The phenomenological cornucopia of $\operatorname{SU}(3)$ exotica

Taylor Murphy

The Ohio State University
Department of Physics

April 30, 2022

Based on PRD 105, 035014 (2022)
in collaboration with L. M. Carpenter and T. M. P. Tait

EFT FOR EXOTIC COLOR-CHARGED STATES

- The Standard Model (SM) is under increasing pressure
\square Old: hierarchy problem, unification, dark matter
\square Newer: $(g-2)_{\mu}, \ell$ flavor universality, W boson mass [1] (!!)
- Some of these can be explained by models containing additional states charged under SM color gauge group $\mathrm{SU}(3)_{\text {c }}$
- Models with new color-charged states are numerous as standalone scenarios [2] and embedded in complete(ish) frameworks [3]
- Community increasingly leans on effective field theories (EFTs) to parametrize new physics without committing to a particular (UV-complete?) framework
- Comprehensive efforts - e.g., SMEFT - should be accompanied by EFTs involving external light states
- We begin [4] with sextets transforming in the $\mathbf{6}$ of $\mathrm{SU}(3)_{c}$

Why start with sextets?

- Unlike in $\mathrm{SU}(2)$, a low-dimensional irreducible representation lies between fundamental and adjoint of $\mathrm{SU}(3)$
- Sextets can couple to color-charged SM fields in structures unfamiliar to triplets and octets, enabling e.g. (spoilers)
$\square \Phi \rightarrow q_{I} q_{J}$
$\square \Psi \rightarrow q_{I} g$ [not renormalizable]
- Expect copious pair production at hadron colliders (almost as much as octets [5, 6]) but exotic signatures - see $[7,8]$ and this talk - help sextets evade standard searches
- Some recent press: CMS-EXO-21-010 [9] might see some excess events in search for pairs of dijet resonances... CMS uses sextet diquark as benchmark model for resonant search
- We want to find all the (sizable) interactions of sextets with SM

$\mathrm{SU}(3)_{\mathrm{C}}$ SINGLETS BY ITERATION

- Some group theory review: direct-product reps of $\mathrm{SU}(3)$ can be reduced to irreducible reps; for example [10, 11],

$$
\begin{aligned}
& \mathbf{3} \otimes \mathbf{3}=\overline{\mathbf{3}}_{\mathrm{a}} \oplus \mathbf{6}_{\mathrm{s}} \\
& \mathbf{3} \otimes \overline{\mathbf{3}}=\mathbf{1} \oplus \mathbf{8} \\
& \mathbf{8} \otimes \mathbf{8}=\mathbf{1}_{\mathrm{s}} \oplus \mathbf{8}_{\mathrm{s}} \oplus \mathbf{8}_{\mathrm{a}} \oplus \mathbf{1 0}_{\mathrm{a}} \oplus \overline{\mathbf{1 0}}_{\mathrm{a}} \oplus \mathbf{2 7}_{\mathrm{s}}
\end{aligned}
$$

Then \exists e.g. an invariant combination (singlet) in $\mathbf{3} \otimes \mathbf{3} \otimes \overline{\mathbf{6}}$

- Observation: If $\mathbf{r}_{1} \otimes \cdots \otimes \mathbf{r}_{n} \otimes \mathbf{p}$ and $\mathbf{q}_{1} \otimes \cdots \otimes \mathbf{q}_{m} \otimes \mathbf{p}$ contain singlets, then so does $\mathbf{r}_{1} \otimes \cdots \otimes \mathbf{r}_{n} \otimes \overline{\mathbf{q}}_{1} \otimes \cdots \otimes \overline{\mathbf{q}}_{m}$
- Example: $\mathbf{6} \otimes \overline{\mathbf{3}}=\mathbf{3} \oplus \ldots$ and $\mathbf{8} \otimes \mathbf{3}=\mathbf{3} \oplus \ldots \Longrightarrow \mathbf{3} \otimes \mathbf{3} \otimes \overline{\mathbf{6}} \otimes \mathbf{8}$ contains a singlet
- Iterate to build all possible color structures containing sextets

