
22 6 Final states with two charged leptons
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Figure 9: Distributions of mR showing the composition of signal and backgrounds, superim-
posed on the signal events alone, in the eµ final state for the 0-jet (left) and 1-jet (right) cate-
gories for

p
s = 8 TeV. The signal and background processes are normalized to the result of

the parametric fit to the (mR, DfR) distribution.
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p
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signal and background processes are normalized to the result of the parametric fit to the (mR,
DfR) distribution. The events are weighted according to the observed S/(S+B) ratio of the
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18 6 Decay modes with low mass resolution

Table 4: Observed number of events, background estimates, and signal predictions for mH =
125 GeV in each category of the WW analysis of the 8 TeV data set. All the selection require-
ments have been applied. The combined experimental and theoretical, systematic and statis-
tical uncertainties are shown. The Zg process includes the dimuon, dielectron, and tt ! ``
final states.

Category: 0-jet eµ 0-jet `` 1-jet eµ 1-jet `` 2-jet eµ 2-jet ``
WW 87.6± 9.5 60.4± 6.7 19.5± 3.7 9.7± 1.9 0.4± 0.1 0.3± 0.1
WZ + ZZ + Zg 2.2± 0.2 37.7± 12.5 2.4± 0.3 8.7± 4.9 0.1± 0.0 3.1± 1.8
Top 9.3± 2.7 1.9± 0.5 22.3± 2.0 9.5± 1.1 3.4± 1.9 2.0± 1.2
W + jets 19.1± 7.2 10.8± 4.3 11.7± 4.6 3.9± 1.7 0.3± 0.3 0.0± 0.0
Wg(⇤) 6.0± 2.3 4.6± 2.5 5.9± 3.2 1.3± 1.2 0.0± 0.0 0.0± 0.0
All backgrounds 124.2± 12.4 115.5± 15.0 61.7± 7.0 33.1± 5.7 4.1± 1.9 5.4± 2.2
Signal (mH = 125 GeV) 23.9± 5.2 14.9± 3.3 10.3± 3.0 4.4± 1.3 1.5± 0.2 0.8± 0.1
Data 158 123 54 43 6 7
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LHC expectations at startup
• The LHC started collisions in 2007 with a precise program of Higgs search in the mass 

range allowed by LEP  collider:  

• At  and inst. luminosity of , LHC could produce a Higgs 
boson with a mass up to  and CMS and ATLAS discover it 

• And if they didn’t, then signs of new underlying strong dynamics in  the TeV range 
should show up! The no-lose theorem 

•  is the first channel to be explore for .  

• directly competing with Tevatron existing exclusion: high initial pressure

e+e− MH > 114 GeV/c2

s = 14 TeV 1034 cm−2s−1

≈ 800 GeV

H → WW MH ≈ 2MW ≈ 160 GeV

2

LHC & The No-Lose Theorem
• At " = 14 TeV and instant. luminosity of 10#$ '("%""&, LHC 

could produce Higgs boson of mass up to ≈ 800 GeV
• And both CMS & ATLAS could find it

• And if they didn’t, then signs of new underlying strong dynamics in 
the TeV range should show up! The no-lose theorem.

• On Sept 10th, 2008, when LHC started commissioning, the excitement 
all over the globe was extraordinary; 44 years after the Higgs 
conjecture for EWSB, resolution was in sight. But … 

4
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Figure 10.38. The integrated luminosity needed for the 5� discovery of the inclusive Higgs
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Figure 10.39. The signal significance as a function of the Higgs boson mass for 30 fb �1 of the
integrated luminosity for the different Higgs boson production and decay channels.

pseudoscalar Higgs particles, respectively) looks as follows [511–514 ]:

C J=08VV =  · gµ⌫ +
⇣

m2V
· pµ p⌫ +

⌘

m2V
· ✏µ⌫⇢� k1⇢k2� , (10.5)

where k1, k2 are four-momenta of vector bosons V and p ⌘ k1 + k2 is four-momentum of the
Higgs boson. In the present analysis a simplified version of above 8VV coupling (Eq. 10.5)
is studied with a Standard-Model-like scalar and a pseudoscalar contributions (i.e. , ⌘ 6= 0
and ⇣ = 0). To study deviations from the Standard Model 8Z Z coupling we take  = 147.
47 The 8VV coupling with  = 1 and arbitrary ⌘ is implemented in the generator.
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 the workhorse at startupH → WW
• The Higgs boson decays mostly in the heaviest particle kinematically allowed

3

What The Higgs Boson Decays Into

16

H
ig

gs
 D

ec
ay

 F
ra

ct
io

n
Higgs boson decays mostly into the heaviest particle 

kinematically allowed

At high MH WW & ZZ dominate
At low MH variety of final states in play,
excellent for measuring Higgs couplings
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Higgs boson decays mostly into the heaviest particle 
kinematically allowed

At high MH WW & ZZ dominate
At low MH variety of final states in play,
excellent for measuring Higgs couplings

Even if initially not foreseen for , when the stakes became hot, 
WW was extremely optimised to make use of the largest BR at 

 experimentally accessible (fully leptonic mode: )

MH ≪ 2MW

MH = 125 GeV 2ℓ2ν
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Seminal ideas
• First MC studies were seminal: main kinematical variables, triggers and main 

backgrounds were individuated 

- Look for events with two energetic & isolated leptons and missing energy (due to neutrinos)  

