, \not D \psi, D^{\mu} F_{\mu \nu} \rightarrow 0,\left[D_{\mu}, D_{\nu}\right] \rightarrow 0$

| \mathcal{O} | $F^{\mu \nu} \phi^{\dagger} i\left[D_{\mu}, D_{\nu}\right] \phi=$ | $F^{2} \phi^{\dagger} \phi$ |
| :--- | :---: | :---: | :---: |
| $\left\|\Psi_{i}\right\rangle$ | $\left\|\gamma, \phi^{*}, \phi\right\rangle \boldsymbol{X}$ | $\left\|\gamma, \gamma, \phi^{*}, \phi\right\rangle \boldsymbol{V}$ |

Amplitude-Operator Correspondence

- Amplitude from minimal form factor: $\mathcal{O} \sim \mathcal{B} \equiv \int \mathrm{d}^{4} x\langle 0| \mathcal{O}(x)\left|\Psi_{i}\left(p_{i}\right)\right\rangle$
- Remove the "off-shell" pieces: $D^{2} \phi, \not D \psi, D^{\mu} F_{\mu \nu} \rightarrow 0,\left[D_{\mu}, D_{\nu}\right] \rightarrow 0$
- Use chiral fields $F_{\mathrm{L} / \mathrm{R}}, \psi_{\alpha}, \psi^{\dagger \dot{\alpha}}$

$$
\left.\underset{(1,0) \oplus(0,1)}{F_{\mu \nu} \sigma_{\alpha \dot{\alpha}}^{\mu} \sigma_{\beta \dot{\beta}}^{\nu}=\underset{(1,0)}{F_{\mathrm{L}, \alpha \beta} \tilde{\epsilon}_{\dot{\alpha} \dot{\beta}}}+\underset{(0,1)}{\epsilon_{\alpha \beta} F_{\mathrm{R}, \dot{\alpha} \dot{\beta}}}, \underset{\left(\frac{1}{2}, 0\right) \oplus\left(0, \frac{1}{2}\right)}{\Psi}}=\underset{\left(\frac{1}{2}, 0\right)}{\left(\psi_{\alpha},\right.}, \underset{\left(0, \frac{1}{2}\right)}{\psi_{c}^{\dagger} \dot{\alpha}}\right)^{\top}
$$

Amplitude-Operator Correspondence

- Amplitude from minimal form factor: $\mathcal{O} \sim \mathcal{B} \equiv \int \mathrm{d}^{4} x\langle 0| \mathcal{O}(x)\left|\Psi_{i}\left(p_{i}\right)\right\rangle$
- Remove the "off-shell" pieces: $D^{2} \phi, \not D \psi, D^{\mu} F_{\mu \nu} \rightarrow 0,\left[D_{\mu}, D_{\nu}\right] \rightarrow 0$
- Use chiral fields $F_{\mathrm{L} / \mathrm{R}}, \psi_{\alpha}, \psi^{\dagger \dot{\alpha}}$

$$
\begin{array}{ccc}
F_{\mu \nu} \sigma_{\alpha \dot{\alpha}}^{\mu} \sigma_{\beta \dot{\beta}}^{\nu}=\underset{(1,0) \oplus(0,1)}{F_{\mathrm{L}, \alpha \beta} \tilde{\epsilon}_{\dot{\alpha} \dot{\beta}}}+\underset{(0,0)}{\epsilon_{\alpha \beta} F_{\mathrm{R}, \dot{\alpha} \dot{\beta}}}, & \underset{\left(\frac{1}{2}, 0\right) \oplus\left(0, \frac{1}{2}\right)}{\Psi} & \left.\underset{\left(\frac{1}{2}, 0\right)}{\left(\psi_{\alpha},\right.}, \underset{\left(0, \frac{1}{2}\right)}{\psi_{c}^{\dagger} \dot{\alpha}}\right)^{\top}
\end{array}
$$

SMEFT field content: $G_{\mathrm{L}, \mathrm{R}}, W_{\mathrm{L}, \mathrm{R}}, B_{\mathrm{L}, \mathrm{R}}, Q^{(\dagger)}, L^{(\dagger)}, u_{c}^{(\dagger)}, d_{c}^{(\dagger)}, e_{c}^{(\dagger)}, H^{(\dagger)}$

