Christoph Englert

Future directions on the Higgs sector

HiggsDiscovery@10 01/07/22

> LEVERHULME TRUST_____

Science and Technology Facilities Council

Ingredients of the SM

beyond the weak scale?

...we don't know (yet).

beyond the weak scale?

...we don't know (yet). No theoretical consistency argument: spotlight on experiments!

cure theoretical problems $\sim m_{\rm H}, m_{\rm t}$

facilitate consistent measurements

Large stats context?

Need for BSM - phenomenological implications?

• Relevance of current anomalies for the TeV scale?

beyond the weak scale?

...we don't know (yet). No theoretical consistency argument: spotlight on experiments!

cure theoretical problems $\sim m_{\rm H}, m_{\rm t}$

Large stats context?

facilitate consistent measurements

enhanced sensitivity to (rare) processes?

CP violation? SFOEWPT?

Need for BSM - phenomenological implications?

Relevance of current anomalies?

g-2 @ TeV scale?

theory

• correlations in particle physics, when perturbative, are parametrisable by Feynman diagrams

kinematic correlations

helicity correlations colour correlations

reverse-engineer in terms of collider observables for SM validation or exclusion

high stats: monetarizing correlations

 Can we impart Feynman-graph correlations on measurements to enhance BSM sensitivity? *Graph Neural Networks*

```
jet tagging [Dreyer, Hu `20]
```

anomaly detection [Atkinson et al. `21]

GNN EFT analysis of semi-leptonic top pair production

[Atkinson et al. `21]

[Atkinson et al. `21]

ML for EFT (e.g. top pairs)

supervised training over graph structures to enhance BSM sensitivity

traditional approach

identify fiducial region + multidimensional fit to differential distributions e.g. [CMS-TOP-16-008]

Distribution	Observable
$rac{1}{\sigma}rac{d\sigma}{d y_t^h }$	$ y_t^h $
$rac{1}{\sigma}rac{d\sigma}{d y_t^l }$	$ y_t^l $
$rac{1}{\sigma}rac{d\sigma}{d y_{tar{t}} }$	$ y_{tar{t}} $
$rac{1}{\sigma}rac{d\sigma}{dp^{t,h}_{\perp}}$	$p_{\perp}^{t,h}$
$rac{1}{\sigma}rac{d\sigma}{dp_{\perp}^{t,l}}$	$p_{\perp}^{t,l}$
$\frac{1}{\sigma} \frac{d\sigma}{dm_{t\bar{t}}}$	$m_{tar{t}}$
$\frac{1}{\sigma}\frac{d\sigma}{d y_{t\bar{t}} d m_{t\bar{t}} }$	$ y_{tar{t}} $
	$m_{tar{t}}$
$\frac{1}{\sigma}\frac{d\sigma}{dp_{\perp}^{t,h}d y_t^h }$	$p_{\perp}^{t,h}$
	$ y_t^h $

ML for EFT (e.g. top pairs)

supervised training over graph structures to enhance BSM sensitivity

traditional approach

identify fiducial region + multidimensional fit to differential distributions e.g. [CMS-TOP-16-008]

Distribution	Observable
$rac{1}{\sigma}rac{d\sigma}{d y_t^h }$	$ y_t^h $
$rac{1}{\sigma}rac{d\sigma}{d y_t^l }$	$ y_t^l $
$\frac{1}{\sigma}\frac{d\sigma}{d y_{t\bar{t}} }$	$ y_{tar{t}} $
$rac{1}{\sigma}rac{d\sigma}{dp^{t,h}_{\perp}}$	p_{\perp}^{th}
$\frac{1}{\sigma} \frac{d\sigma}{dp_{\perp}^{t,l}}$	$p_{\perp}^{t,l}$
$\frac{1}{\sigma} \frac{d\sigma}{dm_{t\bar{t}}}$	$m_{t\bar{t}}$
$\frac{1}{\sigma} \frac{d\sigma}{d y_{t\bar{t}} d m_{t\bar{t}} }$	$ y_{t\overline{t}} $
	m_{tt}
$rac{1}{\sigma}rac{d\sigma}{dp_{\perp}^{t,h}d y_{t}^{h} }$	$p_{\perp}^{t,h}$
	$ y_t^h $