- Large  background  jet veto 

- Higgs boson has spin = 0 => leptons are spatially aligned  

- Nevertheless, below  it was not even considered a possibility

tt →

MH = 155 GeV
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as a signal for the detection of the Standard Model Higgs boson in the mass region
M(Higgs)=155–180 GeV. It is shown that a few simple experimental criteria allow to
distinguish events originating from the Higgs boson decaying to H → W+W− from the
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ground ratios of about one to one are obtained, allowing a 5–10 σ detection with about
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Digging Out Tiny Signals Over Large Backgrounds 
• Like a game of twenty questions
• We have a good idea of the signature to look for
• For example: H à WW à (e υ) (μυ) 

– Look for events with two energetic & isolated leptons 
and missing energy (due to neutrinos)  

22

Higgs boson has spin = 0
è Leptons are spatially aligned

H à WW signal
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A difficult channel for LHC startup
• Between the two shiny golden brothers (high mass resolution)

5

 
Golden, clean, high resolution,…

H → 4ℓ

 
High resolution, not clean,  

a lot of ECAL work 

H → γγ

 
Coarse resolution,  

many backgrounds, 
All physics objects together 

(Leptons, MET and jets) 
 

H → WW
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The two leptonic brothers
• The  and  fully leptonic 

channels drove the R&D of the lepton 
identification as they are (still) now at the 
dawn of Run-3: 

- High efficiency down to a  of few GeVs: 4th 
lepton of  (~5 GeV) and need of high 
fake-lepton rejection from W+jets in  

• especially challenging for electrons 

• The definition of tight (WW: ) and 
loose (ZZ:  ) leptons came from here 

- Furious development of MVA identification: the 
raise of Machine Learning applied at CMS 
started here 

• Another first ML application now widespread 
at LHC: 

• Energy corrections for electrons (and 
photons) using MVA regression

H → WW H → ZZ

pT
H → 4ℓ

H → WW

ϵ ≈ 80 %
ϵ ≈ 90 %

6

Electron/Photon reconstruction   
and energy correction 

Multivariate technique for  
energy correction 

From ECAL only parametric 
correction to multivariate 
technique for energy correction 
and for ECAL-track combination 

Dedicated electron track 
reconstruction and fitting 
(Gaussian Sum Filter) 

Daniele Benedetti (Purdue University) 8/15 

Training and MVAs output  

Daniele Benedetti (Purdue University) 11/15 

Higgs Run1 R&D 
TDR approach

Energy MVA regression

Lepton MVA identification
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And we used jets…
• Initially we used the good, old, the jet-veto: 

• But then we started to categorize events (0-jet, 1-jet, 2-jets) to gain sensitivity.   

- In 2011 analysis first attempt to get in the VBF production

7

pp→ tt → (bW )(bW ) :"Killed" by b-jet veto
Backgrounds Faking Signature Of Higgs Boson

24

μ+
39 GeV

MET  
88 GeV

b-Jet
56 GeV

b-Jet
42 GeV

μ-
35 GeV

Simulation

: rejected by the jet vetopp → tt → (bW)(bW)
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And we used MET…
• Large DrellYan  bkg can be suppressed by requiring large  

• But the HWW expected MET is not large: (40 GeV) => not far from the bulk 
of no-MET events, given its resolution  

→ 2ℓ | ⃗pmiss
T |

𝒪

8

Backgrounds Faking Signature Of Higgs Boson

23

μ+                    
22.7 GeV

μ-
21.1 GeV

MET
6.9 GeV

ppà Z + jets "killed” by requiring missing energy in event 

Simulation

 event “killed” by MET requirementpp → Z + jets
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And we used spin-0 expectations
• The main physics motivated quantity to reduce the pp WW irreducible background  

• Like a SUSY analysis, but with small lepton pTs, small MET, and the bulk of SM 
backgrounds (DrellYan, W+jets, ) there 

- And all these backgrounds deserved a control samples: many techniques, e.g. fake-lepton 
background (W+jets) estimate started here 

→

tt̄

9

Backgrounds Faking Signature Of Higgs Boson

25

too large ΔΦll

pp→WW
An irreducible 

background
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Sensitivity is all in bkg control

10

Predicted Vs Observed Yield Vs Cut

μ
e

MET

Digging Out Tiny Signals Over Large Backgrounds 

• Example: H à WW à (e υ) (μυ) 

26

~200 background events
expect~40 Higgs events

if MH=130 GeV

Higgs signal

Data

Large backgrounds and no mass peak implies                                                        
that one needs to control backgrounds very well.  
=> Here the nightmares started:                                                                      
excess or BAD background estimate?
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2010: lot of developments, small data
• First 35 pb-1 of data has shown the hunger of Higgs first analyzers: 

-  The first 13 WW pre-selected events were used at maximum: 
1. The must-do “cut-based” analysis was performed, of course 