Amplitude-Operator Correspondence

- Amplitude from minimal form factor: $\mathcal{O} \sim \mathcal{B} \equiv \int \mathrm{d}^{4} x\langle 0| \mathcal{O}(x)\left|\Psi_{i}\left(p_{i}\right)\right\rangle$
- Remove the "off-shell" pieces: $D^{2} \phi, \not D \psi, D^{\mu} F_{\mu \nu} \rightarrow 0,\left[D_{\mu}, D_{\nu}\right] \rightarrow 0$
- Use chiral fields $F_{\mathrm{L} / \mathrm{R}}, \psi_{\alpha}, \psi^{\dagger \dot{\alpha}}$
- Remove all the Lorentz indices $D_{\mu} \sigma_{\alpha \dot{\alpha}}^{\mu}=D_{\alpha \dot{\alpha}}, g_{\mu \nu} \sigma_{\alpha \dot{\alpha}}^{\mu} \sigma_{\beta \dot{\beta}}^{\nu}=2 \epsilon_{\alpha \beta} \tilde{\epsilon}_{\dot{\alpha} \dot{\beta}}$

Amplitude-Operator Correspondence

- Amplitude from minimal form factor: $\mathcal{O} \sim \mathcal{B} \equiv \int \mathrm{d}^{4} x\langle 0| \mathcal{O}(x)\left|\Psi_{i}\left(p_{i}\right)\right\rangle$
- Remove the "off-shell" pieces: $D^{2} \phi, \not D \psi, D^{\mu} F_{\mu \nu} \rightarrow 0,\left[D_{\mu}, D_{\nu}\right] \rightarrow 0$
- Use chiral fields $F_{\mathrm{L} / \mathrm{R}}, \psi_{\alpha}, \psi^{\dagger \dot{\alpha}}$
- Remove all the Lorentz indices $D_{\mu} \sigma_{\alpha \dot{\alpha}}^{\mu}=D_{\alpha \dot{\alpha}}, g_{\mu \nu} \sigma_{\alpha \dot{\alpha}}^{\mu} \sigma_{\beta \dot{\beta}}^{\nu}=2 \epsilon_{\alpha \beta} \tilde{\epsilon}_{\dot{\alpha} \dot{\beta}}$
- Operators with only spinor contractions

$$
\mathcal{O}=\epsilon^{n} \tilde{\epsilon}^{\tilde{n}} \prod_{i=1}^{N} D^{w_{i}} \Psi_{i} \sim \mathcal{B}=\langle\cdot\rangle^{n}[\cdot]^{\tilde{n}}
$$

Spinor helicity variables: $p_{i \mu} \sigma_{\alpha \dot{\alpha}}^{\mu}=\lambda_{i \alpha} \tilde{\lambda}_{i \dot{\alpha}}$

$$
\langle i j\rangle \equiv \epsilon^{\alpha \beta} \lambda_{i \alpha} \lambda_{j \beta}, \quad[i j] \equiv \tilde{\epsilon}_{\dot{\alpha} \dot{\beta}} \tilde{\lambda}_{i}^{\tilde{\alpha}_{i}} \tilde{\lambda}_{j}^{\dot{\beta}}
$$

Amplitude-Operator Correspondence

- Amplitude from minimal form factor: $\mathcal{O} \sim \mathcal{B} \equiv \int \mathrm{d}^{4} x\langle 0| \mathcal{O}(x)\left|\Psi_{i}\left(p_{i}\right)\right\rangle$
- Remove the "off-shell" pieces: $D^{2} \phi, \not D \psi, D^{\mu} F_{\mu \nu} \rightarrow 0,\left[D_{\mu}, D_{\nu}\right] \rightarrow 0$
- Use chiral fields $F_{\mathrm{L} / \mathrm{R}}, \psi_{\alpha}, \psi^{\dagger \dot{\alpha}}$
- Remove all the Lorentz indices $D_{\mu} \sigma_{\alpha \dot{\alpha}}^{\mu}=D_{\alpha \dot{\alpha}}, g_{\mu \nu} \sigma_{\alpha \dot{\alpha}}^{\mu} \sigma_{\beta \dot{\beta}}^{\nu}=2 \epsilon_{\alpha \beta} \tilde{\epsilon}_{\dot{\alpha} \dot{\beta}}$
- Operators with only spinor contractions

$$
\mathcal{O}=\epsilon^{n} \tilde{\epsilon}^{\tilde{n}} \prod_{i=1}^{N} D^{w_{i}} \Psi_{i} \sim \mathcal{B}=\langle\cdot\rangle^{n}[\cdot]^{\tilde{n}}
$$

