

$H{\longrightarrow}\mu\mu$ Lydia Brenner on behalf of ATLAS and CMS

Talking about Run 2

Why not talk about Run 1? Or 2012 in particular?

The Standard Model: Second generation

Higgs coupling to fermions is proportional to the fermion mass

- → Seen talks on third generation and the difficulties of H→cc
- → $H \rightarrow \mu \mu$ good candidate to test Higgs coupling to second generation
 - Relatively heavy
 - Detectors have relatively good muon resolution

Detector signal

 \rightarrow

4

Search for events with two muons Coming from the same vertex

Detector signal

Search for events with two muons

- \rightarrow Coming from the same vertex
- → Possibly with two jets

Detector signal

Lydia Brenner

 \rightarrow

 \rightarrow

system

That sounds easy!

Not really...

• Small Branching Ratio of 2.17 x 10⁻⁴

But since the muon reconstruction is advanced this should be still doable right?

Lydia Brenner

μμ

That sounds easy!

Not really...

<u>Н</u>→µµ

- Small Branching Ratio of 2.17 x 10⁻⁴
- Indistinguishable Drell-Yan background with same final state ~10³ times larger than signal

Signal/Background ratio ~1/1000

We are going too slow!

Enough excuses... let's just do this!

• Problems are very similar to $H_{\gamma\gamma}$

Dealing with backgrounds

Very precise background models are needed

• What if the background model is not accurate?

 $H \rightarrow \mu \mu$

Dealing with backgrounds

Very precise background models are needed

- What if the background model is not accurate?
- Let's assume we have no signal
 - Fitting the backgroundonly spectrum can give a signal ≠ 0, due to the inaccuracy of the background model: spurious signal

Background modelling

Using an empirical function for the background model

- Require good match between model and data in sidebands
- Reweigh high statistics MC sample to have good match between data and MC in the sidebands
- Require good match in between
 MC and model in signal region

 $m(\mu\mu)$

H→µµ

Background modelling

Is this enough to not be bothered by spurious signal? No

- Use separate high statistics MC sample to estimate size of spurious signal in the signal region
- Require that the spurious signal <20% dN_{sig} to select function

Background composition

Different production modes have different dominant background contributions

ggH

- → 87% of total H cross section
- → Low signal purity : 0.2-2%
- → Large DY background

VH

- → 4% of total H cross section
- → Additional e, µ in the event from leptonic decays of W, Z
- → Main backgrounds : ZZ, WZ

VBF

- \rightarrow 7% of total H cross section
- → Two jets with large η -gap, mjj
- → Main backgrounds : DY, EWK Z+jj

ttH

- \rightarrow 1% of total H cross section
- → Additional jets, b-jets, leptons in the event from top decays
- → Main backgrounds : tt, ttZ

H→µµ

Optimising the signal

In order to improve S/B and the total significance even further we split into several distinct signal regions optimised depending on production signature

- Defined 19 (CMS) and 20 (ATLAS) orthogonal signal regions
 - Each signal region has different background contributions
 - Optimise background model for each signal region separately

H→uu

The Signal model

Signal shape is dominated by detector resolution

- Using double-sided Crystal Ball (CB) as analytic parameterisation for the signal
 - Gaussian core + power-law tails on each side

Lydia Bre

The results

- Signal strength;
 - 1.2±0.6 (ATLAS) and 1.19±0.44 (CMS)

Nik|hef

H→µµ

The results

- Signal strength;
 - 1.2±0.6 (ATLAS) and 1.19±0.44 (CMS)
- Significance

 $H \rightarrow \mu \mu$

- Expected: 1.7 σ (ATLAS) and 2.5 σ (CMS)
- Observed: 2.0 σ (ATLAS) and 3.0 σ (CMS) \star

Lydia Brenner

The results

- Signal strength;
 - 1.2±0.6 (ATLAS) and 1.19±0.44 (CMS)
- Significance

- Expected: 1.7 σ (ATLAS) and 2.5 σ (CMS)
- Observed: 2.0 σ (ATLAS) and 3.0 σ (CMS) \star
- BR limit at 95% CL
 - 4.7 x 10⁻⁴
- Main uncertainties in order of size
 - Statistics (data) \Rightarrow Stay tuned for Run 3!
 - Theory predictions of the signal
 - Background modelling

The big picture

Coupling modifiers compared to other Higgs couplings

Niklhef

Summary and conclusion

- Full run 2 measurement done for $H \rightarrow \mu\mu$ in ATLAS and CMS
- Shown first Higgs boson coupling to second generation (CMS)
 - \circ 3.0 σ observed
- Measured signal strength compatible with the Standard Model
 - ~1.2 ±0.6(ATLAS) ±0.44(CMS)

Exciting Run 3 ahead for $H \rightarrow \mu\mu$

- \rightarrow In the style of a Run 1 discovery search
 - Only this time we are unsurprised to find it

H→uu