2. But already at that time, alternative analysis with BDT (one per ) was done: first in the 
LHC Higgs era. 

3. At , sensitivity was not bad: already only 2 x SM

MH

MH ≈ 2MW

11
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Figure 2: BDT outputs for Higgs signal and background events for mH = 160 GeV and mH =
200 GeV. (a) the Higgs event yield is normalized to the SM expectation, (b) the normalization
is to the fourth generation scenario.
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Relative Uncertainty (%)
Source H ! W+W�

qq ! W+W�
gg ! W+W�

WZ/ZZ top Z/g⇤ ! `+`� W + jets
Luminosity 11 — — 11 — — —
Trigger efficiencies 1.5 1.5 1.5 1.5 — — —
Muon efficiency 0.7 0.7 0.7 0.7 — — —
Electron id efficiency 2.4 2.4 2.4 2.4 — — —
Reconstruction efficiency 1.4 1.4 1.4 1.4 — — —
momentum scale 1.3 1.3 1.3 1.5 — — —
pile-up 0.5 0.5 0.5 0.5 — — —
E

miss
T resolution 1.0 1.0 1.0 1.0 1.0 3.0 —

Jet veto 5.3 — 5.4 5.4 — — —
PDF uncertainties 3.0 2.6 — 2 — — —
NLO effects 2.0 1.1 — 3.5 — — —
Fakes — — — — — — 50
WZ/ZZ cross-section — — — 3.0 — — —
qq ! WW normalization — 55 — — — — —
gg ! WW normalization — — 50 — — — —
tX normalization — — — — 100 — —
DY normalization — — — — — 100 —
statistics 1 1 1 4 6 50 30

Table 2: Summary of all systematic uncertainties.

final state SM H ! W+W� 4th gen. H ! W+W� data all bkg. qq ! W+W�
gg ! W+W� all non-W+W�

130 0.30 ± 0.01 1.73 ± 0.04 1 1.67 ± 0.10 1.12 ± 0.01 0.10 ± 0.01 0.45 ± 0.10
160 1.23 ± 0.02 10.35 ± 0.16 0 0.91 ± 0.05 0.63 ± 0.01 0.07 ± 0.01 0.21 ± 0.05
200 0.47 ± 0.01 3.94 ± 0.07 0 1.47 ± 0.09 1.13 ± 0.01 0.12 ± 0.01 0.23 ± 0.09
250 0.26 ± 0.00 1.98 ± 0.04 1 1.64 ± 0.08 1.24 ± 0.01 0.09 ± 0.01 0.32 ± 0.08

Table 3: Expected number of signal and background events for an integrated luminosity of
35.5 pb�1, together with the data event yields, after applying the full selection. Both SM
H ! W+W� and fourth fermion generation H ! W+W� expectations are shown. Simula-
tion statistical uncertainties are included.

final state SM H ! W+W� 4th gen. H ! W+W� data all bkg. qq ! W+W�
gg ! W+W� all non-W+W�

130 0.34 ± 0.01 1.98 ± 0.04 1 1.32 ± 0.18 0.75 ± 0.01 0.04 ± 0.00 0.53 ± 0.18
160 1.47 ± 0.02 12.31 ± 0.17 0 0.92 ± 0.10 0.63 ± 0.01 0.06 ± 0.00 0.22 ± 0.10
200 0.57 ± 0.01 4.76 ± 0.07 0 1.47 ± 0.07 1.07 ± 0.01 0.13 ± 0.00 0.27 ± 0.07
250 0.30 ± 0.00 2.30 ± 0.04 0 1.67 ± 0.10 1.14 ± 0.01 0.08 ± 0.00 0.46 ± 0.10

Table 4: Expected number of signal and background events for an integrated luminosity of
35.5 pb�1 for the BDT analysis, together with the data event yields, after applying the full
selection. Simulation statistical uncertainties are included.

No evidence of a Higgs boson contribution in the selected samples is observed, and therefore179

the data are used to derive upper limits on the gluon-fusion Higgs boson production cross-180

section times the H ! W+W� branching ratio, sgg!H ⇥ BR(H ! W+W�). Two different sta-181

tistical methods are used to estimate such upper limits, both using the same likelihood function182

from the expected number of observed events modeled as a Poisson random variable whose183

mean value is the sum of contributions from the signal and background processes. The first184

method is based on Bayesian inference [21], while the second method known as CLs is based185

on the hybrid Frequentist-Bayesian approach [22]. Both methods take into account the system-186

atical uncertainties. Although they are not equivalent, in this case the upper limits obtained187

from them are very similar.188

The 95% observed and expected confidence level upper limits on sgg!H ⇥ BR(H ! W+W�)189

for several masses are shown in Tab.5 for both the Bayesian and the hybrid Frequentist-Bayesian190

7

approaches. Results are reported for both the cut-based and the BDT event selection. The ex-191

pected cross-section for the SM case and for the fourth-fermion generation case are also in-192

cluded. The expected and observed 95% confidence level upper limits on sgg!H ⇥ BR(H !193

W+W�), obtained for Higgs masses in the range 120-600 GeV and using the Bayesian ap-194

proach, are shown in Fig. 3, for both the cut based and the BDT event selections.195

The sgg!H ⇥ BR(H ! W+W�) upper cross-section limits are about three times larger than the196

SM expectation for mH = 160 GeV. When comparing them with recent theoretical calculations197

performed in the context of the SM with a fourth fermion generation [3, 4], allow for excluding198

the Higgs boson with a mass in the range from 144 to 207 GeV at 95% confidence level with the199

BDT analysis. Comparable performace is achieved using the cut based approach.200
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Figure 3: The 95% expected and observed confidence level upper limits on Higgs sgg!H ⇥
BR(H ! W+W�) for masses in the range 120-600 GeV: (a) cut-based analysis, (b) BDT event
selection. Results are obtained using a Bayesian approach. The expected cross-section for the
SM case and for the fourth-fermion generation case are also included.