Ensuring Lorentz invariance

	Examples	Bilinears	Notes
$\left(\bar{\chi} \chi^{\prime}\right)$	$\left(\bar{q} q^{\prime}\right)(\overline{\mathbf{3}} \otimes \mathbf{3})$, $(\bar{\Psi} \Psi)(\overline{\mathbf{6}} \otimes \mathbf{6})$, $(\bar{q} \ell)(\overline{\mathbf{3}} \otimes \mathbf{1})$	$\bar{X}_{\mathrm{L}} H \Gamma \chi^{\prime}{ }_{\mathrm{R}}$	
		$\bar{X}_{\mathrm{L}} \Omega \gamma^{\mu} X_{\mathrm{L}}^{\prime}$	only if half of four-fermion operator with second γ_{μ}
		$\bar{\chi}_{\mathrm{R}} \gamma^{\mu} \chi_{\mathrm{R}}^{\prime}$	
$\left(\chi \chi^{\prime}\right)$	$\begin{gathered} \left(q q^{\prime}\right)(\mathbf{3} \otimes \mathbf{3}), \\ (\Psi \Psi)(\mathbf{6} \otimes \mathbf{6}), \\ (q \ell)(\mathbf{3} \otimes \mathbf{1}) \end{gathered}$	$\overline{\chi_{R}^{c}} \Gamma \chi_{R}^{\prime}$	$\begin{aligned} \Gamma= & \sigma^{\mu \nu} \text { non-vanishing } \\ & \text { only if } \chi^{\prime} \neq \chi \end{aligned}$
		$\overline{X_{\mathrm{L}}^{\mathrm{c}}} \Omega \Gamma X_{\mathrm{L}}^{\prime}$	
		$\overline{\bar{X}} \overline{\mathrm{~L}} \mathrm{C}^{\prime} \chi^{\prime} \chi_{\mathrm{R}}^{\prime}$	needs second γ_{μ} again

Operator	Notes
$\Gamma \in\left\{\mathbf{1}, \sigma^{\mu \nu}\right\}$	$\sigma^{\mu \nu}$ must be accompanied by $\sigma_{\mu \nu}$ or a field-strength tensor $F_{\mu \nu}$, $F_{\mu \nu} \in\left\{B_{\mu \nu}, t_{2}^{A} W_{\mu \nu}^{A}, G_{\mu \nu}^{a}\right\}$
$\Omega \in\left\{H H^{\dagger}, \mathbf{i} \tau^{2}\right\}$	

The catalog, SChEmatically

	Scalar sextet Φ only		Dirac sextet Ψ only		≥ 1 of each	
$\mathrm{SU}(3)_{\mathrm{c}}$ invariant	$d_{\text {min }}$	Structure	$d_{\text {min }}$	Structure	$d_{\text {min }}$	Structure
$\mathbf{3} \otimes \mathbf{3} \otimes \overline{\mathbf{6}}$	4	$\left(q q^{\prime}\right) \Phi^{\dagger}$	6	$\left(q q^{\prime}\right)(\bar{\Psi} \ell)$		
	6	$\left(q q^{\prime}\right)\|H\|^{2} \Phi^{\dagger}$		$(\bar{\Psi} q)(q \ell)$		
				$(\bar{\Psi} q)(\bar{\ell} q)$		
$3 \otimes 6 \otimes 8$	6	$(q \ell) \Phi G$	5	$(q \Psi) G$		
		$(\bar{\ell} q) \Phi G$	7	$(q \Psi)\|H\|^{2} G$		
$3 \otimes 3 \otimes 6 \otimes 6$	5	$\left(q q^{\prime}\right) \Phi \Phi$	6	$\left(q q^{\prime}\right)(\Psi \Psi)$	7	$\left(q q^{\prime}\right)(\Psi \ell) \Phi$
	7	$\left(q q^{\prime}\right) \Phi\|H\|^{2} \Phi$		$(q \Psi)\left(q^{\prime} \Psi\right)$		$(q \ell)\left(q^{\prime} \Psi\right) \Phi$
$3 \otimes 3 \otimes 3 \otimes 3 \otimes 6$	7	$\left(q q^{\prime}\right)\left(q^{\prime \prime} q^{\prime \prime \prime}\right) \Phi$				

Filling in the details

- To build a section of the catalog: pick a sextet and an invariant, then cycle through the Lorentz-invariant structures and fix Y

