

Tamara Vázquez Schröder (CERN)

Higgs@10 symposium, Birmingham/Virtual 01 July 2022

The Higgs boson: production

ytop ... why should we care?

Top quark is the heaviest fermion in the SM → Largest Yukawa coupling

- The only fermion with predicted Yukawa coupling ~ 1
- Does this point to a special role in electroweak symmetry breaking or beyond the SM physics?
- Top quark Yukawa coupling is relevant for the stability of the Higgs potential and the required energy scale for new physics

direct top Yukawa coupling measurement only possible at the LHC via ttH and tH

Is the Universe stable or only metastable?

ttH: one of the tiniest rates!

The discovery of tīH | Higgs@10 Birmingham 2022 | Tamara Vazquez Schröder (CERN)

ATL-PHYS-PUB-2021-014

Δ

ttH: ... but fastest growth!

The discovery of ttH | Higgs@10 Birmingham 2022 | Tamara Vazquez Schröder (CERN)

ATL-PHYS-PUB-2021-014

Where to look for ttt production?

- $t\bar{t}H$ production (~500 fb @ 13TeV) is:
 - **two orders** of magnitude smaller than ggF Higgs production
 - three orders of magnitude smaller than tt production
- Look for ttH in final states with distinctive signatures and features
 - Combination of top quark x Higgs boson decay modes

ttH analysis channels

Towards ttH observation...

 In early 2018, the landscape was 		CMS Virginia
2015+2016 data [~36 fb ⁻¹]	ATLAS	Compact M
ttH multilepton (H→WW/тт/ZZ)	Phys. Rev. D 97 (2018) 072003 (including combination 36.1/fb → evidence)	CMS-HIG-17-018 µttH = 1.23 ^{+0.45} -0.43
ttH(bb)	<u>Phys. Rev. D 97 (2018) 072016</u> (leptonic)	CMS-HIG-17-026 (leptonic) $\mu_{ttH} = 0.72 \pm 0.45$ CMS-HIG-17-022 (all-hadronic) $\mu_{ttH} = 0.9 \pm 1.5$
ttH(ZZ→4ℒ)	arXiv:1712.02304 submitted to JHEP µ _{ttH} < 7.1	arXiv:1706.09936 µ _{ttH} < 1.18
ttH(γγ)	ATLAS-CONF-2017-045 1.0σ (exp: 1.8σ) μ _{ttH} = 0.5 ±0.6	CMS-PAS-HIG-16-040 3.3 σ (exp: 1.5 σ) $\mu_{ttH} = 2.2^{+0.9}_{-0.8}$
ATLAS+CMS Run1 combination	JHEP 1608 4.4σ (ex μ _{ttH} = 2.	(2016) 045 kp: 2.0σ) .3 ^{+0.7} -0.6

tīH (multileptons): analysis strategy

Number of **t**

- Target: ttH with
 - H→WW/ZZ/⊤⊤→≥1ℓ
 - tī→(ℓ+jets, dilepton)
- High multiplicity final state
- Rare in SM: same-sign 2ℓ , 3ℓ , 4ℓ
 - Exploit presence of hadronically decaying τ
- Analysis strategy:
 - Split in categories based on number of e/μ and number of τ
 - Fit or cut on BDTs (boosted decision tree) to discriminate signal against the main background processes [except in 3ℓ+1τ]
 - 2 CSOT: two BDTs combined (tt
 tt
 - 3/0T: 5D-classification BDT (tt̄H, tt̄W, tt̄Z, tt̄, VV)

9

tīH (multileptons): backgrounds

- Non-prompt lepton in tt
 - semileptonic b-decay
 - γ conversions
- Fake τ from light/b-jets

DATA-DRIVEN (DD): MATRIX METHOD (MM), FAKE FACTOR (FF)

FF ~ matrix method except prompt background is taken from MC

- Misidentified charge lepton
 - e.g. trident electrons (Bremsstrahlung)
 - using **3D likelihood method** [p_T, η, Tight/Loose]

DATA-DRIVEN (DD): LIKELIHOOD FIT

CONTROL REGIONS

Irreducible backgrounds with prompt-leptons

tīZ tīW VV

MC (cross check: fit to data)