In summary, no excess compatible with Higgs boson production has been found in the current201

data sample and the first limits on the Higgs production cross-section at the LHC have been202

derived. In the context of a very heavy fourth fermion generation, Higgs boson with a mass203

between 144 and 207 GeV are ruled out at the 95% confidence level.204
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Already in 2010: 
• The analysis was optimized down to 
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• Of course nobody gave it a chance 
as signal event
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Under pressure across Atlantic
• Meanwhile Tevatron was an existential threat (above all for the initial HWW 

targets of a 160 GeV Higgs)

12

Meanwhile Tevatron Was An Existential Threat

7

16

predicted cross sections and the decay branching ratios (the decay H → W+W− is the dominant decay for the region
of highest sensitivity). We therefore use the linear interpolations to extend the results from the 5 GeV/c2 mass grid
investigated to points in between. The regions of Higgs boson masses excluded at the 95% C.L. thus obtained are
156 < mH < 177 GeV/c2 and 100 < mH < 108 GeV/c2. The expected exclusion region, given the current sensitivity,
is 148 < mH < 180 GeV/c2 and 100 < mH < 109 GeV/c2 (masses below mH < 100 GeV/c2 were not studied). The
excluded region obtained by finding the intersections of the linear interpolations of the observed 1−CLs curve shown
in Figure 6 is nearly identical to that obtained with the Bayesian calculation. As previously stated, we make the a

priori choice to quote the exclusion region using the Bayesian calculation.
We investigate the sensitivity and observed limits using CDF’s and D0’s searches for H → bb̄ taken in combination.

These channels contribute the most for values of mH below around 130 GeV/c2. The contributing channels for CDF
are the WH → !νbb̄ channels, the ZH → νν̄bb̄ channels, the ZH → !+!−bb̄ channels, the WH +ZH + V BF → jjbb̄
channels, and all of the tt̄H channels. The contributing channels for D0 are the WH → !νbb̄ channels, the ZH → νν̄bb̄
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FIG. 5: Observed and expected (median, for the background-only hypothesis) 95% C.L. upper limits on the ratios to the SM
cross section, as functions of the Higgs boson mass for the combined CDF and D0 analyses. The limits are expressed as a
multiple of the SM prediction for test masses (every 5 GeV/c2) for which both experiments have performed dedicated searches
in different channels. The points are joined by straight lines for better readability. The bands indicate the 68% and 95%
probability regions where the limits can fluctuate, in the absence of signal. The limits displayed in this figure are obtained with
the Bayesian calculation.
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Rise of The Machine
• After the short 35 pb-1 run, LHC luminosity increased steadily in 2011 and 2012 

• So increased the pressure to include the latest bits of data 

- We did an update from EPS 2011 to Lepton-Photon 2011 including few pb-1 more taken 
between the two conferences 

•  At the same time, CMS did multiple re-reconstructions of small runs to recover any drop 
of data to be included in the analyses - offline & computing felt the pressure as well
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The role of CERN building 32
• Great developments came also from an internal competition at fast pace 

- Continuous exchange of ideas boosted the analysis beyond the expectations 

- Along the whole Run1, two skilled groups lead the effort with undiscussed 
dedication 

• Examples of different expertise (and opposite views on the importance of 
the other approach) 

- robust cut-based analyses, expertise on pp-collider background estimates, first 
usage of MVAs 

- shape fitting, inclusion of multiple categories, development of innovative 
statistical tools (Higgs combination dawn, BTW) 

• Produced more than 30 internal analysis notes                                                                
on this analysis in 2010/2011/2012 

• Most of them were written during long                                                                  
nights at CERN, building 32 

• Any big update (EPS11, LeptonPhoton,                                                                                    
CERN seminar, ICHEP 2012) was preceded by                                                                 
weeks of daily meetings (at CERN B32 as well) 

14

Building 32
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No analysis without good review
• The first HWW analysis with data (and until the discovery) was assigned to a 

review committee of excellent physicists

15

Example of good-old-style checks:  
2011 analysis review

Example of worries from the 
emerging signal, but on a  
channel w/o mass peak: 

“Congratulations for the green light. I 
would like to share with you the 
following worry: There is a 2 sigma 
discrepancy between observed and 
expected limit in  the mass range    
[130, 170]. The question will come: Is it 
a statistical fluctuation or  an 
underestimation of the errors? The 
systematic error on the shape  needs 
to be properly addressed.”
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Results at the end of 2011
• By the end of 2011, LHC delivered  per experiment.  

-  alone ruled out a SM Higgs boson with a mass [129 - 270] GeV at 95% CL 

- Together with the other channels, and putting together ATLAS+CMS, Higgs 
boson was restricted in a rather narrow range. 