Example

$$
\left(\bar{q} \gamma^{\mu} q\right)\left(H^{\dagger} i D_{\mu} H\right)=Q^{\alpha} Q^{\dagger \dot{\alpha}} H^{\dagger} i D_{\alpha \dot{\alpha}} H \sim\langle 14\rangle[24]
$$

Amplitude Reduction

How to enumerate independent amplitudes?
\square Momentum Conservation: $\sum_{k}\langle i k\rangle[k j]=0$
\square Schouten Identity: $(i j)(k l)+(i k)(l j)+(i l)(j k)=0$

Amplitude Reduction

How to enumerate independent amplitudes?
\square Momentum Conservation: $\sum_{k}\langle i k\rangle[k j]=0$
\square Schouten Identity: $(i j)(k l)+(i k)(l j)+(i l)(j k)=0$
We need a specific routine of using the above relations: [2007.07899]
(1) Eliminate p_{1} and most of $p_{2,3}$:

$$
\begin{aligned}
& \langle i 1\rangle[1 j] \Rightarrow-\sum_{k=2}^{N}\langle i k\rangle[k j], \quad\langle i 2\rangle[21] \Rightarrow-\sum_{k=3}^{N}\langle i k\rangle[k 1], \\
& \langle 23\rangle[31] \Rightarrow-\sum_{k=4}^{N}\langle 2 k\rangle[k 1], \quad\langle 23\rangle[32] \Rightarrow-\sum_{1<i<j, j>3}^{N}\langle i j\rangle[j i]
\end{aligned}
$$

Amplitude Reduction

How to enumerate independent amplitudes?
\square Momentum Conservation: $\sum_{k}\langle i k\rangle[k j]=0$
\square Schouten Identity: $(i j)(k l)+(i k)(l j)+(i l)(j k)=0$
We need a specific routine of using the above relations: [2007.07899]
(1) Eliminate p_{1} and most of $p_{2,3}$:
(2) Eliminate "disordered" spinor brackets

$$
(i l)(j k) \Rightarrow-(i j)(k l)-(i k)(l j) \quad \text { when } \quad i<j<k<l
$$

Amplitude Reduction

How to enumerate independent amplitudes?
\square Momentum Conservation: $\sum_{k}\langle i k\rangle[k j]=0$
\square Schouten Identity: $(i j)(k l)+(i k)(l j)+(i l)(j k)=0$
We need a specific routine of using the above relations: [2007.07899]
(1) Eliminate p_{1} and most of $p_{2,3}$:
(2) Eliminate "disordered" spinor brackets

Mathematica Implementation: [2201.04639]

```
ln[2]:= << ABC4EFT`
ln[3]:= amp = ab[1, 3] }\times\mathbf{sb}[2,3]\timesab[2, 4] \timessb[3, 4]
    Print[GetClass[amp, 5], ": ",
        Ampform[amp], "\n=> ", AmpReduce[amp, 5] // Ampform]
    D D}\mp@subsup{\phi}{}{3}\psi\overline{\psi}: [23] [34] \langle13\rangle\langle24
    => - [24] [34] \langle14\rangle\langle24\rangle-[24] [35] \langle14\rangle\langle25\rangle+
        [23] [45] \langle14\rangle\langle25\rangle-[34] [35] \langle13\rangle\langle45\rangle-[34] [45] \langle14\rangle\langle45\rangle
```


Young Tabluau (Y-)Basis

The basis stems from Semi-Standard Young Tableau (SSYT) [1902.06754, 2005.00008]

Mini Game

Fill in the grid on the right with $\tilde{n}-2 h_{i}$ copies of integer $i \in[1, N]$, with the requirements:
a. Each row consists of non-decreasing integers from left to right.
b. Each column consists of increasing integers from top to bottom.