"Other": 4tops, tīWW, tH, tZ

tīH (multileptons): non-prompt light ℓ

- Common main/important background: non-prompt leptons from semileptonic b-decay
- New MVA lepton isolation (PromptLeptonIso=PLI) to reject non-prompt *l* based on:
 - lepton and overlapping **track jets** properties
 - lepton track/calorimeter **isolation** variables
 - Factor $\mathcal{O}(20)$ rejection for leptons originating from b-hadrons
- New MVA cut to reduce QMIsID for 2ℓ SS and 3ℓ +0T
 - Factor $\mathcal{O}(17)$ background rejection for a 95% signal efficiency

tīH (multileptons): fit results

Main systematic uncertainties: signal modelling, JES and

JER, and the non-prompt light ℓ estimates

Channel

 $2\ell OS + 1\tau_{had}$

Significance

Expected

 0.5σ

Observed

 0.9σ

tīH(bb): analysis strategy

- Biggest challenge: good modelling of the tt+HF (≥1b, ≥1c) background
 - Nominal sample: 5-flavour scheme
 - Relative contribution of tī+≥1b sub-components reweighted to tī+bb predictions by Sherpa+OpenLoops (4-flavour scheme)
- Channel categorisation based on
 - Number of ℓ (1 or 2 opposite-sign)
 - Number of jets
 - Requirements on the b-tagging discriminant (4 calibrated working points)
 - Resolved or boosted, for single lepton channel
- **MVA analysis** needed to discriminate signal from the overwhelming background
 - The 'classification BDT' includes as input variables: kinematic variables, reconstruction BDTs (resolved), likelihood and matrix element method discriminants (where available), discrete btagging discriminant

tīH(bb): results

- Normalisation factors for $t\bar{t}+\geq 1b$ and $t\bar{t}+\geq 1c$ left free-floating in the fit:
 - NF(tī+≥1b) = 1.24 ± 0.10
 - NF(tī+≥1c) = 1.63 ± 0.23
- Most relevant uncertainties related to tt+≥1b background modelling
- Analysis is **dominated by systematic** uncertainties
- Significance w.r.t background-only hypothesis: **1.4σ (1.6σ) obs (exp)**

New t $\bar{t}H(\gamma\gamma)$ and t $\bar{t}H(ZZ \rightarrow 4\ell)$ results!

2015-2016 data [~36 fb ⁻¹] 2015-2017 data [~80 fb ⁻¹]	ATLAS EXPERIMENT	Compact Nuon Solenoid	
ttH multilepton (H→WW/тт/ZZ)	Phys. Rev. D 97 (2018) 072003 (including ttH combination 36.1/fb)	JHEP 08 (2018) 066 $\mu_{ttH} = 1.23 +0.45 -0.43$	
ttH(bb)	<u>Phys. Rev. D 97 (2018) 072016</u> (leptonic)	arXiv:1804.03682 (leptonic) $\mu_{ttH} = 0.72 \pm 0.45$ JHEP 06 (2018) 101 (all-hadronic) $\mu_{ttH} = 0.9 \pm 1.5$	
ttH(ZZ→4ℓ)		JHEP 11 (2017) 047 µ _{ttH} < 1.19	
ttH(γγ)	<pre>Phys. Lett. B 784 (2018) 173 (including ttH combination</pre>	arXiv:1804.02716 3.3 σ (exp: 1.5 σ) $\mu_{ttH} = 2.2^{+0.9}_{-0.8}$	
Combination		Phys. Rev. Lett. 120 (2018) 231801 → Observation	
ATLAS+CMS Run1 combination	JHEP 1608 (2016) 045 4.4 σ (exp: 2.0 σ) $\mu_{ttH} = 2.3^{+0.7}_{-0.6}$		

tīH(H→YY)

Events

100

80

60

40

20

20

10

Had 4

Data - Bkg.

ATLAS

√s=13 TeV, 79.8 fb⁻¹

Had 3

- Seven categories optimised for ttH, with 0-≥1ℓ from tt̄ decays
 - Based on cuts on a **BDT per channel** to discriminate against non-resonant diphoton production and non-ttH Higgs production
 - Input variables: photon, jets, MET and leptons (Lep channel) observables

Data

tτH (μ=1.4)

Cont. Bkg.

