H->bb (cc) measurements (searches) at the LHC

CER

Valerio Dao (CERN)

un: 338349 vent: 616525246)17-10-16 20:24:46 CEST HiggsDiscovery@10 symposium Birmingham - June 2022

CERN

A different story: this talk will mainly covers LHC Run 2

Higgs decays snapshot after LHC Run 1:

- observation of the Higgs boson driven by channels with much lower branching ratio
- + H→bb is the largest decay and his knowledge is also important to understand contribution to the width
- so why wasn't it observed earlier?

For a "fair" ATLAS-CMS story I had to restrict myself to public plots

Curiosity: only evidence made it to the CERN courier front page.
See <u>Sept '18</u> for articles on observation

Dao Valerio

H->bb: challenges

H->bb

σ)/σ

80

reconstruction in a single jet is becoming more and

In both cases mass resolution is ~ 12-15 GeV

....compares to 1.5-2 GeV for ZZ->4I and yy

100

120

140

160

m_{bb} [GeV]

180

0%

13 %

18 %

42 %

60

mainstream (historical) reconstruction uses 2

Reconstructing H->bb decays:

separated R=0.4 jets

more popular

9-12 GeV

"Jet substructure as a new Higgs search channel at the LHC", Phys. Rev. Lett. 100 (2008) 242001

[in production 10 years later]

Dao Valerio

H->bb: challenges

Dao Valerio

VH H->bb

2-lepton (l=e,mu)

0-lepton

1-lepton (l=e,mu)

Dao Valerio

1) b-tagging: very sophisticated algorithms, reaching <1% fake rate with >70% b-efficiency

Reconstructed jet axis **B-hadron** Ge 10⁴ Events / 15 10 (neutral 10 track) 3) event selection: 2 or 3 jets, high pT improves S/B

the mass resolution

4) event categorisation:

dedicated CR to target leading backgrounds

5) event selection:

many MVA discriminants for signal extraction (careful validation of input variables)

VH H->bb: Run I

Caveat: I was not involved in VHbb in Run1 (I was doing ttHbb ... which is another story all-together)

Analysis approaches created at the Tevatron live on today in LHC searches and Higgs measurements

- Run1 analyses heavily inspired by Tevatron's searches and put in place many aspects that we now consider trivial / for granted:
 - lepton channels, advanced usage of b-tagging
 - correction to m_{bb}, many MVAs

+ etc

Dao Valerio

VH H->bb: Run I

 July 2012: Clearly far from the goal to participate to the party

Full Run1 result: "we could have got evidence but we didn't"

> **Run1 H->bb significance: 2.6 σ obs. ,** 3.7 σ exp.

 Already very sophisticated analyses: many SRs/CRs, multiple MVAs

Dao Valerio

Phys. Rev. Lett. 109, 071804 (2012)

Evidence for a particle produced in association with weak bosons and decaying to a bottom-antibottom quark pair in Higgs boson searches at the Tevatron

from Run1 to Run2

Time to re-think analysis strategy: ... with also some simplifications.

- b-tagging really simplify your background composition
- no need to include data too far from your SR ... ease the understanding of very complicated fits

ATLAS and CMS have slightly different approach but end sensitivity is very comparable

VHbb: not easy to explain and debug

Dao Valerio

 Evidence of VHbb from both experiments using 2016 data

Many checks/results to support this claim:

- compatibility across channels, WH VS ZH measurements
- observation of VZ (Z->bb) process
- mass fit without MVA: typically ~30% worse sensitivity

The only non official plot

- Observation of VHbb possible with 2017 data if:
 - keep performing combination with Run1 result (not a big deal)
 - improving the Run2 analysis

Dao Valerio

Run2 milestones: July/Aug 2018

- Not simply adding more data: higher pileup, new pixel detector (CMS), new reconstruction SW (ATLAS) *!! 8 months from end of data-taking: incremental improvement, not complete re-design !!*
- Full combination:
 - expected improvements from adding 2017 data brought VHbb analysis close to 5-sigma alone
 - prefer not to sweep under the carpet the "down fluctuations" from Run1, contribution from other production mored (mainly ttH) crucial to break the 5sigma ceiling

Observation of Hbb from both experiments using Run1 + 2016+2017 Run2 data

A rewarding moment

MVA analysis

"beautified official version"

Data

tŧ

Single top

Z+jets Multijet W+jets

Diboson

■ VH, H → bb (μ=1.16)

0

log₁₀(S/B)

-0.5

-1

Events / 0.35

10⁶

10⁵

10⁴

10³

10²

5

0

-3.5

-3

Pull (stat.)