Young Tabluau (Y-)Basis

The basis stems from Semi-Standard Young Tableau (SSYT) [1902.06754, 2005.00008]

Mini Game

Fill in the grid on the right with $\tilde{n}-2 h_{i}$ copies of integer $i \in[1, N]$, with the requirements:
a. Each row consists of non-decreasing integers from left to right.
b. Each column consists of increasing integers from top to bottom.

1	1	1	2
2	3	4	4
5	5		

1	1	1	2
2	3	4	5
4	5		

1	1	1	2
2	4	4	5
3	5		

1	1	1	4
2	2	3	5
4	5		

1	1	1	4
2	2	4	5
3	5		

$-[34][24]\langle 14\rangle\langle 24\rangle \quad[35][24]\langle 14\rangle\langle 25\rangle$
[45][23]〈14〉 $\langle 25\rangle$

$$
-[35][34]\langle 13\rangle\langle 45\rangle
$$

[45] [34] $\langle 14\rangle\langle 45\rangle$

Young Tabluau (Y-)Basis

The basis stems from Semi-Standard Young Tableau (SSYT) [1902.06754, 2005.00008]

Mini Game

Fill in the grid on the right with $\tilde{n}-2 h_{i}$ copies of integer $i \in[1, N]$, with the requirements:
a. Each row consists of non-decreasing integers from left to right.
b. Each column consists of increasing integers from top to bottom.

Enumerate all the SSYTs as the amplitude y-basis:

$$
\begin{aligned}
\operatorname{In}[5]= & \text { ybasis }=\operatorname{SSYT}[\{-1 / 2,0,1 / 2,0,0\}, 3] ; \\
& \text { FindCor }[\text { AmpReduce }[\text { amp, } 5], \text { ybasis }] \\
\text { Out }[6]= & \{0,-1,1,0,0,0,1,0,1,-1\}
\end{aligned}
$$

Package ABC4EFT

Example in SMEFT

Define the model:

```
ModelIni[SMEFT];
AddGroup[SMEFT, "U1b"]; (* U (1) Baryon *)
AddGroup[SMEFT, "U11"]; (* U(1) Lepton *)
AddGroup[SMEFT, "SU3c", GaugeBoson -> "G"]; (* SU (3) color *)
AddGroup[SMEFT, "SU2w", GaugeBoson -> "W"]; (* SU (2) weak *)
AddGroup[SMEFT, "U1y", GaugeBoson -> "B"]; (* U(1) hypercharge *)
nf=3; (* number of flavors *)|
AddField[SMEFT, "Q", -1 / 2, {"SU3c" -> {1, 0}, "SU2w" -> {1}, "U1y" -> 1/6, "U1b" -> 1/3}, Flavor -> nf];
AddField[SMEFT, "uc", -1/2, {"SU3c" -> {0, 1}, "U1y" -> - 2/3, "U1b" -> -1/3}, Flavor -> nf];
AddField[SMEFT, "dc", -1/2, {"SU3c" -> {0, 1}, "U1y" -> 1/3, "U1b" -> -1/3}, Flavor -> nf];
AddField[SMEFT, "L", -1/2, {"SU2w" -> {1}, "U1y" -> -1 / 2, "U1l" -> 1}, Flavor -> nf];
AddField[SMEFT, "ec", -1/2, {"U1y" -> 1, "U1l" -> -1}, Flavor -> nf];
AddField[SMEFT, "H", 0, {"SU2w" -> {1}, "U1y" -> 1/2}];
```


Example in SMEFT

- The only type of operator in the SMEFT in the Lorentz class $D^{3} \phi^{3} \psi \bar{\psi}$ is GetBasisForType[SMEFT, "L" "ec \dagger " "H" ${ }^{3}$ D" ${ }^{3}$]

