The search for the Higgs boson at the Tevatron: The ~10 years prior to the discovery

Ben Kilminster University of Zürich

~July 4th, 2022

Story from my perspective starting as a 1st year grad student in 1998

1998 (as a 1st year grad student)

- Tevatron (CDF/D0) had just discovered the top quark in 1995
 - Inspired many of us to join Tevatron Run 2
 - Colliding beams to be in 2000
 - Prospects of 20 fb⁻¹ integrated luminosity

hep-ph/0010338

- Joined SUSY-Higgs working group to help with Higgs sensitivity study
- 2000 report results: With ~10 fb⁻¹, prospect of 3-Sigma evidence for a 125 GeV Higgs boson

1998 - 2004

• Slow start to Run 3, and realization that the Tevatron could not switch from 396 to 132 ns bunch crossings

A large uncertainty in the expected integrated luminosity lay ahead Design Lumi reduced to 8 fb⁻¹

Should we be optimistic or pragmatic ?

The optimists and pragmatists at D0/CDF started thinking of ways to use the extra time between bunches to upgrade the triggers and mitigate the pileup just in case we could reach design

So as a starting postdoc in 2004, I got to work on the upgrade of the CDF track trigger to 3D

In 2005, with 1 fb⁻¹ and hope ... what were we looking for ?

Higgs at the Tevatron

Summary of SM Higgs searches

2003 Sensitivity Projections

- m_H = 115 GeV
 - ~ 2 fb⁻¹ for exclusion (if not there)
 - ~ 4 fb⁻¹ for m_H = 115 3 σ evidence
- Assumes :
 - all Higgs channels combined at both CDF and D0
 - realistic data, no systematics
- 8 fb⁻¹ by 2009 is design

2005 Status

- CDF preliminary results with 200 400 pb⁻¹ data
 - channels not combined, some missing
 - need factor of 30-40
 - □ factor of ~20 from data up to 2009
 - □ factor of 2 from CDF/D0 combination
- Working on ways to improve sensitivity
 - Neural Nets for everyone ! (factor of ~1.7)
 - Improved jet resolution (1.1 for each 1%)
 - Improved lepton acceptance (> 1.5)

Ben Kilminster

PANIC 2005: CDF SM & MSSM Higgs

 $\cdot H \cdot E$

So How Do We Get There??

Luminosity Equivalent $(s/\sqrt{b})^2$

Improvement	WH→lvbb	ZH→vvbb	ZH→llbb
Mass resolution	1.7	1.7	1.7
Continuous b-tag (NN)	1.5	1.5	1.5
Forward b-tag	1.1	1.1	1.1
Forward leptons	1.3	1.0	1.6
Track-only leptons	1.4	1.0	1.6
NN Selection	1.75	1.75	1.0
WH signal in ZH	1.0	2.7	1.0
Product of above	8.9	13.3	7.2
CDF+DØ combination	2.0	2.0	2.0
All combined	17.8	26.6	14.4
	Emprovement Mass resolution Continuous b-tag (NN) Forward b-tag Forward leptons Forward leptons Frack-only leptons NN Selection WH signal in ZH Product of above CDF+DØ combination All combined	ImprovementWH→lvbbMass resolution1.7Continuous b-tag (NN)1.5Forward b-tag1.1Forward leptons1.3Frack-only leptons1.4NN Selection1.75WH signal in ZH1.0Product of above8.9CDF+DØ combination2.0All combined17.8	ImprovementWH \rightarrow lvbbZH \rightarrow vvbbMass resolution1.71.7Continuous b-tag (NN)1.51.5Forward b-tag1.11.1Forward leptons1.31.0Frack-only leptons1.41.0NN Selection1.751.75WH signal in ZH1.02.7Product of above8.913.3CDF+DØ combination2.02.0All combined17.826.6

Expect a factor of ~10 luminosity improvement per

channel, and a factor of 2 from CDF+DØ Combination

Ben Kilminster

PANIC 2005: CDF SM & MSSM Higgs

24 Oct. 2005; p.16 of 13

This clock sat in Wilson Hall at Fermilab

Slide from 2005 Accelerator Division, CDF, and DO working together against the clock 642 14 09 298 LHC FIRST COLLISION

David vs. Goliath

Slide from 2013

Ben Kilminster, Higgs@10, June 2022

CDF & DO needed to be resourceful with data

Multivariate signal discrimination

From 2006 slides $ZH \rightarrow \ell\ell bb$ Z + h.f. NN Output TTbar NN output ZH NN output 3.5 3 2.5 0.02 2D Neural Net Discriminant 0.01 (1,1)NBN 9.4 130.2 190 0 0.2 1 24 202 0 0 0.2 0.4 0.6 VS ТТ Search for $ZH \rightarrow 1^{+1} b\overline{b}$ CDF II Preliminary Ldt = 0.97 - 1.02 fb⁻¹ Number of Events 14 Data 12 Standard Model Backgrounds Standard Model Errors 10 TTBAR Z+jets ZH $ZH \rightarrow IIbb X 5 (M_{H} = 120 \text{ GeV/c}^{2})$ ZZ, ZW (1,0) (0,0)Training on : TT,ZH,Z+jets 2 Allow other shapes to fall in place: 0.2 0.4 0.6 0.8 Fakes, ZZ, ZW Slice along ZH vs TTBAR axis