GNN-improved approach

(i) GNN discrimination of multi-class problem
(ii) luminosity-optimised NN
output event selection, minimising SM probability

> scalability controlled by operator multiplicity

ML for EFT (e.g. top pairs)

supervised training over graph structures to enhance BSM sensitivity

	$2.3 { m ~fb}^{-1}$		3 ab^{-1}	
	Individual	Profiled	Individual	Profiled
\bar{C}_G	0.07%	14.53%	0.07%	11.72%
$C^{(3)33}_{\varphi q}$	33.74%	34.16%	33.73%	33.82%
\bar{C}^{33}_{uG}	28.29%	32.12%	28.28%	30.76%
$ar{C}^{33}_{uW}$	34.86%	35.36%	34.85%	35.57%
$\bar{C}_{qq}^{(1)i33i}$	3.50%	3.52%	3.50%	3.23%
$\bar{C}_{qq}^{(3)i33i}$	4.35%	4.31%	4.35%	5.01%
$\bar{C}_{qq}^{(3)ii33}$	63.83%	—	63.83%	72.06%
$\bar{C}_{qu}^{(8)33ii}$	3.45%	3.45%	3.45%	3.39%
$\bar{C}_{qu}^{(8)ii33}$	3.74%	3.80%	3.74%	3.77%
$\bar{C}_{ud}^{(8)33ii}$	4.62%	4.63%	4.62%	4.64%
\bar{C}^{i33i}_{uu}	3.38%	3.41%	3.38%	3.83%
$\bar{C}_{1a}^{(3)ii33}$	_	_	10.57%	40.26%

 large improvement attainable when BSM correlations affect exclusive phasespace correlations

no improvement when inclusive selections determine sensitivity

expect additional improvements for UV-matched fits

fractional improvement vs CMS-TOP-16-008

[ATLAS, 2006.15458]

ML for Higgs physics: CP violation

 evidence for BSM physics ?

Wilson	Includes	95% confidence	<i>p</i> -value (SM)	
coefficient	$ \mathcal{M}_{d6} ^2$	Expected	Observed	
c_W/Λ^2	no	[-0.30, 0.30]	[-0.19, 0.41]	45.9%
	yes	[-0.31, 0.29]	[-0.19_0.41]	43.2%
\tilde{c}_W/Λ^2	no	[-0.12, 0.12]	[-0.11, 0.14]	82.0%
	yes	[-0.12, 0.12]	[-0.11, 0.14]	81.8%
c_{HWB}/Λ^2	no	[-2.45, 2.45]	2 78 1 13	29.0%
	yes	[-3.11, 2.10]	[-6.31, 1.01]	25.0%
$\tilde{c}_{HWB}/\Lambda^2$	no	[-1.06, 1.06]	[0.23, 2.34]	1.7%
	yes	[-1.06, 1.06]	[0.23, 2.35]	1.6%

[ATLAS, 2006.15458]

Higgs CP violation

- asymmetry-based measurement in elw. Z+2jet production
- symmetric CP even effects cancel
- challenging to combat fluctuations

 evidence for BSM physics ?