• And the small excess was spread in WW up to 130 GeV

≈ 5 fb−1

H → WW

MH ≈

16

11

To compute the upper limits the modified frequentist construction CLs [73–75] is used. The306

likelihood function from the expected number of observed events is modeled as a Poisson ran-307

dom variable, whose mean value is the sum of the contributions from signal and background308

processes. All the sources of systematic uncertainties are also considered. The 95% CL observed309

and expected median upper limits are shown in Fig. 4. Results are reported for both the cut-310

based and the BDT approaches. The bands represent the 1s and 2s probability intervals around311

the expected limit. The a posteriori probability intervals on the cross section are constrained by312

the assumption that the signal and background cross sections are positive definite.313

The cut-based analysis excludes the presence of a Higgs boson with mass in the range 132–314

238 GeV at 95% CL, while the expected exclusion limit in the hypothesis of background only315

is 129–236 GeV. With the multivariate analysis, a Higgs boson with mass in the range 129–316

270 GeV is excluded at 95% CL, while the expected exclusion limit for the background only317

hypothesis is in the range 127–270 GeV. The observed (expected) upper limits are about 0.9318

(0.7) times the SM expectation for mH = 130 GeV.319
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Figure 4: Expected and observed 95% CL upper limits on the cross section times branching
fraction, sH ⇥ BR(H ! W+W�), relative to the SM Higgs expectation, using cut-based (left)
and multivariate BDT (right) event selections. Results are obtained using the CLs approach.

8 Summary320

A search for the SM Higgs boson decaying to W+W� in pp collisions at
p

s = 7 TeV is per-321

formed by the CMS experiment using a data sample corresponding to an integrated luminos-322

ity of 4.6 fb�1. No significant excess of events above the SM background expectation is found.323

Limits on the Higgs boson production cross section relative to the SM Higgs expectation are324

derived, excluding the presence of the SM Higgs boson with a mass in the range 129–270 GeV325

at 95% CL.326
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Discovery data:  limitsH → WW

17

Observed Exclusion at 95% CL: 129 < MH < 520 GeV
A small excess at low masses

Discovery Data: Limits on Higgs Mass From H à WW

34
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18 6 Decay modes with low mass resolution

Table 4: Observed number of events, background estimates, and signal predictions for mH =
125 GeV in each category of the WW analysis of the 8 TeV data set. All the selection require-
ments have been applied. The combined experimental and theoretical, systematic and statis-
tical uncertainties are shown. The Zg process includes the dimuon, dielectron, and tt ! ``
final states.

Category: 0-jet eµ 0-jet `` 1-jet eµ 1-jet `` 2-jet eµ 2-jet ``
WW 87.6± 9.5 60.4± 6.7 19.5± 3.7 9.7± 1.9 0.4± 0.1 0.3± 0.1
WZ + ZZ + Zg 2.2± 0.2 37.7± 12.5 2.4± 0.3 8.7± 4.9 0.1± 0.0 3.1± 1.8
Top 9.3± 2.7 1.9± 0.5 22.3± 2.0 9.5± 1.1 3.4± 1.9 2.0± 1.2
W + jets 19.1± 7.2 10.8± 4.3 11.7± 4.6 3.9± 1.7 0.3± 0.3 0.0± 0.0
Wg(⇤) 6.0± 2.3 4.6± 2.5 5.9± 3.2 1.3± 1.2 0.0± 0.0 0.0± 0.0
All backgrounds 124.2± 12.4 115.5± 15.0 61.7± 7.0 33.1± 5.7 4.1± 1.9 5.4± 2.2
Signal (mH = 125 GeV) 23.9± 5.2 14.9± 3.3 10.3± 3.0 4.4± 1.3 1.5± 0.2 0.8± 0.1
Data 158 123 54 43 6 7
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Unblinding night in 2012: took from midnight to 6 am to convince ourselves 
that everything was ok
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And with full Run1 data
• A “mass peak” done with a kinematic variable initially developed for SUSY 

decay chains with multiple invisible particles (here the 2 neutrinos)

18

22 6 Final states with two charged leptons
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Figure 9: Distributions of mR showing the composition of signal and backgrounds, superim-
posed on the signal events alone, in the eµ final state for the 0-jet (left) and 1-jet (right) cate-
gories for

p
s = 8 TeV. The signal and background processes are normalized to the result of

the parametric fit to the (mR, DfR) distribution.
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best-fit superimposed for the 0-jet and 1-jet categories combined for

p
s = 7 and 8 TeV. The

signal and background processes are normalized to the result of the parametric fit to the (mR,
DfR) distribution. The events are weighted according to the observed S/(S+B) ratio of the
second variable.
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estimator of the mass scale of the decaying Higgs boson candidate is defined as:

mR =

√
1

2

[
m2
!! − !Emiss

T · !p!!T +
√
(m2

!! + (p!!T )
2)(m2

!! + (Emiss
T )2)

]
.

This variable has a resolution of around 15% for a Higgs boson with mH = 125GeV,

regardless of the jet multiplicity. The distribution of the mR variable is parameterized with

a relatively simple function with a linear dependence on the Higgs boson mass, enabling

an unbinned fit to data and a smooth interpolation between mass hypotheses.

The parameterized distributions of themR variable for different signal mass hypotheses

and backgrounds are shown in figure 5. The functional form of the Higgs boson signal inmR

is described by the convolution of a Breit-Wigner function, centered on the expected mH

and with a width equal to the expected Higgs boson width, and a Crystal Ball function [102]

to describe the resolution of the Gaussian core and the tail. For the Higgs boson mass

hypotheses considered in this analysis, the theoretical width of the SM Higgs boson is

negligible with respect to the experimental resolution.

The mR distribution for the majority of the backgrounds is described with a Landau

function [103], except for the Z → ττ process which is modeled with a double Gaussian

function. The parametric fit is carried out in bins of∆φR, which is the azimuthal separation

between the two leptons computed in the same reference frame asmR. The two variables are

largely uncorrelated in the decay of the Higgs boson, while the distributions for backgrounds

are correlated. A total of 10 bins in ∆φR are used with finer (coarser) bin widths at smaller

(larger) value of ∆φR.