— t**ī**Η (μ=1.4)

Non-ttH Higgs

Lep categories

Lep 2

Lep 1

• Leptonic channel: ≥1 b-tagged jets

Had categories

Had 2

Had 1

● Hadronic channel: ≥2 jets, ≥1 b-tagged jets

Lep 3

 $m_{\gamma\gamma}$ [GeV]

$t\bar{t}H(H \rightarrow ZZ \rightarrow 4\ell)$ resonant

- Higgs boson candidates with $115 < m(4\ell) < 130 \text{ GeV}$
- ttH enriched category:
 - ≥1 b-tagged jet
 - 0 additional ℓ + \geq 3 jets [Had] or 1 additional ℓ + -≥1 jets [Lep]
 - **BDT in Had channel** with jet, MET and lepton observables, as well as LO Matrix-Element value of Higgs boson decay, as input variables

		Expe	ected		Observed	
Bin	$t\bar{t}H$ (signal)	Non- $t\bar{t}H$ Higgs	Non-Higgs	Total	Total	
	$H \to \gamma \gamma$					
Had 1	4.2(11)	0.49(33)	1.76(55)	6.4(13)	10	
Had 2	3.41(74)	0.69(56)	7.5(11)	11.6(15)	14	
Had 3	4.70(88)	2.0(17)	32.9(22)	39.6(32)	47	
Had 4	3.00(55)	3.2(31)	55.0(28)	61.3(47)	67	
Lep 1	4.5(10)	0.25(9)	2.19(59)	6.9(12)	7	
Lep 2	2.23(39)	0.27(10)	4.59(91)	7.1(10)	7	
Lep 3	0.82(18)	0.30(13)	4.58(91)	5.70(88)	5	
$H \to ZZ^* \to 4\ell$						
Had 1	0.169(31)	0.021(7)	0.008(8)	0.198(33)	0	
Had 2	0.216(32)	0.20(9)	0.22(12)	0.63(16)	0	
Lep	0.212(31)	0.0256(23)	0.015(13)	0.253(34)	0	

Purity of Had 1 (signal-

> 80%

enriched BDT bin) and Lep

17

ttH observation: in combination

- Combination of multilepton, bb, үү, and ZZ→4ℓ ttH analyses
- Results in agreement with the SM predictions
 - $\sigma(ttH) = 670^{+142} 135 \text{ fb}$
 - $\sigma_{SM}(ttH) = 507 + 35_{-50} fb$
- Significance w.r.t background-only hypothesis when combining with Run 1:
 - 6.3σ (5.1σ) obs (exp)
 - Observation of tīH production!

Analysis	Integrated	Obs.	Exp.
	luminosity $[fb^{-1}]$	sign.	sign.
$H \to \gamma \gamma$	79.8	4.1 σ	3.7σ
$H \rightarrow \text{multilepton}$	36.1	4.1 σ	2.8 σ
$H \rightarrow b\bar{b}$	36.1	1.4 σ	1.6 σ
$H \to Z Z^* \to 4\ell$	79.8	0σ	1.2 σ
Combined (13 TeV)	36.1 - 79.8	5.8 σ	$4.9~\sigma$
Combined $(7, 8, 13 \text{ TeV})$	4.5, 20.3, 36.1 - 79.8	$6.3~\sigma$	5.1 σ

Observation of ttt by ATLAS and CMS

Physics Letters B ELSEVIER www.elsevier.com/locate/physletb	
ELSEVIER www.elsevier.com/locate/physletb	
Observation of Higgs boson production in association with a top pair at the LHC with the ATLAS detector	quark