ATLAS

 $\sqrt{s} = 13 \text{ TeV}, 79.8 \text{ fb}^{-1}$

-2.5

-2

-1.5

Dao Valerio

Full Run2 (early 2020)

- Analysis improved more than sqrt(L) despite being systematically limited:
 - improved physics objects performance / calibration
 - better MC but also more MC events
 - further / smarter event classification: isolate high p⊤ regions with higher S/B
 - more / better control regions to estimate background

VHbb dominates our understanding of the Higgs coupling to bottom quarks

Beyond signal strength

ATLAS Preliminary

0 lepton, 2 jets, 2 b-tags

250 GeV < p^V₊ < 400 GeV

 $10^3 \vdash \sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

-- Data

tī

Wt

W+jets

Z+jets

Diboson

t, s+t chan

Uncertainty

····· Pre-fit background

••• VH, $H \rightarrow b\overline{b} \times 2$

VH, H → bb (μ=1.00)

Events / 0.25

10

				1							
Data/Leg Data/Leg 0.8 1 0.0utput	1.2 1 0.8 -1	0.8 -0	.6 –0.4			.2 0.4	0.6 BDT _{VF}	0.8 , output	1		Data (Prod
	ATLA	. s Sim	ulatio	n Preli	minar	y √s	= 13 1	ΓeV, 1	39 fb ⁻¹	l	
2 lep, $p_{_{T}}^{\vee}$ > 400 GeV, boosted SR								0.2	3.6		120 ²
2 lep, \ge 3 jets, 250 < p_T^V < 400 GeV							0.8	20.7	0.2		, end
2 lep, 2 jets, $250 < p_T^{V} < 400 \text{ GeV}$							0.3	8.4	0.1		l e
2 lep, ≥ 3 jets, $150 < p_T^V < 250 \text{ GeV}$						1.6	74.0	1.2			100 🛱
2 lep, 2 jets, $150 < p_T^{V} < 250 \text{ GeV}$						0.8	33.8	0.5			Sic Si
2 lep, \ge 3 jets, 75 < p_T^V < 150 GeV					1.2	124.7	2.9				
2 lep, 2 jets, $75 < p_T^V < 150 \text{ GeV}$					0.9	78.4	1.4				80
0 lep, $p_{_{T}}^{\nu}$ > 400 GeV, boosted LP SR			0.1	1.5				0.6	5.4		
0 lep, $p_{_{\rm T}}^{_{\rm V}}$ > 400 GeV, boosted HP SR	Γ		0.1	1.3				0.6	6.0		
0 lep, 3 jets, $250 < p_T^{\vee} < 400 \text{ GeV}$		0.4	4.4	1.1			3.6	23.3	1.5] _	60
0 lep, 2 jets, $250 < p_T^{\vee} < 400 \text{ GeV}$		0.3	4.8	1.4			2.7	24.2	1.8		00
0 lep, 3 jets, $150 < p_{T}^{V} < 250 \text{ GeV}$	2.8	22.6	7.0	0.3		12.5	93.0	9.8	0.1		
0 lep, 2 jets, $150 < p_{\tau}^{v} < 250 \text{ GeV}$	2.1	22.6	7.5	0.5		11.0	95.0	10.9	0.1	1 _	10
1 lep, p_{τ}^{V} > 400 GeV, boosted LP SR	_		0.8	8.8					0.1		40
1 lep, p_{τ}^{v} > 400 GeV, boosted HP SR	-		0.9	9.8					0.1	1	
1 lep, 3 jets, 250 < p ^v _T < 400 GeV	-	4.8	35.4	2.8			0.1	0.6	0.2	1	
1 lep, 2 jets, 250 < p_{_{T}}^{v} < 400 GeV		3.8	37.2	3.2				0.4	0.1	1 -	20
1 lep, 3 jets, 150 < p{_{_{}}}^{v} < 250 GeV	16.2	110.5	13.4	0.1		0.7	3.5	1.0	0.1	1	
1 lep, 2 jets, 150 < p _T < 250 GeV	12.7	118.6	15.1	0.2		0.4	2.4	0.6		1	
	WH,	^{₩,t} ^{™,t} ~ 150	WH, 2 50 5 p ^{W,t} Gev 7 5	WH, 1 250 5 p W,t	^{W,t} [∠] H, K	, <i>ZH, 7</i> 7 <i>5 75 G</i> €	ZH, 1 5 5 0 2, 1 2 V 7 5 1	ZH, 2 50 5 p ^{2,t} 50 0 7 5	$\frac{ZH, p}{50 \leq p^{2t}}$	$\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{400}$	Gelv
			~ <i>v</i>	^{~30} GeV	, ^{≁00} Gel	/		Gel	Gel	Gel	/ .

