

Measurements of the Higgs boson mass.

Gaetano Αθανάσιος Barone

Brookhaven National Laboratory

HiggsDiscovery@10

July 2022

Importance of m_H in several aspects of our understanding of fundamental physics.

Power law expansion of the potential

$$V(h) = \frac{1}{4}\lambda h^4 + \lambda v h^3 + \lambda v^2 h^2$$

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + i \bar{\Psi} D \psi + D_{\mu} \Phi^{\dagger} D^{\mu} \Phi - V(\Phi) + \bar{\Psi}_{L} \hat{Y} \Phi \Psi_{R} + h.c.$$

- Understanding the perturbative expansion of its potential $(\lambda v^2 h^2)$.
- Precise higher order corrections to the theory predictions of the Higgs interactions depend on the value of m_H.
- Input to precision global fit of the Standard Model.
- Free parameter to be determined by the experiment.

Global Electroweak fits from the Gfitter Collaboration

Importance of m_H in several aspects of our understanding of fundamental physics.

Power law expansion of the potential

$$V(h) = \frac{1}{4}\lambda h^4 + \lambda v h^3 + \lambda v^2 h^2$$

$$\begin{aligned} \mathcal{L} &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ &+ i \bar{\Psi} D \psi \\ &+ D_{\mu} \Phi^{\dagger} D^{\mu} \Phi - V(\Phi) \\ &+ \bar{\Psi}_L \hat{Y} \Phi \Psi_R + h.c. \end{aligned}$$

- Understanding the perturbative expansion of its potential $(\lambda v^2 h^2)$.
- Precise higher order corrections to the theory predictions of the Higgs interactions depend on the value of m_H.
- Input to precision global fit of the Standard Model.
- Free parameter to be determined by the experiment

• Importance of $m_{\rm H}$ in several aspects of our understanding of fundamental physics.

Power law expansion of the potential

$$V(h) = \frac{1}{4}\lambda h^4 + \lambda v h^3 + \lambda v^2 h^2$$

- Understanding the perturbative expansion of its potential $(\lambda v^2 h^2)$.
- Precise higher order corrections to the theory predictions of the Higgs interactions depend on the value of m_H.
- Input to precision global fit of the Standard Model.
- Free parameter to be determined by the experiment

Fundamental constants of the Standard Model

- Importance of $m_{\rm H}$ in several aspects of our understanding of fundamental physics.
 - Point of performance benchmark for ATLAS and CMS.
 - Solenoid (4T) vs solenoid + toroid, lead tungstate scintillating crystals vs liquid argon sandwich, ...
 - As C.Anastopoulos said yesterday, their names say it all.

5

How to race ?

• In the $H \rightarrow ZZ \rightarrow 4\ell$ the signal is a narrow resonant peak above a background continuum.

- (I) Statistical precision precision depends upon: resolution of the reconstructed final state and number of signal events.
- (II) Systematic uncertainty from understanding of detector performance:

Run I Discovery

- Run-I featured in primis the discovery in July 2012
 - First properties measurements
 - How did the mass measurements evolve since the discovery.
 - Where do we stand with our understanding of the Higgs boson mass 10 years later and how did we get there ?

• ATLAS+CMS Run I precision on m_H of 2 per mille.

• combined measurement from $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$.

• For both channels dominated by statistical uncertainty.

 $m_H = 125.09 \pm 0.21 \text{ (stat.)} \pm 0.11 \text{ (scale)} \pm 0.02 \text{ (other)} \pm 0.01 \text{ (theory) GeV}$

• ATLAS+CMS Run I precision on m_H of 2 per mille

• For both channels dominated by statistical uncertainty.

G. Barone

• ATLAS+CMS Run I precision on *m_H* of 2 per mille

• combined measurement from $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$.

▶ In the mean time and within ATLAS,

Energy resolution

- We used well known processes to calibrate the detector response.
 - Resonant process of J/ψ , (Y) and Z,
 - for modelling of calorimeters deposits, alignment precision, etc.