ARTICLE INFO

ABSTRACT

Article history: Received 4 June 2018 Received in revised form 4 July 2018 Accepted 17 July 2018 Available online 24 July 2018 Editor: W.-D. Schlatter The observation of Higgs boson production in association with a top quark pair ($t\bar{t}H$), based on the analysis of proton–proton collision data at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider, is presented. Using data corresponding to integrated luminosities of up to 79.8 fb⁻¹, and considering Higgs boson decays into $b\bar{b}$, WW^* , $\tau^+\tau^-$, $\gamma\gamma$, and ZZ^* , the observed significance is 5.8 standard deviations, compared to an expectation of 4.9 standard deviations. Combined with the $t\bar{t}H$ searches using a dataset corresponding to integrated luminosities of 4.5 fb⁻¹ at 7 TeV and 20.3 fb⁻¹ at 8 TeV, the observed (expected) significance is 6.3 (5.1) standard deviations. Assuming Standard Model branching fractions, the total $t\bar{t}H$ production cross section at 13 TeV is measured to be 670 \pm 90 (stat.) $^{+110}_{-100}$ (syst.) fb, in agreement with the Standard Model prediction.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³.

PHYSICAL REVIEW LETTERS 120, 231801 (2018)

Editors' Suggestion Featured in Physics

Observation of *ttH* Production

A. M. Sirunyan *et al.*^{*} (CMS Collaboration)

(Received 8 April 2018; revised manuscript received 1 May 2018; published 4 June 2018)

The observation of Higgs boson production in association with a top quark-antiquark pair is reported, based on a combined analysis of proton-proton collision data at center-of-mass energies of $\sqrt{s} = 7$, 8, and 13 TeV, corresponding to integrated luminosities of up to 5.1, 19.7, and 35.9 fb⁻¹, respectively. The data were collected with the CMS detector at the CERN LHC. The results of statistically independent searches for Higgs bosons produced in conjunction with a top quark-antiquark pair and decaying to pairs of *W* bosons, *Z* bosons, photons, τ leptons, or bottom quark jets are combined to maximize sensitivity. An excess of events is observed, with a significance of 5.2 standard deviations, over the expectation from the background-only hypothesis. The corresponding expected significance from the standard model for a Higgs boson mass of 125.09 GeV is 4.2 standard deviations. The combined best fit signal strength normalized to the standard model prediction is $1.26^{+0.31}_{-0.26}$.

DOI: 10.1103/PhysRevLett.120.231801

Current tīH landscape

- What have we been working on since then?
 - New measurements
 - ttH STXS [simplified template cross section] measurements (pTHiggs)
 - ttH CP-odd contribution searches
 - Addressing long-standing / recent issues:
 - Improve estimation of non-prompt lepton background (tt̄H multił)
 - Understand observed tension with theory prediction in ttW-like regions (ttH multil)
 - Improve estimation of ttbb background (ttHbb)
 - Improve evaluation of background modelling uncertainties (all)

ttH state of the art Run 2

2015-2016 [~36 fb ⁻¹] 2015-2017 [~80 fb ⁻¹] 2015-2018 [~140 fb ⁻¹]	ATLAS EXPERIMENT	CMS
ttH multilepton (H→WW/ττ/ZZ)	$\frac{\text{ATLAS-CONF-2019-045}}{\mu_{ttH}} = 0.58 + 0.26_{-0.25}$	<u>arXiv:2011.03652</u> μ _{ttH} = 0.92 ± 0.19 (stat) ^{+0.17} -0.13 (syst)
ttH(bb)	<u>arXiv:2111.06712</u> μ _{ttH} = 0.35 ^{+0.36} -0.34	$\frac{CMS-PAS-HIG-18-030}{\mu_{ttH}} = 1.15 + 0.15 + 0.15 (stat) + 0.28 - 0.25 (syst)$
ttH(ZZ→4ℓ)	Eur. Phys. J. C 80 (2020) 957 (+STXS) $\mu_{ttH} = 1.7 + 1.7 - 1.2 \pm 0.2 \pm 0.2$	$\frac{arXiv:2103.04956}{\mu_{ttH}} = 0.13 + 0.92 - 0.13 (stat) + 0.11 - 0.00 (syst)$
ttH(γγ) Observation in a single channel!	$\begin{array}{l} \underline{\text{ATLAS-CONF-2020-026}} (+ \text{STXS}) \\ \mu_{\text{ttH+tH}} = 0.92 \ ^{+0.27} \ _{-0.24} \\ \textbf{4.7} \ \textbf{(5.0)} \ \boldsymbol{\sigma} \ \text{obs} \ (\text{exp}) \\ \underline{\text{PRL 125}} \ (2020) \ 061802} \ (+\text{CP}) \\ \mu_{\text{ttH}} = 1.43 \ ^{+0.33} \ _{-0.31} \ (\text{stat}) \ ^{+0.21} \ _{-0.15} \ (\text{syst}) \\ \textbf{5.2} \ \textbf{(4.4)} \ \boldsymbol{\sigma} \ \text{obs} \ (\text{exp}) \end{array}$	JHEP07(2021)027 (+STXS) $\mu_{ttH} = 1.35 + 0.34_{-0.28}$ PRL 125 (2020) 061801 (+CP) $\mu_{ttH} = 1.38 + 0.36_{-0.29}$ 6.6 (4.7) σ obs (exp)
Combination	Phys. Lett. B 784 (2018) 173 (80/fb + 36.1/fb → Observation)	Phys. Rev. Lett. 120 (2018) 231801 → Observation