 V p_T > 400 GeV category exploits reconstruction of Higgs in single largeR (R=1.0) jet [more later]

 Exploit analysis categorisation to provide signal strength in kinematic bins

Dao Valerio

- ◆ VH differential information in 7 STXS categories as a function of vector boson p_T
 - uncertainties ranging from 20% to 100%

- Important information to constrain effects of energydependent EFT operators [enhanced effects at high pT]
- Less precise info than H->VV decay but expected effect much larger.

Dao Valerio

- Other production mode are still crucial to test consistency of the model
- Despite low S/B … H->bb decay provides the largest statistics ==> important measuring/search tool

see Tamara's talk

Main hurdles of not relying on leptons:

- + how to select events effectively? Solution: many objects or raise pt threshold
- how to estimate the large QCD multi-jet background? Poor description from MC: need to rely on data-driven techniques.

VBF H->bb

200

180

 $m_{_{bb}}$ [GeV]

inclusive high pT

Capturing Higgs decay in single large radius jet makes the impossible ggH final state possible ...

CMS		ATLAS
0.8	jet radius	1.0
soft drop	jet mass	jet trimming
leading p _T >450 GeV	jet p⊤	leading (sub) p _T >450 (250)
mass-decorrelated N12	substructure	2 sub jets (track based)
dedicated NN for H->bb	tagger	sub-jet tagging
from failed region	background	functional form

 ATLAS and CMS are a lot less aligned and the difference matters

Dao Valerio

inclusive high pT: results

×10³

ATLAS

√s = 13 TeV, 136 fb⁻¹

-SRL, p_>1TeV

Data

Z w

H, p_τ⁴ (μ=18)

Results extracted in several (not aligned) bins of jet p_T.

- Unique regime only reached by H->bb.
- ◆ Partial Run2 results from CMS sparked a lot of attention on high p_T theoretical calculations: high p⊤ disagreement increases when considering proper top-mass effects.

Very intriguing patterns

H->cc like H->bb but harder ...

- In comparison to H->bb:
 - * x20 smaller Br: H->bb is non negligible background for H->cc
 - c-tagging is much harder than b-tagging (smaller mass, smaller lifetime): can achieve %-level fake rate only with 20-30% signal efficiency ... need to work with looser WP
 - g->cc background is larger than g->bb one (but fewer c than b in ttbar)

- H->cc analyses shares many aspects with much more mature H->bb analyses (VH is still the golden channel) but sometimes thinking outside the box can lead to large gains
- Br dependency on k_c saturates:
 - can only set limit on k_c if Br signal strength is below 34

Dao Valerio

HiggsDiscovery@10

->cc

VH H->cc: ATLAS (2021)

Single c-tagging working point used in the analysis:

- c-jet eff. = 27% [b-jet eff. = 8% , light jet eff. = 1.6%]
- include veto of algorithm used for VH H->bb analysis ==> designed for combination
- exploiting both 1-ctag and 2-ctag regions

Combined fit to m_{jj} distribution in 44 regions (no MVA discriminants)

VHcc: CMS

Resolved analysis: fit MVA discriminant in 7 SRs and several CRs

Boosted analysis:

- fit largeR jet mass mass
- 5 SR x 3 different tagger operating points
- dedicated CR determined with auxiliary MVAs

- Large excess in boosted categories, deficit in resolved
- Boosted topology dominates the sensitivity
 - ◆ 95% CL limits:
 - observed (exp.) σ*BR/(σ*BR)_{SM} < 14.4 (7.6)</p>
 - observed: 1.1 < |k_c| < 5.5</p>