• ATLAS+CMS Run I precision on m_H of 2 per mille.

• combined measurement from $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$.

• ATLAS compatibility between $\gamma\gamma$ and 4ℓ 4%

June-22

• ATLAS run I precision on m_H of 0.33%

• combined measurement from $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$.

Energy resolution

- We used well known processes to calibrate the detector response.
 - Resonant process of J/ψ , (Y) and Z,
 - for modelling of calorimeters deposits, alignment precision, etc.

effects ?

met effect of worsening resolution and biasing the result.

June-22

Mass measurement

Mass measurement

effects ?

Muon p_T resolution

- Local misalignments and second order effects:
 - Charge dependent sagitta bias, with net effect of worsening resolution
 - In-situ correction based on $Z \rightarrow \mu \mu$ data, recovers up to 5% in resolution.
- Momentum scale understood down to the per mille level
 - Precision down to 0.5 per mille for $|\eta| < 1.0$

Biased positive and negative tracks
Corrected positive and negative tracks

$E_{T}(e/\gamma)$ resolution

- Mass measurement
- Good energy calibration necessary for increased precision on m_H
 - Two step approach: i) material energy loss and ii) global calorimetric scale from $Z \rightarrow ee$ data.
 - Also here: crisis mode to avoid the crisis mode.
- Total scale uncertainty of at 40 GeV at the per-mille level.

$H \rightarrow ZZ \rightarrow 4\ell$ results

- Final estimate from 4x4 simultaneous un-binned fit
 - Four kinematic categories and four final states
- Good agreement between channels.
- Systematic uncertainty of 50 MeV

Systematic effect	Uncertainty on $m_H^{ZZ^*}$ [MeV]
Muon momentum scale	40
Electron energy scale	26
Pile-up simulation	10
Simulation statistics	8

Result:

Combined ATLAS 4μ $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$ 4e $H \rightarrow ZZ^* \rightarrow 4l$ 2µ2e 2e2µ 3 ť22 123 124 125 126 127 128 m_{H} [GeV]

25% improved precision with respect to Run I ATLAS Combination.

$$m_H^{ZZ^*} = 124.79 \pm 0.36 \ (\pm 0.05 \text{ stat only}) \text{ GeV}$$

-2 In(A)

arXiv:1806.00242

4ℓ and γγ measurements are combined with ATLAS Run 1 result

arXiv:1806.00242

• ATLAS Run I + 2 (36.1) comparable precision to LHC Run I combination.

 $m_H = 124.97 \pm 0.24 (\pm 0.16 \text{ stat only}) \text{ GeV}$

Combination

4ℓ and $\gamma\gamma$ measurements are combined with ATLAS Run 1 result

Mass measurement

• CMS Run I + 2 (36.1) comparable precision to LHC Run I combination.

Towards full Run 2

• Three-prong approach to reduce uncertainty at analysis level:

- (i) (~15%) from m_{12} constraint to m_Z with kinematic fit and m_Z constraints on alignment weak modes.
- (i) (~2%) from kinematic discriminant selecting signal and background events
 - Boosted Decision Tree on $p_T(4\ell)$, $y(4\ell)$ (ATLAS) and $\log(|\mathcal{M}_H|^2/|\mathcal{M}_{ZZ^*}|^2)$
- (ii) (2-3% 11%) from multivariate per-event resolution likelihood.
 - Neural network to solve uncertainty correlations induced by kinematic discriminant.