Ben Kilminster, Higgs@10, June 2022

The invention of "trackMET"

Used as part of a "trackMET NN" to correlate vertex, tracks, calorimeter towers

Jet energy resolution evolution

- **1. Calorimeter-based cone**
- 2. Kinematic fit using MET to correct jet energy (ZH → ℓℓbb)
- 3. H1-style algorithm (track PT from primary vertex replaces HCAL energy)
- 4. B-specific NN jet energy corrections (ie, impact parameter significance correlated to b-jet energy)
- **5.** Addition of $\pi^0 \rightarrow \gamma \gamma$ measurements from Shower-max ECAL detector

Improved b-jet Energy Correction for $H o b ar{b}$ Searches at CDF

1107.3026 [hep-ex]

B-tagging evolution

Higgs Optimized b Identification Tagger (HOBIT)

- 1. secondary vertex (SECVTX) algorithm
- 2. Tight and loose secvtx categories split purity
- 3. NN to classify b-jets as light, charm, B
- 4. additional category with impactparameter b-tagger

5. NN combining multiple b-taggers & soft muon info

Ben Kilminster, Higgs@10, June 2022

Trigger & data usage evolution

- 1. single-object electron, muon, MET triggers (tracking at L1 at Tevatron)
- 2. Upgrade L1 track triggers to 3D
- 3. Add no-track triggers
- 4. Add triggers for multiple objects
 (Z→ ee notrack trigger)
- 5. Consider every event coming in on any trigger, use NN regression to calculate efficiencies
- 6. Add back in data marked "bad" and parameterize inefficiency

B. Kilminster, HEP seminar, Jan. 2008

Ben Kilminster, Higgs@10, June 2022

Incorporate more channels !

2006 : first CDF + D0 combination

2009 : first exclusion (m_H != 170 GeV)

Much thanks to previous Higgs conveners !

Mark Kruse

Matt Herndon

Wear your hats proudly !

Ben Kilminster, CDF Collaboration meeting Jan 09

20

2010 was a big year for Tevatron Higgs

Slide from 2010

Higgs boson searches at the Tevatron

MISSING PARTICLE:

01.

sur la physique des hautes éne

CHEP

Name: Higgs boson Age: 13.7 billion years Missing: 45 years Birthday: Every few days at Fermilab Favorite trait: Mass Favorite particle: top guark Favorite Hangout: Tevatron

> ICHEP 2010 July 26, 2010

Tevatron

- $p \overline{p}$ collisions with $\sqrt{s} = 1.96$ TeV
- Two collider experiments, CDF & D0

7

Tevatron Higgs storyline

How to build an advanced Higgs analysis program

- Start with basic analysis for particular channel
- Bootstrap special techniques to gain sensitivity
 - □ Improve acceptance
 - > Loosen lepton ID & b-tag requirements
 - > Add backup triggers
 - > Relax kinematic selection
 - **D** But... backgrounds increase & become more difficult to model
 - > Incorporate specialized background rejection techniques
 - > Don't cut, separate out events into categories with alike S/sqrt(B)
 - High S/sqrt(B) gives best signal sensitivity
 - Low S/sqrt(B) gives best background constraints
 - > Use multivariate techniques to distinguish signal events from bkgd
 - > Background modeling checks ! Data must stay well modeled !
- Repeat for each Higgs topology per grad student
- Combine modes taking into account uncertainties correlated between backgrounds

Ben Kilminster, ICHEP 2010

10

Michel Spiro - ICHEP 2010 Summary Talk Paris, July 28th, 2010

D0 control room

<image>

CDF control room

Tevatron control room

Ben Kilminster, Higgs@10, June 2022

2011-2012: The final push

The exciting conclusion

July 3, 2012 with full Tevatron data

Ben Kilminster, Higgs@10, June 2022

Full Tevatron combination

Expect to exclude < 120 GeV, excess means exclusion is <103 GeV
 High mass exclusion 147 - 180 GeV

■ H→WW reduces excess from H→bb at high mass

B. Kilminster, DESY seminar, Jan. 2013

Sensitivity gains in H→bb

2005 - 2012 improvements in analyses

July 4, 2012

Fermilab @ 2 AM on American Independence Day

Half a million people tuned in For Electroweak Independence Day !

Higgs was truly brought to the masses !

DESY

B. Kilminster, DESY seminar, Jan. 2013

5

July 4,	20	12
---------	----	----

Published papers from CMS and ATLAS, Tevatron

Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

The CMS Collaboration*

Observation of a New Particle in the Search for the Standard Model Higgs Boson with the ATLAS Detector at the LHC

The ATLAS Collaboration

Evidence for a particle produced in association with weak bosons and decaying to a bottom-antibottom quark pair in Higgs boson searches at the Tevatron

B. Kilminster, DESY seminar, Jan. 2013

55

Summary

- Many more Higgs boson results from the Tevatron skipped today (Higgs spin/parity, BSM Higgs, ...)
- Results:
 - Evidence for Higgs boson from Tevatron
 - Consistent with what we know now
 - Exclusions of heavier Higgs bosons & much BSM
- Analysis approaches created at the Tevatron live on today in LHC searches and Higgs measurements
- The Higgs boson searches at the Tevatron brought out the best in CDF, D0, accelerator division scientists !