$3 \otimes 6 \otimes 8$	Singlet (Lorentz $+\mathcal{G}_{\text {SM }}$)			L	Y
	Generic	Specific	Coupling		
Scalar Φ_{s}	(q¢)ФG	$J^{s i a} \Phi_{s}\left(\bar{q}_{\mathrm{R}} \overline{\mathrm{C}}^{\prime} \sigma^{\mu \nu} \ell_{\mathrm{R} X}\right) G_{\mu \nu a}$	$\frac{1}{\Lambda_{\Phi}^{2}} \lambda_{I}^{X}$	-1	$\left\{\frac{1}{3}, \frac{4}{3}\right\}$
	$(\bar{\ell} q) \Phi G$	$J^{s i a} \Phi_{s}\left(\bar{L}_{\mathrm{L} X} H \sigma^{\mu \nu} q_{\mathrm{R} I i}\right) G_{\mu \nu a}$	$\frac{1}{\Lambda_{\Phi}^{3}} \lambda_{I}^{X}$	1	$\left\{-\frac{5}{3},-\frac{2}{3}\right\}$
Dirac Ψ_{s}	$(q \Psi) G$	$J^{s i a}\left(\bar{q}_{\mathrm{R}} \overline{\mathrm{c}}^{\prime} \sigma^{\mu \nu} \Psi_{s}\right) G_{\mu \nu a}$	$\frac{1}{\Lambda_{\Psi}} \kappa_{I}$	0	$\left\{-\frac{2}{3}, \frac{1}{3}\right\}$
		$J^{s i a}\left(\overline{q_{\mathrm{R}} \overline{\mathrm{C}}} \Psi^{\prime} \Psi_{s}\right) B^{\mu \nu} G_{\mu \nu a}$	$\frac{1}{\Lambda_{\Psi}^{3}} \kappa_{I}$		
	$(q \Psi)\|H\|^{2} G$	$J^{s i a}\left(q_{\mathrm{R}}^{\overline{\mathrm{R}} I i} \sigma^{\mu \nu} \Psi_{s}\right)\|H\|^{2} G_{\mu \nu a}$			

SEXTET COLLIDER PHENOMENOLOGY

- Consider a particular scenario with

$$
\Psi_{q} \sim\left(\mathbf{6}, \mathbf{1}, Y_{q}\right) \quad \text { and } \quad \Phi_{q} \sim\left(\mathbf{6}, \mathbf{1}, Y_{q}\right)\left[+L_{\Phi_{q}}=-1\right]
$$

- Leading operators from our catalog for these sextets:

$$
\begin{aligned}
\mathcal{L} \supset \frac{1}{\Lambda_{\Psi_{q}}}[& {\left[\kappa _ { q } ^ { I } J ^ { s i a } \left(\overline{q_{\mathrm{R}}^{\mathrm{c}}} I i\right.\right.} \\
& \left.\left.\sigma^{\mu \nu} \Psi_{q s}\right) G_{\mu \nu a}+\text { H.c. }\right] \\
& +\frac{1}{\Lambda_{\Psi_{q B}}^{3}}\left[\kappa_{q B}^{I} J^{s i a}\left(\overline{q_{\mathrm{R}}^{\mathrm{c}} I i} \Psi_{q s}\right) B^{\mu \nu} G_{\mu \nu a}+\text { H.c. }\right] \\
& \quad+\frac{1}{\Lambda_{\Phi_{q}}^{2}}\left[\lambda_{q}^{X I} J^{s i a} \Phi_{q s}\left(\overline{q_{\mathrm{R}}^{\mathrm{c}}}{ }^{\mathrm{c}} \sigma^{\mu \nu} \ell_{\mathrm{R} X}\right) G_{\mu \nu a}+\text { H.c. }\right]
\end{aligned}
$$

- Let us explore some cross sections and signatures

COLOR-SEXTET PAIR PRODUCTION

Color-SExtet pair production

LHC sextet pair-production cross sections

Single fermion production

$$
\frac{1}{\Lambda_{\Psi_{q}}} \kappa_{q}^{I} J^{s i a}\left(\overline{q_{\mathrm{R}}^{\mathrm{c}}} \overline{\sigma^{\prime}} \sigma^{\mu \nu} \Psi_{q s}\right) G_{\mu \nu a}
$$

LHC sextet single-production cross sections

FERMION + EW BOSON PRODUCTION

$$
\frac{1}{\Lambda_{\Psi_{q B}}^{3}} \kappa_{q B}^{I} J^{s i a}\left(\overline{q_{\mathrm{R}}^{\mathrm{c}}} I i \Psi_{q s}\right) B^{\mu \nu} G_{\mu \nu a}
$$

