HiggsDiscovery@10

University of Birmingham

E

30.06.2022

for a

Isabelle Wingerter-Seez CNRS - Centre de Physique des Particules de Marseille HiggsDiscovery@10 - Birmingham

1964 - Higgs mechanism proposed by P. W. Higgs, F. Englert and R.Brout, G.S. Guralnik, C.R. Hagen and T.W.B. Kibble.

30.06.2022

First Z decay into hadrons recorded by OPAL and LEP on 13 August 1989 at 23:1

30.06.2022

Back in 1990

A man talks on his mobile phone while standing near a conventional telephone box, which stands empty. Enabling technology for mobile phones was first developed in the 1940s but it was not until the mid 1980s that they became widely available. By 2011, it was estimated in Britain that more calls were made using mobile phones than wired devices.^[1]

HOW CAN the HIGGS BOSON be PRODUCED ? STANDARD MODEL PREDICTIONS Production

30.06.2022

Decays

HIGGS PRODUCTION in proton-proton collisions

10-9

30.06.2022

Higgs boson production is a very small fraction of the standard p-p collisions: 10-9

Higgs production is rare: cross-section is ~10-100 pico-barn.

High energy to explore unknown territory

High frequency & high beam intensity:

Maximize number of proton-proton collisions

Try to reveal rare phenomena.

This good idea came with many many obstacles to master

A large collaboration

لالة للمعالمة المعالمة معالمة معالمع معالمة معالمع معالمة معالمة معالمة معالمة معالمع معالمة معالمة معالمة معالمع معالمة معالمة معالمة معالمة معالمع معالمة معالمة معالمة معالمع معالمة معالمة معالمة معالمة معالمة معالمة معالمع معالمة معالمع معالمة

Stored beam energy [N

Segmentation

30.06.2022

	LHC design	LHC 2012	LEP
V]	14 TeV	7 TeV	0.09 - 0.2
s]	25	50	2000
າຣ	2808	1380	4-8
11]	1.15	1.7	2.5
-1]	1	0.77	0.01 Max
ng	20	35	1
J]	362		

L1 Calo@Birmgham

LEP 50 kHz 1 Hz

Pileup

LHC Crossings 40 MHz L1 trigger 100 kHz On disk 1 kHz

SCT@Birmingham

This good idea came with many many obstacles to master

A large collaboration

42 countries 3000 scientific participants, bora including 1000 students on

Segmentation

First Z decay into hadrons recorded by OPAL and LEP on 13 August 1989 at 23:1

30.06.2022

Back in 1990

A man talks on his mobile phone while standing near a conventional telephone box, which stands empty. Enabling technology for mobile phones was first developed in the 1940s but it was not until the mid 1980s that they became widely available. By 2011, it was estimated in Britain that more calls were made using mobile phones than wired devices.^[1]

First Z decay into hadrons recorded by OPAL and LEP on 13 August 1989 at 23:17

30.06.2022

near a conventional telephone box, which stands empty. Enabling technology for mobile phones was first developed in the 1940s but it was not until the made using mobile phones than wired devices.^[1]

1964 - Higgs mechanism proposed by P. W. Higgs, F. Englert and R.Brout, G.S. Guralnik, C.R. Hagen and T.W.B. Kibble.

	Tev	vatror	ר CDF	= & DC)		To	р		Ç	Sea	rch
W	, Z	UA1,	UA2				LEF					
												,
	Ideas	about	LHC, th	oughts			R&D, b	eginni	ing of	constru	ction	
						1 9 2 0	TP	L	1 9 7	TDRs		
			First	LAr acc	ordion p	roto	So decisio Mak	many ns to king ai a sc	take nd kee hedule	eping		
		Photon c ECFA Higgs	ECFA A lecay mode	achen r s of the inter	neeting mediate mas	s Higgs				CERN	counc	cil stc
30.06.202	22						,					

for the Higgs boson

A fast calorimeter

Reminder At=25 ns

A fast calorimeter

Reminder At=25 ns

The benefit of such a scheme is that each tower can be connected to a preamp located on the tower itself ,in the front or back of the calorimeter. Thus this proposal solves(in principle) the problem of dead space around modules to allow for connections.Such a problem is harder and harder when the granularity increases.It also implies the use of long connecting lines ,which are a serious adverse effect against speed(Radeka & Rescia NIM A265)