$$
\begin{aligned}
& \langle |\{H \rightarrow\{3\}\} \rightarrow\left\{i \epsilon^{\mathrm{ik}} \in^{\mathrm{j} 1} \mathrm{H}_{\mathrm{j}} \mathrm{H}_{\mathrm{k}}\left(\mathrm{D}_{v} \mathrm{D}^{\mu} \mathrm{H}_{1}\right)\left(\mathrm{L}_{\mathrm{p}_{\mathrm{i}}} \sigma_{\mu}\left(\mathrm{D}^{\mathrm{v}} \mathrm{ec} \dagger_{\mathrm{r}}\right)\right)\right. \text {, } \\
& \left.\epsilon^{i k} \epsilon^{j 1} H_{j}\left(D_{\mu} H_{k}\right)\left(D_{v} H_{1}\right)\left(L_{p_{i}} \sigma_{\rho}\left(D_{\lambda} \text { ec } \dagger_{r}\right)\right) \epsilon^{\lambda \mu v \rho} \text {, i } \epsilon^{i k} \epsilon^{j 1} H_{j}\left(D_{v} D^{\mu} H_{k}\right)\left(D^{v} H_{1}\right)\left(L_{p_{i}} \sigma_{\mu} \text { ec } \dagger_{r}\right)\right\}\rangle
\end{aligned}
$$

Example in SMEFT

- The only type of operator in the SMEFT in the Lorentz class $D^{3} \phi^{3} \psi \bar{\psi}$ is GetBasisforType [SMEFT, "L" "ec + " "H"3 "D"3]

$$
\begin{aligned}
& \langle |\{H \rightarrow\{\mathbf{3}\}\} \rightarrow\left\{i \epsilon^{\mathrm{ik}} \epsilon^{j 1} H_{j} H_{k}\left(D_{v} D^{\mu} H_{1}\right)\left(L_{p_{i}} \sigma_{\mu}\left(D^{v} \text { ec } t_{r}\right)\right)\right. \text {, } \\
& \left.\epsilon^{\mathrm{ik}} \epsilon^{j 1} H_{j}\left(\mathbf{D}_{\mu} H_{k}\right)\left(D_{v} H_{1}\right)\left(L_{p_{i}} \sigma_{\rho}\left(D_{\lambda} e c \dagger_{r}\right)\right) \epsilon^{\lambda \mu v \rho}, i e^{\mathrm{ik}} e^{j 1} H_{j}\left(D_{v} D^{\mu} H_{k}\right)\left(D^{\nu} H_{1}\right)\left(L_{p_{i}} \sigma_{\mu} e c \dagger_{r}\right)\right\}\rangle
\end{aligned}
$$

- The full p-basis contains other symmetries for the H^{3} : GetBasisForType [SMEFT, "L" "ec + " "H" ${ }^{3}$ "D" ${ }^{3}$, NfSelect \rightarrow False]

$$
\begin{aligned}
& \langle |\{H \rightarrow\{\mathbf{3}\}\} \rightarrow\left\{i \mathrm{i} \epsilon^{\mathrm{i} \mathrm{k}} e^{\mathrm{j}} \mathrm{H}_{j} H_{\mathrm{k}}\left(\mathrm{D}_{v} \mathrm{D}^{\mu} H_{1}\right)\left(\mathrm{L}_{\mathrm{p}_{\mathrm{i}}} \sigma_{\mu}\left(\mathrm{D}^{v} \mathrm{ec} \dagger_{r}\right)\right)\right. \text {, } \\
& \left.\epsilon^{i k} \epsilon^{j 1} H_{j}\left(D_{\mu} H_{k}\right)\left(D_{v} H_{1}\right)\left(L_{p_{i}} \sigma_{\rho}\left(D_{\lambda} e c \dagger_{r}\right)\right) \epsilon^{\lambda \mu v \rho}, \mathrm{i} \epsilon^{i k} e^{j 1} H_{j}\left(D_{v} D^{\mu} H_{k}\right)\left(D^{\nu} H_{1}\right)\left(L_{p_{i}} \sigma_{\mu} e c \dagger_{r}\right)\right\} \text {, } \\
& \{H \rightarrow\{2,1\}\} \rightarrow\left\{i \epsilon^{i k} \epsilon^{j 1} H_{j} H_{k}\left(D_{v} D^{\mu} H_{1}\right)\left(L_{p_{1}} \sigma_{\mu}\left(D^{v} e c \dagger_{r}\right)\right)\right. \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { i } \epsilon^{i k} e^{j 1} H_{j}\left(D_{v} H_{k}\right)\left(D^{\mu} D^{\gamma} H_{1}\right)\left(L_{p_{i}} \sigma_{\mu} e c t_{r}\right), i \epsilon^{i k} e^{j 1} H_{j}\left(D_{v} D^{\mu} H_{k}\right)\left(D^{\gamma} H_{1}\right)\left(L_{p_{1}} \sigma_{\mu} \text { ec } \dagger_{r}\right) \text {, } \\
& \left.\epsilon^{\mathrm{ij}} \epsilon^{k l} H_{j}\left(D_{\mu} H_{k}\right)\left(D_{v} H_{1}\right)\left(L_{p_{i}} \sigma_{\rho}\left(D_{\lambda} \text { ec } \dagger_{r}\right)\right) \epsilon^{\lambda \mu v \rho}, i \epsilon^{i j} \epsilon^{k l} H_{j}\left(D_{v} H_{k}\right)\left(D^{\mu} D^{\nu} H_{1}\right)\left(L_{p_{i}} \sigma_{\mu} \text { ec } \dagger_{r}\right)\right\} \text {, } \\
& \{H \rightarrow\{1,1,1\}\} \rightarrow\left\{i \epsilon^{i k} \epsilon^{j 1} H_{j} H_{k}\left(D_{v} D^{\mu} H_{1}\right)\left(L_{p_{i}} \sigma_{\mu}\left(D^{v} e c \dagger_{r}\right)\right)\right. \text {, }
\end{aligned}
$$