First full Run-2 results

• ATLAS results: 200 MeV total, systematic uncertainty of ~70 MeV

Systematic Uncertainty	Impact (GeV)
Muon momentum scale	+0.08, -0.06
Electron energy scale	± 0.02
Muon momentum resolution	±0.01
Muon sagitta bias correction	± 0.01

 $m_H = 124.92^{+0.21}_{-0.20}$ GeV

Conclusion

- Higgs physics provide an excellent picture for
 - *m*_H one of the most precise measurements in the LHC scientific program.
 - High precision by ATLAS and CMS on $m_{\rm H}$ achieved by:

(i) Deep understanding our detector at the per-mille level and

- (ii) Developing smart techniques for best usage of this understanding within the data analysis.
- After a decade of cracking the mass problem:

1. Measurement of $m_{\rm H}$ at the sub per mille precision level.

2. Clear understanding of our detectors performance on new resonance.

Additional material

Improve everywhere

• Three-prong approach to reduce uncertainty at analysis level:

- (i) (~15%) from m_{12} constraint to m_Z with kinematic fit and m_Z constraints on alignment weak modes.
- (i) (~2%) from kinematic discriminant selecting signal and background events
 - Boosted Decision Tree on $p_T(4\ell)$, $y(4\ell)$ (ATLAS) and $log(|\mathcal{M}_H|^2/|\mathcal{M}_{ZZ^*}|^2)$ (ATLAS and CMS).
- (ii) (2-3% 11%) from multivariate per-event resolution likelihood.
 - Neural network to solve uncertainty correlations induced by kinematic discriminant.

Mass measurement

<u>arXiv:1806.00242</u>

- Analytical function in kinematic and detector categories.
- Reduction of uncertainty through categorisation of events as a function of resolution and signal significance.
- Expected statistical uncertainty of 0.21 GeV and 0.34 GeV systematic uncertainty

 $m_H^{\gamma\gamma} = 124.93 \pm 0.40 \ (\pm 0.21 \text{ stat only}) \text{ GeV}$

Source	Systematic uncertainty in m_H [MeV]
EM calorimeter response linearity	60
Non-ID material	55
EM calorimeter layer intercalibration	55
$Z \rightarrow ee$ calibration	45
ID material	45
Lateral shower shape	40
Muon momentum scale	20
Conversion reconstruction	20
$H \to \gamma \gamma$ background modelling	20
$H \to \gamma \gamma$ vertex reconstruction	15
e/γ energy resolution	15
All other systematic uncertainties	10

Mass measurement

arXiv:1806.00242

- Analytical function in kinematic and detector categories.
- Reduction of uncertainty through categorisation of events as a function of resolution and signal significance.
- Expected statistical uncertainty of 0.21 GeV and 0.34 GeV systematic uncertainty

 $m_H^{\gamma\gamma} = 124.93 \pm 0.40 \ (\pm 0.21 \text{ stat only}) \text{ GeV}$

Source	Systematic uncertainty in m_H [MeV]
EM calorimeter response linearity	60
Non-ID material	55
EM calorimeter layer intercalibration	55
$Z \rightarrow ee$ calibration	45
ID material	45
Lateral shower shape	40
Muon momentum scale	20
Conversion reconstruction	20
$H \to \gamma \gamma$ background modelling	20
$H \to \gamma \gamma$ vertex reconstruction	15
e/γ energy resolution	15
All other systematic uncertainties	10

$E_{T}(e/\gamma)$ resolution

- Good energy calibration necessary for increased precision on m_H
 - Two step approach: i) material energy loss and ii) global calorimetric scale from $Z \rightarrow ee$ data
- Total scale uncertainty of at 40 GeV at the per-mille level.

$E_T(e/\gamma)$ resolution

- Mass measurement
- Good energy calibration necessary for increased precision on m_H
 - Two step approach: i) material energy loss and ii) global calorimetric scale from $Z \rightarrow ee$ data
- Total scale uncertainty of at 40 GeV at the per-mille level.

• ATLAS run I precision on m_H of 0.33%

• combined measurement from $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$.