A selection tighter than that of the (mT, m!!) template fits is chosen for this analysis

by applying p!!T > 45GeV and mT > 80GeV. The reason for the tighter selection is to

reject a larger fraction of the W+ jets and Wγ(∗) background processes, which otherwise

show a maximum at mR ∼ 125GeV because of kinematic requirements. The upper bounds

on m!! and mT that are used for the (mT, m!!) template fits are removed. The range of

50GeV < mR < 500GeV, which contains almost 100% of the signal, is used for the fit.

All the theoretical and experimental systematic uncertainties are taken into account

in the parametric fit. The shape uncertainties are estimated by refitting the distribution

produced with the systematic variation for each source. The parametric fit to the (mR,

∆φR) distribution has been validated using pseudo-experiments and the results show no

bias in the measurement of the signal and background yields neither for the 0-jet nor for

the 1-jet category.

Counting analysis. A simple counting experiment is performed as a basic cross-check

for all categories, and as default approach for the same-flavor ee/µµ final states. A tighter

selection is applied to increase the signal-to-background ratio using kinematic variables

that characterize the Higgs boson final state. The minimum requirement on dilepton pT is

raised to p!!T > 45GeV, and a series of selections are applied based on the lepton momenta

(p!,max
T and p!,min

T ), m!!, the azimuthal separation between the two leptons (∆φ!!), and

mT. The threshold values are optimized for each Higgs boson mass hypothesis. Table 4

summarizes the selection requirements used in the counting analysis for a few representative

mass points.
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Figure 9. Distributions of mR showing the composition of signal and backgrounds, superimposed
on the signal events alone, in the eµ final state for the 0-jet (left) and 1-jet (right) categories for√
s = 8TeV. The signal and background processes are normalized to the result of the parametric

fit to the (mR, ∆φR) distribution.
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Figure 10. The background-subtracted data distribution for mR (left) and ∆φR (right) with the
best-fit superimposed for the 0-jet and 1-jet categories combined for

√
s = 7 and 8TeV. The signal

and background processes are normalized to the result of the parametric fit to the (mR, ∆φR) dis-
tribution. The events are weighted according to the observed S/(S+B) ratio of the second variable.

check the accuracy of background templates and the model of correlations between sys-

tematic uncertainties.

Assuming the SM expectation, the fit performance has been evaluated with pseudo-

experiments in terms of process normalizations and nuisance parameters, both under de-

fault conditions and in the presence of input biases, which correspond to ±1 standard

deviation on either normalization or shape of the most important backgrounds. Fit re-

sults are very stable and in most cases the signal yield is determined with no significant

bias. The largest deviation is observed for input bias applied on the W+ jets background

– 23 –

and matches the expectation of a small 
lepton  for a spin-0 particle decaying 

to 2 vector bosons
Δϕ
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: discovery and todayH → WW*

19

18 6 Decay modes with low mass resolution

Table 4: Observed number of events, background estimates, and signal predictions for mH =
125 GeV in each category of the WW analysis of the 8 TeV data set. All the selection require-
ments have been applied. The combined experimental and theoretical, systematic and statis-
tical uncertainties are shown. The Zg process includes the dimuon, dielectron, and tt ! ``
final states.

Category: 0-jet eµ 0-jet `` 1-jet eµ 1-jet `` 2-jet eµ 2-jet ``
WW 87.6± 9.5 60.4± 6.7 19.5± 3.7 9.7± 1.9 0.4± 0.1 0.3± 0.1
WZ + ZZ + Zg 2.2± 0.2 37.7± 12.5 2.4± 0.3 8.7± 4.9 0.1± 0.0 3.1± 1.8
Top 9.3± 2.7 1.9± 0.5 22.3± 2.0 9.5± 1.1 3.4± 1.9 2.0± 1.2
W + jets 19.1± 7.2 10.8± 4.3 11.7± 4.6 3.9± 1.7 0.3± 0.3 0.0± 0.0
Wg(⇤) 6.0± 2.3 4.6± 2.5 5.9± 3.2 1.3± 1.2 0.0± 0.0 0.0± 0.0
All backgrounds 124.2± 12.4 115.5± 15.0 61.7± 7.0 33.1± 5.7 4.1± 1.9 5.4± 2.2
Signal (mH = 125 GeV) 23.9± 5.2 14.9± 3.3 10.3± 3.0 4.4± 1.3 1.5± 0.2 0.8± 0.1
Data 158 123 54 43 6 7
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end of Run-1

End of Run-2

Not a high resolution channel due to neutrinos in the final state, 
but the workhorse of the decay rate, due to the high BR
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And at the dawn of Run3
• It remains a challenging channel: all the physics object need tuning with 

higher pileup, irradiation, etc.
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Figure 4. Observed fiducial cross sections in bins of pHT (left) and Njet (right), overlaid with predic-
tions from the nominal and alternative models for signal. The ggF and VBF samples are generated
using powheg in the nominal model and MadGraph5_amc@nlo in the alternative model. The
uncertainty bars on the observed cross sections represent the total uncertainty, with the statisti-
cal, experimental (including luminosity), and theoretical uncertainties also shown separately. The
uncertainty bands on the theoretical predictions correspond to quadratic sums of renormalization-
and factorization-scale uncertainties, PDF uncertainties, and statistical uncertainties of the simu-
lation. The filled histograms in the ratio plots show the relative contributions of the Higgs boson
production modes in each bin.