Going beyond

CP-interference net zero results from cancelling event weights

 can create (near)
 optimal observable
 from binary ± weight
 distinction? [Bhardwaj et al. `21]

Going beyond

- CP-interference net zero results from cancelling event weights can create (near) optimal observable from *binary* ± *weight* distinction? [Bhardwaj et al. `21]
 - test cases $h \rightarrow ZZ^*$ (single scale) [works also for and weak boson fusion]

Going beyond

- CP-interference net zero results from cancelling event weights can create (near) optimal observable from *binary* ± *weight* distinction? [Bhardwaj et al. `21]
 - test cases $h \rightarrow ZZ^*$ (single scale) [works also for and weak boson fusion]

baseline is ATLAS 41 `21 (139/fb) [CERN-EP-2021-019]

CP-odd observable	$c_{\Phi \widetilde{W} B} / \Lambda^2 \; [\text{TeV}^{-2}]$	$c_{\Phi \widetilde{B}}/\Lambda^2 \; [\text{TeV}^{-2}]$	$c_{\Phi \widetilde{W}} / \Lambda^2 \; [\text{TeV}^{-2}]$
$\Phi_{4\ell}$	[-6.2, 6.2]	[-1.4, 1.4]	[-30, 30]
$\Phi_{4\ell},m_{12}$	[-1.9, 1.9]	[-0.85, 0.85]	[-3.7, 3.7]
O_{NN} (binary)	[-1.5, 1.5]	[-0.75, 0.75]	[-3.0, 3.0]
O_{NN} (multi-class)	[-1.4, 1.4]	[-0.71, 0.71]	[-2.7, 2.7]

improvements beyond multi-dim "traditional" fits

p [Cabibbo, Maksymowicz `68]
[Truman `78]
[Dell `Aquila, Nelson `86]...

beyond the TeV scale?

...we don't know (yet). No theoretical consistency argument: spotlight on experiments!

anomalous muon magnetic moment

combined experimental and theoretical effort

Theory White Paper [Aoyama et al. 2006.04822]

e.g. [Athron et al. `21]

Single field SM extensions

comprehensive analysis of new physics potential

Model	Spin	$SU(3)_C \times SU(2)_L \times U(1)_Y$	Result for $\Delta a_{\mu}^{\text{BNL}}$, Δa_{μ}^{2021}
1	0	(1, 1, 1)	Excluded: $\Delta a_{\mu} < 0$
2	0	(1 , 1 ,2)	Excluded: $\Delta a_{\mu} < 0$
3	0	(1, 2, -1/2)	Updated in Sec. 3.2
4	0	(1, 3, -1)	Excluded: $\Delta a_{\mu} < 0$
5	0	$(\overline{3},1,1/3)$	Updated Sec. 3.3.
6	0	$(\overline{3},1,4/3)$	Excluded: LHC searches
7	0	$({\overline{\bf 3}},{\bf 3},1/3)$	Excluded: LHC searches
8	0	$({\bf 3},{f 2},7/6)$	Updated Sec. 3.3.
9	0	(3, 2, 1/6)	Excluded: LHC searches
10	1/2	(1, 1, 0)	Excluded: $\Delta a_{\mu} < 0$
11	1/2	(1, 1, -1)	Excluded: Δa_{μ} too small
12	1/2	(1, 2, -1/2)	Excluded: LEP lepton mixing
13	1/2	(1, 2, -3/2)	Excluded: $\Delta a_{\mu} < 0$
14	1/2	(1, 3, 0)	Excluded: $\Delta a_{\mu} < 0$
15	1/2	(1, 3, -1)	Excluded: $\Delta a_{\mu} < 0$
16	1	$({f 1},{f 1},0)$	Special cases viable
17	1	$({f 1},{f 2},-3/2)$	UV completion problems
18	1	(1 , 3 ,0)	Excluded: LHC searches
19	1	$({f \overline{3}},{f 1},-2/3)$	UV completion problems
20	1	$({f \overline{3}},{f 1},-5/3)$	Excluded: LHC searches
21	1	$(\overline{3}, 2, -5/6)$	UV completion problems
22	1	$(\overline{3},2,1/6)$	Excluded: $\Delta a_{\mu} < 0$
23	1	$(\overline{3},3,-2/3)$	Excluded: proton decay

[Atkinson et al. `21, `22]