Channel	Mass measurement [GeV]
$H \to \gamma \gamma$	$125.98 \pm 0.42 (\text{stat}) \pm 0.28 (\text{syst}) = 125.98 \pm 0.50$
$H \rightarrow ZZ^* \rightarrow 4\ell$	$124.51 \pm 0.52 \text{ (stat)} \pm 0.06 \text{ (syst)} = 124.51 \pm 0.52$
Combined	$125.36 \pm 0.37 \text{ (stat)} \pm 0.18 \text{ (syst)} = 125.36 \pm 0.41$

For both channels dominated by statistical uncertainty

- At Run2 aim in improving significantly on $\delta m_{\rm H}$:
 - Expect 7 times more candidates, with 139 fb⁻¹ at \sqrt{s} =13 TeV

Run I Legacy

- Run-I featured in primis the discovery
 - First properties measurements
 - Programme largely limited by statistical accuracy.
- Properties:
 - ATLAS precision in *m_H* of 0.33%:
 - Couplings measured to 10% to 25% precision
 - $H \rightarrow inv.$ constrained to < 30%
 - First studies of $J^{PC} = 0^{++}$, (indirect) width $\Gamma_H < 14.4$ MeV (15.2 MeV)

Channel	Mass measurement [GeV]
$H \rightarrow \gamma \gamma$	$125.98 \pm 0.42 \text{ (stat)} \pm 0.28 \text{ (syst)} = 125.98 \pm 0.50$
$H \rightarrow ZZ^* \rightarrow 4\ell$	$124.51 \pm 0.52 \text{ (stat)} \pm 0.06 \text{ (syst)} = 124.51 \pm 0.52$
Combined	$125.36 \pm 0.37 \text{ (stat)} \pm 0.18 \text{ (syst)} = 125.36 \pm 0.41$

June-22

National Laboratory

- Analytical function in kinematic and detector categories.
- Reduction of uncertainty through categorisation of events as a function of resolution and signal significance.
- Expected statistical uncertainty of 0.21 GeV and 0.34 GeV systematic uncertainty

34

Mass measurement

June-22

• Electrons (e).

- Isolated objects clustered from calorimeter energy deposits with associated ID track.
- $E_{\rm T}$ > 7 GeV, $|\eta|$ < 2.47 and $|z_0 \sin(\vartheta)|$ < 0.5 mm
- Muons (µ).
 - Combined track fit of Inner Detector and Muon Spectrometer hits,
 - $p_T > 5$ GeV, $|\eta| < 2.7 |z_0 \sin(\vartheta)| < 0.5$ mm of "loose or medium quality"
 - Isolated objects
- Missing transverse energy ($E_{\rm T}^{\rm miss}$).
 - Inferred from transverse momentum imbalance

- Electrons (e).
 - Isolated objects clustered from calorimeter energy deposits with associated ID track.
 - $E_T > 7 \text{ GeV}, |\eta| < 2.47 \text{ and } |z_0 \sin(\vartheta)| < 0.5 \text{ mm}$
- Muons (µ).
 - Combined track fit of Inner Detector and Muon Spectrometer hits,
 - $p_T > 5 \text{ GeV}, |\eta| < 2.7 |z_0 \sin(\vartheta)| < 0.5 \text{ mm of "loose or medium quality"}$
 - Isolated objects

• Jets (*j*).

- Energy deposit grouping with *infra*-red safe algorithm:
- ▶ $p_{\rm T}$ > 25 GeV and $|\eta|$ < 4.5
 - + Clustering with anti- $k_{\rm T,}$ $R{=}0.4$

• Electrons (e).

- Isolated objects clustered from calorimeter energy deposits with associated ID track.
- $E_{\rm T}$ > 7 GeV, $|\eta|$ < 2.47 and $|z_0 \sin(\vartheta)|$ < 0.5 mm
- Muons (µ).
 - Combined track fit of Inner Detector and Muon Spectrometer hits,
 - *p*_T > 5 GeV, |η| < 2.7 |z₀ sin(ϑ)| < 0.5 mm of "loose or medium quality"
 - Isolated objects
- Photons (γ).
 - Clustering of calorimeter energy deposits.
 - Identified with rectangular cuts on shower shapes.

37

• Electrons (e).