A fast calorimeter

Reminder At=25 ns

The benefit of such a scheme is that each tower can be connected to a preamp located on the tower itself ,in the front or back of the calorimeter. Thus this proposal solves(in principle) the problem of dead space around modules to allow for connections.Such a problem is harder and harder when the granularity increases.It also implies the use of long connecting lines ,which are a serious adverse effect against speed(Radeka & Rescia NIM A265)

Although it is clear tha

Although it is clear that difficulties will show up when trying to make a real design, one could envisage to use such

Classical

Janvier 1990

30.06.2022

Accordeon

An hermetic calorimeter

Janvier 1990

30.06.2022

Daniel Fournier

A segmented calorimeter

Janvier 1990

30.06.2022

Daniel Fournier

electromagnetic calorimeter argon geometry a liquid Performance of a lig with an "accordion"

Collaboration RD3 North-Holland Nuclear Instruments and Methods Ξ. Physics Research A309 (1991) 438-4 6

Nuclear Instruments North-Holland and Methods IJ. Physics Research A309 (1991) 438-44 6

1964 - Higgs mechanism proposed by P. W. Higgs, F. Englert and R.Brout, G.S. Guralnik, C.R. Hagen and T.W.B. Kibble.

So many questions to answer

30.06.2022

atas 1995 1997 1998 1999 1996 11 ETT hoping appear medi EM 4 Ø New Wh 100m hay have by module deb EM test beau under S apres EM moul hapter En 5 1 ETY folication all En fiking up EM cold test used Justifial beau . Housen cylinder anouth installations tot Cold thr-. refairs deady for the for. 1 1995

2000	2001	2002	2003	2004	(ETI Barrel)
÷ .		4			
				1	,
			1	÷.,	н.
mon					
4600	1.1			1	
	-	1 : L . J			
	1				
· * .			÷		
: •	л н. Н			· .	
	· - :	,			
				Da	aniel Fournier

1998 1999 1995 1996 1997 terhays denger - F . 1 1 test cup familie fack farication -. supple system i. ţ. 1 1 tend cyo ready . ٠ 1 1 1 . cable fabricatives . 1 2 i 1 8 4 4 1 find dure ff . ≱ find chine calles fuel drive cooling 1 1 1.1.1 1.1.1 Cup pland designi cyp plant install Est of Bend Calo . . but of EC calo ÷ . . . Layo pland inst/for 1.1.7 Sairel aported design - ANA ANA MAN barrenn plaiceting "HULL feedthigh fasication and barren ten 1000 hyontes ty! LOAN 1995

1	2000	2001	2002	2003	2004	(Tyo Elements)
	, ,				1	4
-1						
					. '	
-1						
			1	1		
				'		
				· · ·	1.1	
		· ·	·			
				1		
	x=x=1	:	1.1.1		5	
	3 . ¹	1		1		
						4
			$ \rightarrow \rangle$			
1						
					- s	
	1 1 1		-		* f *	
		1.1.1				
		$\gamma + \gamma$			1.1.1	
	1.1.1			1.1.1	1.1.1	
-1					· ' .	
		· + ,			1.1.1	
		111		1.1.1		
9	St.					
) int					
		1			1 1 1	
			-			aniel Fournier

1998 1996 1995 1997 1 ficel durie cold PA ! minpm fuel chorce PS PA fiel chine opt links fiel danie too system fahrete PA/mod D fabricate opt/undo Jelwente Mapers/0 the rend o Jebricate M. bouds ê----. 122 · · Johnste opvluch ÷ . 7 Juliate Mayor · . Jahriale fifeting abreat Apc plucente boards eletining perty for find • • electroing reach for 1995

999	2000	2001	2002	2003	2004	Electionics
		Surface barrel test				
1						
· · · · · · · · · · · · · · · · · · ·				Bar in C	rrel in f Octobe	the pit er 2004
· · · ·			banel in pit			

Daniel Fournier

1964 - Higgs mechanism proposed by P. W. Higgs, F. Englert and R.Brout, G.S. Guralnik, C.R. Hagen and T.W.B. Kibble.