Example in SMEFT

- The only type of operator in the SMEFT in the Lorentz class $D^{3} \phi^{3} \psi \bar{\psi}$ is GetBasisForType[SMEFT, "L" "ec \dagger " " H^{3} " $\mathrm{D}^{\text {" }}$]

$$
\begin{aligned}
& \langle |\{H \rightarrow\{\mathbf{3}\}\} \rightarrow\left\{i \epsilon^{\mathrm{ik}} \epsilon^{j 1} H_{j} H_{k}\left(D_{v} D^{\mu} H_{1}\right)\left(L_{p_{i}} \sigma_{\mu}\left(D^{v} \text { ec } t_{r}\right)\right)\right. \text {, }
\end{aligned}
$$

- The corresponding amplitudes \mathcal{B} : GetBasisForType[SMEFT, "L" "ec \dagger " "H" ${ }^{3} \mathrm{D}^{\mathrm{D}}{ }^{3}$, OutputFormat \rightarrow "amplitude"]

$$
\begin{aligned}
& \langle |\{\mathbf{H} \rightarrow\{\mathbf{3}\}\} \rightarrow\left\{[\mathbf{4 5}]^{2} \epsilon^{i_{1} i_{3}} \epsilon^{i_{2} i_{4}} \mathbf{C}_{f_{1}, f_{5}}\langle\mathbf{1 4}\rangle\langle 45\rangle,\right. \\
& \left.\quad-[\mathbf{3 5}][\mathbf{4 5}] \epsilon^{i_{1} i_{3}} \epsilon^{i_{2} i_{4}} \mathbf{C}_{f_{1}, f_{5}}\langle\mathbf{1 3}\rangle\langle\mathbf{4 5}\rangle,-[34][35] \epsilon^{i_{1} i_{3}} \epsilon^{i_{2} i_{4}} \mathrm{C}_{f_{1}, f_{5}}\langle\mathbf{1 3}\rangle\langle 34\rangle\right\}\rangle
\end{aligned}
$$

Summary

- We developed a systematic way to enumerate independent basis of Lorentz invariant operators as SSYT,
- and the reduction routine to find coordinate of any operator under the y-basis (modulo EOM).
- The package ABC4EFT provides tools for defining models and finding independent operator basis for any given type.
- More functions (e.g. partial waves and j -basis) are explained in the paper for you to explore and have fun!
- Even more functions are being developed (e.g. operator reduction including EOM)!

Summary

- We developed a systematic way to enumerate independent basis of Lorentz invariant operators as SSYT,
- and the reduction routine to find coordinate of any operator under the y-basis (modulo EOM).
- The package ABC4EFT provides tools for defining models and finding independent operator basis for any given type.
- More functions (e.g. partial waves and j -basis) are explained in the paper for you to explore and have fun!
- Even more functions are being developed (e.g. operator reduction including EOM)!

Thank you for your attention!

[^0]: ${ }^{1}$ https://abc4eft.hepforge.org/