Njet-binned combined data set, are

µfid=1.05±0.12
(
±0.05(stat)±0.07(exp)±0.01(signal)±0.07(bkg)±0.03(lumi)

)
, (9.3)

σfid=86.5±9.5 fb. (9.4)

where (stat) refers to the statistical uncertainties (including the background normalizations
extracted from control regions), (exp) to the experimental uncertainties excluding those in
the integrated luminosity, (signal) to the theoretical uncertainties in modeling the signal,
(bkg) to the remaining theoretical uncertainties, and (lumi) to the luminosity uncertainty.
Tabulated results are available in the HepData database [84].

10 Summary

Inclusive and differential fiducial cross sections for Higgs boson production have been mea-
sured using H → W+W− → e±µ∓νν decays. The measurements were performed using
pp collisions recorded by the CMS detector at a center-of-mass energy of 13TeV, cor-
responding to a total integrated luminosity of 137 fb−1. Differential cross sections as a
function of the transverse momentum of the Higgs boson and the number of associated
jets produced are determined in a fiducial phase space that is matched to the experimental
kinematic acceptance. The cross sections are extracted through a simultaneous fit to kine-
matic distributions of the signal candidate events categorized to maximize sensitivity to

– 20 –

Simplified Template X-Sections  
for ggH, qqH, VH 

(And ttH in a dedicated analysis)

Differential x-sections 
Cross Sections, eg.
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Summary
• The  channel has been the first one with the responsibility to be 

carried on 

- Initially thought only for a restricted mass range around , has been instead 
one of the three big  brothers to contribute to the discovery of H(125) 

- The  final state has been such to need to drive the optimisation of many 
physics objects in CMS: leptons, but also MET, jets 

• And also many analysis techniques, from bkg estimates to statistic tools 

• on these grounding is still part of the CMS success today 

• Nowadays and in the future: 

- It remains the same challenging, dirty workhorse of 10 years ago: increased PU, 
detector varying conditions makes any result update a difficult job 

- Despite no mass peak,  it remains one of the driving channels for the x-section 
related measurements 

• Differential cross sections, STXS, rarer associated production (eg. ) 

• Last, but not least, it is where young physicists can learn pp phenomenology 
at 360  while studying this 10 years old new particle

H → WW

2MW
H → VV

2ℓ2ν

tt̄H

∘

21
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The LHC Higgs factory
• For  a wide range of 

production and decay modes accessible 

•  not viable at startup: WW was 
the workhorse at startup !

mH ∼ 125 GeV

H → bb

23
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Probing Higgs Couplings at the LHC �4
The Higgs boson at the LHC.
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µ = 1.07± 0.22 (at 68%CL)

In the kappa framework , fit for 6 
coupling strength modifiers (κ)  

for  mH = 125.38 GeV

CMS p-value for SM hypothesis (all κ=1): 44% 

for the first time, meaningful 68% and 95% 
confidence intervals for a Higgs boson coupling to a 

second generation fermion
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µ = 1.07± 0.22 (at 68%CL)

In the kappa framework , fit for 6 
coupling strength modifiers (κ)  

for  mH = 125.38 GeV

CMS p-value for SM hypothesis (all κ=1): 44% 

for the first time, meaningful 68% and 95% 
confidence intervals for a Higgs boson coupling to a 

second generation fermion
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Higgs couplings to gauge bosons

• Tree level couplings proportional to masses 

• The couplings govern the (single and double)  Higgs boson production and 
the branching ratios 

- at the LHC the large datasets of Run1 - Run2 and just started Run3 provides 
evidence of their realization in nature 

• One of the primary goals of the LHC program is to look for deviations from 
these SM couplings and thus the precise determination of the shape of the 
Higgs potential 
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STXS, H → WW*
• Limited by signal uncertainty and background estimate 

25

 per production modeμ

STXS results
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Differential cross sections
• A more classical approach is measuring differential cross sections in many 

variables 

- with increasing precision, the shape of kinematic variables are sensitive to new 
physics 

• Typical observables: Higgs , rapidity, number and kinematics of associated 
jets, etc.

pT

26

Beyond inclusive measurements

New physics might modify kinematics
Measure differentially!

Matthias Schröder The Higgs boson: a glimpse under the peak 18/40

SM expectation 
New Physics



E. Di Marco 30/6/2022Higgs 10 years

H → WW*

• The viable final state is 
: the two 

undetected neutrinos 
make it a challenging 
channel 

- need control of large top 
and fake lepton 
background 

- large sensitivity to cross 
section due to large BR 
compared to 4l or 

H → 2ℓ2ν

γγ
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Figure 2. Observed distributions of mll in data and the expectations from the best fit model
with the uncertainties. The distributions in each Njet bin are given in separate panels. Within
each panel, the lower sub-panel displays background-subtracted observations and expectations. For
Njet = 0, results are split into pl2T > 20GeV (left) and pl2T < 20GeV (right).