Dao Valerio

Another example of the power of largeR jet tagger:

+ H->bb / H->cc analyses have made impressive progresses since the start of LHC

✦ H->bb:

- observation achieved (!)
- transition from search to precision measurement in VH
- providing differential information on Higgs Section in the main production modes
- refined boosted techniques to improve high p^T precision

✦ H->cc:

- previously unthinkable precision achieved thanks to a mixture of sophisticated algorithms, analysis techniques and available data
- direct constraints on charm coupling are now possible and they are more than competitive with complementary indirect constraints from Higgs pT differential distribution
- + charm entry soon to be added to the mass plot....

!!!! LHC will restart next week: more & better results to come !!!!

+ H->bb / H->cc analyses have made impressive progresses since the start of LHC

BackUp

History plot

Dao Valerio

Excellent performance of calorimeter-based jet reconstruction and calibration

- 10% resolution after re-summing muon founds in jets +
- even better performance than H->bb due to lower rate of neutrinos in inclusive c-hadron decays vs. bhadrons

HiggsDiscovery@10

0

60

80

100

120 140 160 180

200

m_{cc} [GeV]

m_{cc} [GeV]

180

m_{bb} [GeV]

200

Simulated flavour

CC

CI

80 100 120 140 160 180 200

60

k_c / k_b scan

 Ratio of coupling modifiers is more model independent reduce the effect of Higgs width (k_b is also profiled in the fit)

|k_c/k_b|< 4.5 @ 95% CL

 Higgs boson coupling to charm quarks is smaller than Higgs boson coupling to b-quarks

Sys comparison

Source of un	σ_{μ}					
Total	0.259					
Statistical	0.161					
Systematic	0.203					
Experimental uncertainties						
Jets	0.035					
$E_{\mathrm{T}}^{\mathrm{miss}}$		0.014				
Leptons	0.009					
	b-jets	0.061				
b-tagging	<i>c</i> -jets	0.042				
	light-flavour jets	0.009				
	extrapolation	0.008				
Pile-up	0.007					
Luminosity	0.023					
Theoretical and modelling uncertainties						
Signal		0.094				
Floating nor	0.035					
Z + jets	0.055					
W + jets	0.060					
$t\overline{t}$	0.050					
Single top qu	0.028					
Diboson	0.054					
Multi-jet	0.005					
MC statistic	0.070					

Source of un	VH	$\sigma_{\mu} \ WH$	ZH			
	0 177		0.040			
lotal	0.177	0.260	0.240			
Statistical	0.115	0.182	0.171			
Systematic		0.134	0.186	0.168		
Statistical un	ncertainties					
Data statisti	0.108	0.171	0.157			
$t\bar{t} \ e\mu \ control$	0.014	0.003	0.026			
Floating nor	0.034	0.061	0.045			
Experimental uncertainties						
Jets		0.043	0.050	0.057		
$E_{\mathrm{T}}^{\mathrm{miss}}$	$E_{\mathrm{T}}^{\mathrm{miss}}$			0.013		
Leptons		0.004	0.015	0.005		
Ĩ	b-jets	0.045	0.025	0.064		
b-tagging	c-jets	0.035	0.068	0.010		
00 0	light-flavour jets	0.009	0.004	0.014		
Pile-up	Pile-up			0.007		
Luminosity	0.016	0.016	0.016			
Theoretical and modelling uncertainties						
C:1	0.070	0.000	0.107			
Signal		0.072	0.060	0.107		
Z + iets	0.032	0.013	0.059			
W + iets	0.002	0.010 0.079	0.009			
<i>tī</i>	0.040	0.015 0.046	0.009 0.029			
Single top a	0.021	0.010 0.048	0.025 0.015			
Dihoson	0.013	0.040	0.010			
Multi_iot	0.000	0.000	0.005			
wiui01-JC0	0.000	0.011	0.000			
MC statistic	0.031	0.055	0.038			

Dao Valerio

A Huge leap

constant FTAG improvements

- unfortunately many differences across these plots (jet pt cut, pileup, JVT)
- in general trying to increase c-rejection for similar light rejection

Dao Valerio