tH state of the art

Central top and Higgs, back-to-back						
Destructive interference in SM (top Yukawa coupling competing against g _{HVV})						
 Very challenging du larger background t 	e to low SM cross section and han tīH	t b t				
2015-2016 [~36 fb ⁻¹]		CMS				
2015-2018 [~140 fb ⁻¹]	ATLAS					
tH multilepton (H→WW/ττ/ZZ)	ongoing	<u>Eur. Phys. J. C 81, 378 (2021)</u> µ _{tH} = 5.7 ± 2.7 (stat) ± 3.0 (syst)				
tH(bb)	ongoing	(see below)				
tH(γγ)	<u>ATLAS-CONF-2020-026</u> μ _{tH} < 8 x SM @95% CL	<u>JHEP07(2021)027</u> μ _{tH} < 14 x SM @95% CL				
Combination	ongoing	$\begin{array}{c} \mbox{PRD 99 (2019) 092005} \\ \mbox{Expected and observed 95\% CL upper limits on the tH XS x BR} \\ \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c } \hline tabula$				

The Future

At the LHC:

- Still analysing full Run-2 dataset!
- Run 3 13.6 TeV stable beams _ imminently: triple integrated luminosity!
- **HL-LHC**: 10x more luminosity, explore less accessible processes such as di-Higgs (self-coupling of Higgs boson)

Expect to measure the top Yukawa coupling (modifier) κ_t at **4% level** at the end of HL-

450 fb⁻¹

LHC/ HL-LHC Plan (last update February 2022)

Systematics-limited!

LHC

LHC

LS₂

LIU Installatio

2020

Stay tuned for upcoming results!

3000 fb⁻¹

4000 fb⁻¹

Thanks for your attention!

Simplified Template Cross Section (STXS)

- Measure production modes separately, categorising each into bins of key (truth) quantities (p_T^H, Njets, m_{jj}, ...)
 - Chosen as most sensitive variables to theory predictions / signal sensitivity / new physics
 - Different stages (e.g. stage 0, stage 1, stage 1.2) with varying degrees of granularity
 - Decay mode agnostic: well-suited for combinations
- How to design an STXS analysis?
 - How are events categorised?
 - Reconstructed quantities as proxy for truth quantities or multivariate classifier
 - How many / which bins to target?

• Driven by analysis sensitivity

The discovery of ttH | Higgs@10 Birmingham 2022 | Tamara Vazquez Schröder (CERN) David Shope, Higgs STXS, Moriond'21

t**t**H CP-structure

- Probe the charge conjugation and parity (CP) properties of the Yukawa coupling of the Higgs boson to the top quark
- Any measured CP-odd contribution would be a sign of physics beyond the SM
 - explain observed baryon asymmetry of the universe?