LHC $\bar{\Psi}_{u}+\gamma / Z$ production cross sections

SCALAR + LEPTON PRODUCTION

$$
\frac{1}{\Lambda_{\Phi_{q}}^{2}} \lambda_{q}^{X I} J^{s i a} \Phi_{q s}\left(\overline{q_{\mathrm{R}}^{\mathrm{c}}} I i \sigma^{\mu \nu} \ell_{\mathrm{R} X}\right) G_{\mu \nu a}
$$

LHC sextet $+e$ production cross sections

Constraining an example model

- Return to the fermion model $\propto\left(\overline{q_{\mathrm{R}}^{\mathrm{c}}} \sigma^{\mu \nu} \Psi_{q}\right) G_{\mu \nu}+$ H.c.
- Dimension-five $\Psi \rightarrow \bar{q} g$ may generate sizable dijet signal
- But what about flavor-changing neutral currents? Consider $K^{0}-\bar{K}^{0}$ mixing, hence $q=d$:

$$
\lambda^{I J} K_{s}{ }^{i j} \Phi_{q}^{\dagger s}\left(\overline{q_{\mathrm{R}}^{\mathrm{c}} I i} q_{\mathrm{R} J j}\right) \quad \frac{1}{\Lambda_{\Psi_{q}}} \kappa_{q}^{I} J^{s i a}\left(\overline{q_{\mathrm{R}}^{\mathrm{c}} I i} \sigma^{\mu \nu} \Psi_{q s}\right) G_{\mu \nu a}
$$

- Limits as strong as $\left|\lambda_{11} \lambda_{22}^{*}\right| \leq \mathcal{O}\left(10^{-6}\right) \times\left(m_{\Phi} / \mathrm{TeV}\right)^{2}$ for dimension-four operators [12, 13], but note Λ suppression in EFT

Can we estimate the cutoff scale?

Constraining $\bar{\Psi}_{u}$ as a dijet resonance

Outlook

Growing collection of experimental anomalies

+ No smoking gun for any specific framework
Effective descriptions of new physics
- $\mathrm{SU}(3)_{\mathrm{c}}$ color sextets have received attention but deserve more
- We have cataloged dimension-five and -six operators consisting of SM fields + color-sextet scalars Φ and/or Dirac fermions Ψ
- Also provided some example phenomenology for Φ and Ψ
- Many obvious extensions: embed in larger models/suggest UV completions? Move on to other color representations?

Outlook

Growing collection of experimental anomalies

+ No smoking gun for any specific framework
Effective descriptions of new physics
- $\mathrm{SU}(3)_{\mathrm{c}}$ color sextets have received attention but deserve more
- We have cataloged dimension-five and -six operators consisting of SM fields + color-sextet scalars Φ and/or Dirac fermions Ψ
- Also provided some example phenomenology for Φ and Ψ
- Many obvious extensions: embed in larger models/suggest UV completions? Move on to other color representations?

Thank you for your attention
I am happy to answer questions if we have time

Bibliography (1)

[1] T. Aaltonen et al. (CDF), Science 376, 170 (2022).
[2] L. M. Carpenter and R. Colburn, JHEP 12, 151 (2015).
[3] T. Plehn and T. M. P. Tait, J. Phys. G 36, 7 (2009).
[4] L. M. Carpenter, T. Murphy, and T. M. P. Tait, Phys. Rev. D 105, 035014 (2022).
[5] R. S. Chivukula, M. Golden, and E. H. Simmons, Phys. Lett. B 257, 403 (1991).
[6] T. Han, I. Lewis, and T. McElmurry, JHEP 01, 123 (2010).
[7] T. Han, I. Lewis, and Z. Liu, JHEP 12, 85 (2010).
[8] B. A. Dobrescu, R. M. Harris, and J. Isaacson, "Ultraheavy resonances at the LHC: beyond the QCD background," (2018), arXiv:1810.09429 [hep-ph].