30.06.2022

Testbeams, testbeams, testbeams

ATLAS | î | *8 8 8*

> Where the ATLAS reconstruction was born. Lines of code dating from the CTB are still running today.

2000 - 2002

30.06.2022

The ATLAS combined testbeam in 2004

Construction at Birmingham

Silicon Tracker - SCT

Silicon strip sensors, 80µm pitch → 23µm spatial precision

High precision tracking

Measure momenta very well – esp. high momentum particles Reconstruct decay vertices (b, c, τ)

Wire bounding

30.06.2022

L1Calo

Richard Staley & Gilles Mahout with a Cluster Processor Module at Birmingham (Richard designed the module)

L1Calo @ CTB in 2004 Trigger saw the beam.

ARTIST view of the LHC and the experiments

Installation in the ATLAS counting room

Xen supervising Pete Watkins and Eric Eisenhander pulling underfloor cables

30.06.2022

Steve with a lot of cables

Dave as part of the underfloor crew

ATLAS is a giant microscope with 100 M channels

ATLAS

is a giant microscope with 100 M channels

100 metres underground 50m long 25m high 7000 tonnes (one Eiffel tower)

ATLAS

is a giant microscope with 100 M channels

100 metres underground 50m long 25m high 7000 tonnes (one Eiffel tower)

Measure particle trajectory with a precision of 0.0002 m (20µm)

ATLAS

is a giant microscope with 100 M channels

100 metres underground 50m long 25m high 7000 tonnes (one Eiffel tower)

Measure particle trajectory with a precision of 0.0002 m (20µm)

and the energy at 1%

Beams collide on 23rd November 2009

Beams collide on 23rd November 2009

30.06.2022

Jessica Lévêque is not happy: she immediatly saw that there was something wrong with the calorimeter!

Beams collide on 23rd November 2009

30.06.2022

Jessica Lévêque is not happy: she immediatly saw that there was something wrong with the calorimeter!

LAr Cosmics Monitoring >>> CaloWeekNov07.0032939.physics.cosmics.HIST.v13003018._0001.1:run... 💽 🗖 🔀

A glimpse at performance

mber of Channels	Approximate Operational Fraction
80 M	95.0%
6.3 M	99.3%
350 k	97.5%
170 k	99.9%
9800	98.3%
5600	99.6%
3500	99.8%
7160	100%
370 k	100%
320 k	100%
350 k	99.7%
31 k	96.0%
370 k	97.1%
320 k	98.2%

ATLAS data taking and data quality

In 2012, 89.5% of DELIVERED data were good for physics.

To my knowledge, never an experiment has reached such a level of efficiency. Even experiements at e⁺e⁻ colliders, pp at lower intensity, with much less challenges.

At LHC, even with more pile-up than designed, we are happy!

My interpretation: the coherence between motivation, rigour, the challenging physics aim (the aim is not to discover; it is to find out what is there), the very spirited people.

DQ ATLAS p-p run: April-December 2012										
Inn	er Tracl	ker	Calori	meters	Mu	ion Spe	ctrome	ter	Magr	nets
Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
99.9	99.4	99.8	99.1	99.6	99.6	99.8	100.	99.6	99.8	99.5

2010-2012 data taking

30.06.2022

2012 : Pile Up - C

2012 - 8TeV 23 evts/fb

2011 - 7TeV 5 evts/fb

crossing

interactions per

Peak

2010 - 7TeV 0.05 evts/fb

ATLAS detector simulation: a tool towards physics

4th July 2012 - HIGGS DISCOVERY with ATLAS & CMS

H→4 leptons

Higgs boson (prediction)

background

4th July 2012 - HIGGS DISCOVERY with ATLAS & CMS

H→4 leptons

Higgs boson (prediction)

background

Excess also observed in WW channel

background + Higgs boson

Data *need* the Higgs boson.