CP-structure ttH parametrisation:

$$\mathcal{A}(\text{Htt}) = -\frac{m_{\text{t}}}{v} \overline{\psi}_{\text{t}} \left(\kappa_{\text{t}} + i\tilde{\kappa}_{\text{t}}\gamma_{5}\right) \psi_{\text{t}},$$
$$f_{\text{CP}}^{\text{Htt}} = \frac{|\tilde{\kappa}_{\text{t}}|^{2}}{|\kappa_{\text{t}}|^{2} + |\tilde{\kappa}_{\text{t}}|^{2}} \operatorname{sign}(\tilde{\kappa}_{\text{t}}/\kappa_{\text{t}})$$

SM (CP-even): $\mathbf{\kappa}_t = 1$; $\mathbf{\tilde{\kappa}}_t = 0$ CP-odd: $\mathbf{\kappa}_t = 0$; $\mathbf{\tilde{\kappa}}_t = 1$

or

$$\mathcal{L} = -\frac{m_t}{v} \left\{ \bar{\psi}_t \kappa_t \left[\cos(\alpha) + i \sin(\alpha) \gamma_5 \right] \psi_t \right\} H$$

$$\begin{split} |f_{\rm CP}^{\rm Htt}| &= \frac{|\tilde{\kappa}_t|^2}{|\tilde{\kappa}_t|^2 + |\kappa_t|^2} &\Leftrightarrow & \sin^2 \alpha \\ \mu_{\rm ttH} &\Leftrightarrow & \kappa_t^2 \end{split}$$

SM (CP-even): $\alpha = 0^{\circ}$ CP-odd: $\alpha = 90^{\circ}$

ttH(bb): analysis strategy

Biggest challenge: good modelling of the tt+HF $(\geq 1b, \geq 1c)$ background

CMS,

Nominal sample: @NLO 4-flavour scheme ttbb tī+≥1c and tī+light modelled by tī @NLO Nominal sample: @NLO 5-flavour scheme Split in further sub-components: tī+bb, tī+2b (unresolved), tt+b (extra b missed)

- Channel categorisation based on
 - Number of ℓ (0, 1 or 2 opposite-sign)
 - Number of jets
 - Requirements on the b-tagging discriminant (based on **4 or 1** calibrated working points)
 - Resolved or boosted, for single lepton channel
 - Multi-classification ANN decisions for single lepton channel
 - Reconstructed p_T^{Higgs} categories

tīH(bb): MVA discriminants

Events

Data / Pred.

- **MVA analysis** needed to discriminate signal from the overwhelming background
 - Input variables of
 classification BDT: kinematic
 variables, reconstruction
 BDTs (resolved), likelihood,
 and discrete btagging
 discriminants
 - MEM in 0ℓ (ttH, tt+bb), ANN
 in SL and BDT in DL (ttH, tt+jets) with MEM input, as
 well the continuous btagging score

CMS

tīH(bb): modelling uncertainties

- Generator: Powheg+Pythia8 vs aMC@NLO+Pythia8 (5FS)
- Parton shower: Powheg+Pythia8 vs Powheg+Herwig7
- ISR (+scale), FSR, $t\bar{t}$ +1b vs $t\bar{t}$ +2b fraction uncertainties
- p_T^{bb} shape uncertainty (ad-hoc)
- Free-floating normalisation tī+≥1b
- Nuisance parameter (100% prior) tī+≥1c normalisation

- Parton shower: ISR/FSR
- tt underlying event
- 🕨 tī hdamp
- Scale variations
- Nuisance parameters for normalisation of tt+bb, tt+2b, tt+b, and tt+≥1c (50% prior) and decorrelated between years

tīH(bb): results

35.9 fb ⁻¹ (2016) + 41.5 fb ⁻¹ (2017) (13 TeV)						
	CMS Prelir	ninarv	,	1 1	I	
		i i i i ai y	μ	tot	stat	syst
ully-hadronic	••• •••	, 1 1 1 1 1 1 1	-0.38	+1.02 -1.06	+0.54 -0.54	+0.86 -0.91
Single-lepton	ŀ	-	1.22	+0.41 -0.37	+0.19 -0.18	+0.36 -0.32
Dilepton	н	; ; ; ; ; ;	1.04	+0.74 -0.71	+0.39 -0.38	+0.63 -0.59
2016	H	, , , , , ,	0.85	+0.43 -0.41	+0.22 -0.22	+0.37 -0.35
2017		⊨+∎∎+ -1	1.49	+0.44 -0.40	+0.21 -0.20	+0.39 -0.35
Combined	•		1.15	+0.32 -0.29	+0.15 -0.15	+0.28 -0.25
	0		5			10
					$\hat{\mu} = \hat{e}$	<u>σ</u> σ