2HDMs: flavour & colliders

 m_W

2HDMs: flavour & colliders

[Anisha et al. `22]

modified ELW baryogenesis: 2HDM

• ELW baryogenesis increasingly disfavoured in 2HDM II

[Atkinson et al. `21]

new EFT-parametrised	O_6^{111111}	$(\Phi_1^\dagger \Phi_1)^3$	O_6^{222222}	$(\Phi_2^\dagger\Phi_2)^3$
dynamics	O_6^{111122}	$(\Phi_1^\dagger\Phi_1)^2(\Phi_2^\dagger\Phi_2)$	O_6^{112222}	$(\Phi_1^\dagger\Phi_1)(\Phi_2^\dagger\Phi_2)^2$
$\mathcal{E}_{+} = \frac{v(T_C)}{v(T_C)} > 1$	O_6^{122111}	$(\Phi_1^\dagger\Phi_2)(\Phi_2^\dagger\Phi_1)(\Phi_1^\dagger\Phi_1)$	O_6^{122122}	$(\Phi_1^{\dagger}\Phi_2)(\Phi_2^{\dagger}\Phi_1)(\Phi_2^{\dagger}\Phi_2)$
$S_c - T_C \sim 1$	O_6^{121211}	$(\Phi_1^{\dagger}\Phi_2)^2(\Phi_1^{\dagger}\Phi_1) + \text{h.c.}$	O_6^{121222}	$(\Phi_1^{\dagger}\Phi_2)^2(\Phi_2^{\dagger}\Phi_2) + \text{h.c.}$

DiHiggs cross section tells the tale

top caveats

large interference effects of Higgs "signal" with QCD background

[Gaemers, Hoogeveen `84] [Dicus et al. `94]....

 top resonance searches in Higgs sector extensions with narrow width approximation is inadequate!

Post-Higgs discovery the goal post has shifted

• SM is renormalisable: blessings of the past hold us prisoner today

Post-Higgs discovery the goal post has shifted

• SM is renormalisable: blessings of the past hold us prisoner today

feeling about BSM ~2010

Post-Higgs discovery the goal post has shifted

- SM is renormalisable: blessings of the past hold us prisoner today
- "Work under the lamppost"
 untenable (in my opinion)

[Frank's pep talk]

new ideas: relaxion, criticality, cosmology...

> new tools: less traditional approaches

new territory: high intensity, ...

• We know there's BSM physics. Where is it hiding?

- scalar sector of the SM still very much unexplored
 - experimental programme is well-developed
 - multi-Higgs production is crucial to understand our vacuum and its potential importance for the early Universe
 - margin for CP violation in Higgs interactions

Sakharov

- the curious case of (g-2)_µ: looks increasingly unlikely that this is BSM, little motivated phenomenological scope
- technical advances at the HL frontier will help to get a more fine grained picture of the electroweak scale: huge discovery potential

general decomposition of three-point QED vertex

$$= -ie\bar{u}(p') \left[\gamma^{\mu}F_{1}(k^{2}) + \frac{i}{2M_{\mu}}\sigma^{\mu\nu}k_{\nu}F_{2}(k^{2}) + \dots \right] u(p)$$

$$= -ie\bar{u}(p') \left[\gamma^{\mu}F_{1}(k^{2}) + \frac{i}{2M_{\mu}}\sigma^{\mu\nu}k_{\nu}F_{2}(k^{2}) + \dots \right] u(p)$$

$$= -ie\bar{u}(p') \left[\gamma^{\mu}F_{1}(k^{2}) + \frac{i}{2M_{\mu}}\sigma^{\mu\nu}k_{\nu}F_{2}(k^{2}) + \dots \right] u(p)$$

• magnetic moment $\vec{\mu} = \frac{e}{2m} [2F_1(0) + 2F_2(0)]\vec{S}$ gives $g = 2 + 2F_2(0)$

new physics predominantly in muons, but large modification means either strong coupling or light states