Process RL Njet bin
0 1 2 3 ≥ 4

Data 66263 42959 23027 8912 3765
H(125) 2186± 92 (2447) 1254± 60 (1165) 632± 66 (445) 178± 48 (109) 98± 26 (36)

All background 64085± 463 (63221) 41650± 374 (43994) 22367± 344 (22782) 8735± 182 (8658) 3655± 79 (3822)
τ+τ− 740± 41 (520) 944± 50 (822) 688± 99 (301) 255± 43 (135) 100± 50 (70)

W+W− 41058± 360 (38437) 13190± 252 (15176) 3402± 222 (4266) 698± 125 (966) 0± 0 (240)
tt + tW 11125± 144 (11870) 20891± 179 (21198) 15788± 214 (15381) 6853± 110 (6510) 3152± 52 (3031)

Nonprompt 6649± 188 (8999) 3436± 149 (4457) 1066± 77 (1792) 480± 52 (685) 254± 30 (357)
Other background 4513± 165 (3394) 3189± 139 (2342) 1424± 89 (1043) 449± 32 (362) 149± 12 (124)

Table 6. Signal and background post-fit (pre-fit) yields in the RL Njet bins.
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: differentialH → WW*
• Large BR allows measuring precisely high pT(H) and n(jets)>2 

- uncertainty 85% in the last  binpH
T
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Figure 4. Observed fiducial cross sections in bins of pHT (left) and Njet (right), overlaid with predic-
tions from the nominal and alternative models for signal. The ggF and VBF samples are generated
using powheg in the nominal model and MadGraph5_amc@nlo in the alternative model. The
uncertainty bars on the observed cross sections represent the total uncertainty, with the statisti-
cal, experimental (including luminosity), and theoretical uncertainties also shown separately. The
uncertainty bands on the theoretical predictions correspond to quadratic sums of renormalization-
and factorization-scale uncertainties, PDF uncertainties, and statistical uncertainties of the simu-
lation. The filled histograms in the ratio plots show the relative contributions of the Higgs boson
production modes in each bin.

Njet-binned combined data set, are

µfid=1.05±0.12
(
±0.05(stat)±0.07(exp)±0.01(signal)±0.07(bkg)±0.03(lumi)

)
, (9.3)

σfid=86.5±9.5 fb. (9.4)

where (stat) refers to the statistical uncertainties (including the background normalizations
extracted from control regions), (exp) to the experimental uncertainties excluding those in
the integrated luminosity, (signal) to the theoretical uncertainties in modeling the signal,
(bkg) to the remaining theoretical uncertainties, and (lumi) to the luminosity uncertainty.
Tabulated results are available in the HepData database [84].

10 Summary

Inclusive and differential fiducial cross sections for Higgs boson production have been mea-
sured using H → W+W− → e±µ∓νν decays. The measurements were performed using
pp collisions recorded by the CMS detector at a center-of-mass energy of 13TeV, cor-
responding to a total integrated luminosity of 137 fb−1. Differential cross sections as a
function of the transverse momentum of the Higgs boson and the number of associated
jets produced are determined in a fiducial phase space that is matched to the experimental
kinematic acceptance. The cross sections are extracted through a simultaneous fit to kine-
matic distributions of the signal candidate events categorized to maximize sensitivity to
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Figure 4. Observed fiducial cross sections in bins of pHT (left) and Njet (right), overlaid with predic-
tions from the nominal and alternative models for signal. The ggF and VBF samples are generated
using powheg in the nominal model and MadGraph5_amc@nlo in the alternative model. The
uncertainty bars on the observed cross sections represent the total uncertainty, with the statisti-
cal, experimental (including luminosity), and theoretical uncertainties also shown separately. The
uncertainty bands on the theoretical predictions correspond to quadratic sums of renormalization-
and factorization-scale uncertainties, PDF uncertainties, and statistical uncertainties of the simu-
lation. The filled histograms in the ratio plots show the relative contributions of the Higgs boson
production modes in each bin.

Njet-binned combined data set, are

µfid=1.05±0.12
(
±0.05(stat)±0.07(exp)±0.01(signal)±0.07(bkg)±0.03(lumi)

)
, (9.3)

σfid=86.5±9.5 fb. (9.4)

where (stat) refers to the statistical uncertainties (including the background normalizations
extracted from control regions), (exp) to the experimental uncertainties excluding those in
the integrated luminosity, (signal) to the theoretical uncertainties in modeling the signal,
(bkg) to the remaining theoretical uncertainties, and (lumi) to the luminosity uncertainty.
Tabulated results are available in the HepData database [84].

10 Summary

Inclusive and differential fiducial cross sections for Higgs boson production have been mea-
sured using H → W+W− → e±µ∓νν decays. The measurements were performed using
pp collisions recorded by the CMS detector at a center-of-mass energy of 13TeV, cor-
responding to a total integrated luminosity of 137 fb−1. Differential cross sections as a
function of the transverse momentum of the Higgs boson and the number of associated
jets produced are determined in a fiducial phase space that is matched to the experimental
kinematic acceptance. The cross sections are extracted through a simultaneous fit to kine-
matic distributions of the signal candidate events categorized to maximize sensitivity to
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μfid = 1.05 ± 0.12 (±0.05 (stat) ± 0.07 (exp) ± 0.01 (signal) ± 0.07 (bkg) ± 0.03 (lumi))
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VH, H → WW*
• Measured of VH,H WW with V going to leptons  

- Observed (expected) signal significance: 4.7  (2.8)  

- cross section is extracted as a function of the vector boson pT 

→
σ
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