- NF(tī+≥1b) = 1.26 ± 0.09
- Dominated by systematic uncertainties
- Most relevant uncertainties related to $t\bar{t}+\geq 1b$ background modelling ($\Delta\mu/\mu = 60\%$ and 15%)
- Significance w.r.t background-only hypothesis: 1.3 (3.0σ) and 3.9σ (3.5σ) obs (exp)
 - **Evidence** for tīH in H→bb channel
- First ttH(bb) STXS measurement
 - Complements tīH(γγ) STXS measurements at high p_T^H

tīH (multil): analysis strategy

"multilepton"

final state

- Target: ttH with
 - H→WW/ZZ/TT→≥1ℓ
 - tt→(ℓ+jets, dilepton)
- **High multiplicity** final state

Several categorisation stages

based on **number of e/µ** and

number of τ

• **#1 categorisation:** split in categories

- **Rare in SM:** same-sign 2*l*, 3*l*, 4*l*
- Main reducible backgrounds are: non-prompt l, charge misID electrons, and electrons from photon conversions
 - Specific lepton BDT isolation suppressing ℓ from semi-leptonic b-decays, BDT to reject charge misID, material and internal (γ*→ℓ±ℓ∓) electron conversion (CO) candidates further suppressed with track invariant masses and conversion radius

most sensitive

 $0\ell+2\tau$ $1\ell+2\tau$ $2\ell+2\tau$

• Main irreducible backgrounds are: tīZ, tīW, VV

Number of au_{had}

 $\frac{1\ell+1\tau}{2\tau}S+1\tau = 3\ell+1\tau$

Number of e/μ

 $2\ell SS+0\tau$ $3\ell+0\tau$

31

4*ℓ* (*)

tīH (multil): categories

- **#2 categorisation** ("high NJets"):
 - **2** ℓ **SO** τ : a combination of 2 **BDTs** (vs. t $\bar{t}V$, vs. fakes/t \bar{t}) in a **2D space**, or
 - 3ℓ0τ: a multi-dimensional BDT (vs. tīW, vs. fakes/tī, vs. tīZ, vs. VV)
 - $2\ell SSO\tau$, $3\ell O\tau$ and $2\ell SS1\tau$: DNN (vs tH vs other backgrounds); BDT in the other channels

tīH (multil): signal regions

3ℓ0τ [≥2j, ≥1bj] **SR**

CMS

till (multil): fakes (and more) estimate

- Fakes estimated from data in a QCD CR with relaxed object ID
- **#3 categorisation: add CR categories to the fit model** ("low NJets" and conversion CRs)
 - 2ℓSS0τ/3ℓ0τ: ≥1 electron passing material / internal conversion selection
 - 2 ℓ SSO τ : 2-3 jets, enriched in **non-prompt leptons** and $t\bar{t}W$
- Normalisation of non-prompt leptons (electrons and muons), electrons from material CO, electron from internal CO [low mass], tīW (decorrelated between 2ℓSS0τ low NJets, 2ℓSS0τ high NJets, and 3ℓ0τ), and tīZ are measured simultaneously in the fit to data
 - Shapes from MC simulation, extensive set of systematic uncertainties included

tīH (multil): systematics

Uncertainty source	Δ	$\hat{\mu}$
Jet energy scale and resolution	+0.13	-0.13
$t\bar{t}(Z/\gamma^*)$ (high mass) modelling	+0.09	-0.09
$t\bar{t}W$ modelling (radiation, generator, PDF)	+0.08	-0.08
Fake τ_{had} background estimate	+0.07	-0.07
$t\bar{t}W$ modelling (extrapolation)	+0.05	-0.05
$t\bar{t}H$ cross section	+0.05	-0.05
Simulation sample size	+0.05	-0.05
$t\bar{t}H$ modelling	+0.04	-0.04
Other background modelling	+0.04	-0.04
Jet flavour tagging and τ_{had} identification	+0.04	-0.04
Other experimental uncertainties	+0.03	-0.03
Luminosity	+0.03	-0.03
Diboson modelling	+0.01	-0.01
$t\bar{t}\gamma^*$ (low mass) modelling	+0.01	-0.01
Charge misassignment	+0.01	-0.01
Template fit (non-prompt leptons)	+0.01	-0.01
Total systematic uncertainty	+0.25	-0.22
Intrinsic statistical uncertainty	+0.23	-0.22
$t\bar{t}W$ normalisation factors	+0.10	-0.10
Non-prompt leptons normalisation factors (HF, material conversions)	+0.05	-0.05
Total statistical uncertainty	+0.26	-0.25
Total uncertainty	+0.36	-0.33