4th July 2012 - HIGGS DISCOVERY with ATLAS & CMS ATLAS & CMS $H \rightarrow 2$ photons collaborations √s = 7 TeV, L = 5.1 fb⁻¹ √s = 8 TeV, L = 5.3 fb Ge ATLAS $K_{D} > 0.5$ Data S/B Weighted Sig+Bkg Fit (m_=126.5 GeV) Bkg (4th order polynomial) m_⊔=125 GeV have observed ⁴⁰ ¹⁶⁰ m_{4ℓ} (GeV) 120 140 eV, ∫Ldt=4.8fb⁻ eV, ∫Ldt=5.9fb⁻¹ **-**→γ∖ the 18 120 130 140 10 m_{4ℓ} (GeV) Higgs boson (prediction) kground + Higgs boson

H→4 leptons

background

Excess also observed in WW channel

30.06.2022

Data *need* the Higgs boson.

Excess also observed in WW channel

30.06.2022

 \mathfrak{O}

4th July 2012 - HIGGS DISCOVERY with ATLAS & CMS ATLAS & CMS

=126.5 GeV olynomial

This is actually the beginning

Eminently inspired people were very courageous to embark in this adventure. We owe then the luck to have been on this boat which reached the tresor island on 4th of july 2012! Actually the crew was very dedicated, very enthusiastic, though with some doubts from time to time.

This is actually the beginning

Eminently inspired people were very courageous to embark in this adventure. We owe then the luck to have been on this boat which reached the tresor island on 4th of july 2012! Actually the crew was very dedicated, very enthusiastic, though with some doubts from time to time. Now it is time to open the tresor and look at what happened since.

The LARGE HADRON COLLIDER at CERN

LEP tunnel exists at CERN: 27 km circonference

It was built in the 80's to produce electron-positon collisions: to study the Z boson to test the standard model discover the Higgs boson

> December 1994: the LHC will be installed inside the LEP tunnel proton-proton collider at very high energy

LEP operation stops in 2000 The Higgs boson has not been observed: The Higgs boson mass is higer than 114.6 GeV

The HIGGS mechanism and the HIGGS boson

Peter Higgs, François Englert, Robert Brout and a few more theoreticians, proposed in **1964** a mechanism to explain how the W and Z bosons can acquire a mass: *the Higgs mechanism,* and at the same time preserves the requirements from the theory.

- The Higgs field fills the space and interacts with particles, following rules.
- The existence of this field leads to the existence of a massive spin-0 particle which mass is not predicted.
- The search for the Higgs boson started.

Several experiments have looked for the Higgs boson:

the four LEP experiments in 1989-2000 (m_H>114.6 GeV);

the CDF and DZero at the Tevatron at Fermilab (USA) (1985-2011)

30.06.2022

The Large Hadron Collider (LHC)

1983	First studies for the LHC project
1988	First magnet model (feasibility)
1994	Approval of the LHC by the CERN Council
1996-1999	Series production industrialisation
1998	Declaration of Public Utility & Start of civil
	engineering
1998-2000	Placement of the main production contracts
2004	Start of the LHC installation
2005-2007	Magnets Installation in the tunnel
2006-2008	Hardware commissioning
2008-2009	Beam commissioning

2010-2040...

Physics exploitation

2010 –	2012
2015 –	2018
2021 –	2024
<u> 2025 –</u>	2026
2027 –	2040

Run 1;7 and 8 TeV Run 2 ; 13 TeV Run 3 (14 TeV) HL-LHC installation **HL-LHC** operation

~ 25 years