- Isolated objects clustered from calorimeter energy deposits with associated ID track.
- $E_T > 7 \text{ GeV}, |\eta| < 2.47 \text{ and } |z_0 \sin(\vartheta)| < 0.5 \text{ mm}$
- Muons (µ).
 - Combined track fit of Inner Detector and Muon Spectrometer hits,
 - *p*_T > 5 GeV, |η| < 2.7 |z₀ sin(ϑ)| < 0.5 mm of "loose or medium quality"
 - Isolated objects

• Jets (*j*).

ooknaven

National Laboratory

- Energy deposit grouping with *infra*-red safe algorithm:
- $p_{\rm T}$ > 25 GeV and $|\eta|$ < 4.5
 - Clustering with anti- $k_{T, R}=0.4$

Muon p_T resolution

- Resolution muon channels (4 μ , 2e2 μ and 4 μ) crucial for m_H uncertainty:
 - Excellent momentum resolution of about 1% at about p_T 45 ~GeV.
- ullet Momenta calibrated to ${\mathrm J}/\psi$ and Z samples in data
 - for residual mis modelling of E^{loss} in calorimeters, alignment precision etc.
 - Including corrections to data accounting for alignment weak modes.
 - Precision down to 0.5 per mille for $|\eta| < 1.0$

Mass measurement

Muon p_T resolution

- Resolution muon channels (4 μ , 2e2 μ and 4 μ) crucial for m_H uncertainty:
 - Excellent momentum resolution of about 1% at about p_T 45 ~GeV.
- ullet Simulated momenta calibrated to ${\mathrm J}/\psi$ and Z samples in data
 - for residual mis modelling of E^{loss} in calorimeters, alignment precision etc.
 - Uncertainty of about 10% on the resolution and 0.5% on the momentum scale.

$E_T(e/\gamma)$ resolution

- Mass measurement
- Good energy calibration necessary for increased precision on m_H
 - Two step approach: i) material energy loss and ii) global calorimetric scale from $Z \rightarrow ee$ data
- Total scale uncertainty of at 40 GeV at the per-mille level.

- $H \rightarrow \gamma \gamma$ updated result at Run II.
 - Analytical function in kinematic and detector categories.
 - Reduction of uncertainty through categorisation of events as a function of resolution and signal significance.
- Expected statistical uncertainty of 0.21 GeV and 0.34 GeV systematic uncertainty

Source	Systematic uncertainty in m_H [MeV]
EM calorimeter response linearity	60
Non-ID material	55
EM calorimeter layer intercalibration	55
$Z \rightarrow ee$ calibration	45
ID material	45
Lateral shower shape	40
Muon momentum scale	20
Conversion reconstruction	20
$H \to \gamma \gamma$ background modelling	20
$H \to \gamma \gamma$ vertex reconstruction	15
e/γ energy resolution	15
All other systematic uncertainties	10

<u>arXiv:1806.00242</u>

National Laboratory

- II.
- Analytical function in kinematic and detector categories.
- Reduction of uncertainty through categorisation of events as a function of resolution and signal significance.
- Expected statistical uncertainty of 0.21 GeV and 0.34 GeV systematic uncertainty

43

arXiv:1806.00242

Mass measurement

June-22

• ATLAS run I precision on *m_H* of 0.33%

• combined measurement from $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$.

Channel	Mass measurement [GeV]
$H \rightarrow \gamma \gamma$	$125.98 \pm 0.42 \text{ (stat)} \pm 0.28 \text{ (syst)} = 125.98 \pm 0.50$
$H \rightarrow ZZ^* \rightarrow 4\ell$	$124.51 \pm 0.52 \text{ (stat)} \pm 0.06 \text{ (syst)} = 124.51 \pm 0.52$
Combined	$125.36 \pm 0.37 \text{ (stat)} \pm 0.18 \text{ (syst)} = 125.36 \pm 0.41$

For both channels dominated by statistical uncertainty