Source	$\Delta \mu_{t\bar{t}H}/\mu_{t\bar{t}H}$ [%]	$\Delta \mu_{\mathrm{tH}}/\mu_{\mathrm{tH}}$ [%]
Trigger efficiency	2.3	8.1
e, μ reconstruction and identification efficiency	2.9	7.1
$\tau_{\rm h}$ identification efficiency	4.6	9.1
b tagging efficiency and mistag rate	3.6	13.6
Misidentified leptons and flips	6.0	36.8
Jet energy scale and resolution	3.4	8.3
MC sample and sideband statistical uncertainty	7.1	27.2
Theory-related sources	4.6	18.2
Normalization of MC-estimated processes	13.3	12.3
Integrated luminosity	2.2	4.6
Statistical uncertainty	20.9	48.0

- Largest systematic uncertainties come from tt̄W and tt̄ll modelling
 - Additional uncertainties to cover data/MC disagreements as a function of NBjets and Lepton charge for ttW
- Fakes impact is reducing its size with more statistics!
- Non-prompt leptons + QMisID uncertainties large impact on tH

ttH (multil): fit results

1.39 +0.17 -0.16

[SM ref: 727 fb]

 1.43 ± 0.21

[SM ref: 650 fb]

 1.03 ± 0.14

Compatibility between main and alternative fit = 0.59 σ

ttw measured consistently higher than SM in both experiments!

The discovery of ttH | Higgs@10 Birmingham 2022 | Tamara Vazquez Schröder (CERN)

1.56 +0.30 -0.28 (**2 LNJ**)

1.26 +0.19 -0.18 (22 HNJ)

1.68 +0.30 -0.28 (32)

NF(ttW)

(to compare

with CMS take

~1.1xATLAS)

NF(tīZ)

tŧH(H→γγ): STXS

- First channel to perform tt̄H measurement differentially
- Leptonic (ttH & tH) and hadronic channels (ttH & tH)
- Mixture of multiclass BDT (STXS signal vs other signals) and binary BDTs (STXS signal vs background)
- Mixture of Top DNN (tt
 H vs tH) and BDT (STXS signal vs non-Higgs SM background), and final classification based on reco p_T(γγ)

• Dominated by stat uncertainty but overall compatible with SM predictions

tīH(H→γγ): CP analysis

- 2D partitioning /categorisation using BDT-bkg and BDT-CP (D_{0-})
 - 20 (12had + 8lep) vs 12 (6had + 6lep) categories
- Constrains: observed (expected under CP-even hypothesis)
 - $|\alpha^{CP}| < 43^{\circ} (63^{\circ}) @ 95 CL; \alpha = 90^{\circ}$ excluded at 3.9 σ
 - $|f_{CP}| < 0.67 \Rightarrow |\alpha^{CP}| < 55^{\circ} (66^{\circ}) @ 95 CL; α=90^{\circ} excluded at 3.2σ$

tīH(H→ZZ→4ℓ) resonant

- Higgs boson candidates: 115 < m(4ℓ) < 130 GeV
- Both analyses use NN-based categorisation either to define the categories or as observable to fit
- $\mu_{t\bar{t}H} = 1.7 + 1.7 + 1.2 \text{ (stat)} \pm 0.2 \text{ (exp)} \pm 0.2 \text{ (th)}$ and $\mu_{t\bar{t}H} = 0.17 + 0.88 + 0.17 \text{ (stat)} + 0.42 + 0.00 \text{ (syst)}$
- Also computed the Stage 0/1.1/1.2(merged)
 STXS cross-sections (1 bin for ttH)
 - Largely **statistically** limited
- Additionally, performed SMEFT fit