Bibliography (2)

[9] Search for paired dijet resonances, Tech. Rep. (CERN, Geneva, 2022).
[10] R. Slansky, Phys. Rept. 79, 1 (1981).
[11] H. Georgi, Lie Algebras in Particle Phyiscs: From Isospin to Unified Theories, Vol. 54 (1982).
[12] R. N. Mohapatra, N. Okada, and H.-B. Yu, Phys. Rev. D 77, 011701 (2008).
[13] K. S. Babu, P. S. Bhupal Dev, E. C. F. S. Fortes, and R. N. Mohapatra, Phys. Rev. D 87, 115019 (2013).
[14] A. M. Sirunyan et al. (CMS), JHEP 08, 130 (2018).
[15] G. Aad et al. (ATLAS), JHEP 03, 145 (2020).

Bonus material

SU(3) Clebsch-Gordan coefficients

- Implementing our models requires coefficients $J^{\text {sia }}$ forming gauge-invariant contractions of $\mathbf{3} \otimes \mathbf{6} \otimes \mathbf{8}$
- Define coefficients to satisfy [6]

$$
\bar{J}_{s a i}=\left[J^{s i a}\right]^{\dagger} \quad \text { and } \quad \operatorname{tr} J_{s} \bar{J}^{t}=\delta_{s}^{t}
$$

and compute according to $\left[t_{\mathbf{6}}^{a}\right]_{s}{ }^{t}=-\left\{J^{s i b} \bar{J}_{t c j}\left[t_{\mathbf{3} \otimes \mathbf{8}}^{a}\right]_{i b}{ }^{j c}\right\}^{*}$ with

$$
t_{\mathbf{r}_{1} \otimes \mathbf{r}_{2}}^{a}=t_{\mathbf{r}_{1}}^{a} \otimes \mathbf{1}_{\mathbf{r}_{2}}+\mathbf{1}_{\mathbf{r}_{1}} \otimes t_{\mathbf{r}_{2}}^{a}
$$

- Fun fact: coefficients of different invariants are related; e.g.,

$$
J^{s i a}=-\mathrm{i} \sqrt{2} L^{i j k}\left[t_{\mathbf{3}}^{a}\right]_{j}{ }^{l} \bar{K}_{l k}^{s}
$$

with $\left\{L^{i j k}, K_{s}{ }^{i j}\right\}$ the coefficients for $\{\mathbf{3} \otimes \mathbf{3} \otimes \mathbf{3}, \mathbf{3} \otimes \mathbf{3} \otimes \overline{\mathbf{6}}\}$

CMS-EXO-16-056 summary

- Search for dijet resonances using $\mathcal{L}=36 \mathrm{fb}^{-1}$ [14]
- ≥ 1 vertex reconstructed using anti- k_{T} with $R=0.4$
- Two regimes: $m_{j j}^{\text {low }} \in[0.6,1.6] \mathrm{TeV}, m_{j j}^{\text {high }} \in(1.6,8.0] \mathrm{TeV}$
- Low-mass trigger $H_{\mathrm{T}}>250 \mathrm{GeV}$, high-mass $H_{\mathrm{T}}>800$ or 900 GeV
- No excess found over SM expectation (narrow/wide shapes generated by Pythia)
- Model-independent limits on $\sigma \times \mathrm{BF} \times \mathcal{A}$ provided for resonances decaying to $q q, q g, g g$
- $\sim 1 \mathrm{pb}$ resonance cross sections excluded for $m_{j j} \sim 1 \mathrm{TeV}$
- Worth examining: newer ATLAS dijet-resonance search, ATLAS-EXOT-2019-03 [15], using full $\mathcal{L}=139 \mathrm{fb}^{-1}$ dataset, and CMS-EXO-21-010 (dijet pairs) [9], which might see an excess

Top secret: UV completion for $\Psi \rightarrow \bar{q} g$

- Straightforward to UV complete many of our effective operators
- Consider once more the operator $\propto\left(\overline{q_{\mathrm{R}}^{\mathrm{c}}} \sigma^{\mu \nu} \Psi_{q}\right) G_{\mu \nu}$
- This operator is generated by two loops of quarks + color-triplet scalar \tilde{q} (a "squark") with the gauge-invariant interactions

$$
\mathcal{L} \supset \kappa^{I J} K_{s}{ }^{i j} \tilde{q}_{I i}\left(\bar{\Psi}_{q}^{s} q_{\mathrm{R} J j}\right)+\lambda^{I J K} L^{i j k} \tilde{q}_{I i}\left(\overline{q_{\mathrm{R}}^{\mathrm{c}}} \overline{k k} q_{\mathrm{R} J j}\right)+\text { H.c. }
$$

