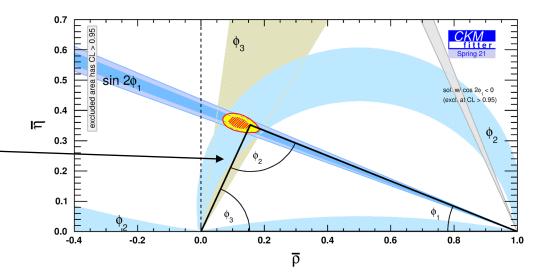


AIP Adelaide 2022: Measurement of $B^0 o \pi^0 \pi^0$ branching fraction and A_{CP} at Belle II

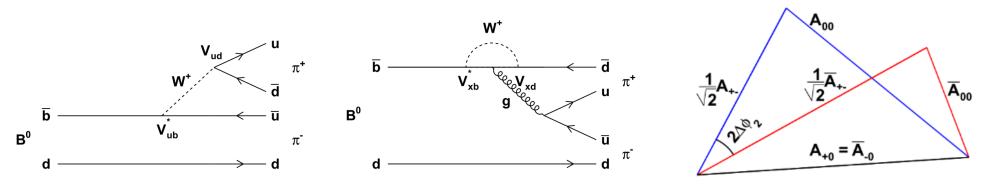
Francis Pham and Martin Sevior

University of Melbourne



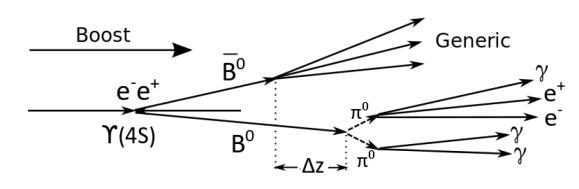
- Charge (C) and Parity (P) distinguishes matter from antimatter
- CP-violation can be represented by 'the Unitarity Triangle' (UT)
- UT observables point to a single apex with a precision of O(10)%
 >Over-constraining the UT probes for New Physics

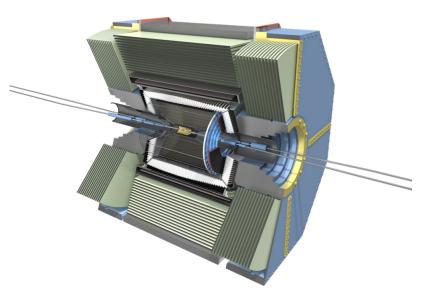
 \succ CKM angles ϕ_2 is significantly less well measured than CKM angles ϕ_2 and ϕ_3 .


φ₂ can only be measured in B decays not involving charm quarks (charmless)!

- If $B^0 \rightarrow \pi^+\pi^-$ had only 'tree-level' contributions ϕ_2 could be directly measured but the measurement is shifted by $\Delta \phi_2$ due to 'penguin' contributions.
- Contributions can be disentangled using $B \rightarrow \pi \pi$ isospin relations which require their branching fraction (BF) and *CP*-asymmetry parameters
- Current uncertainties on the $B^0 \to \pi^0 \pi^0$ BF and direct *CP*-asymmetry, $A_{CP} = \frac{N(B \to \bar{f}) - N(B \to f)}{N(B \to \bar{f}) + N(B \to f)}$, are 3-4 times larger than $\pi^+ \pi^-$ and currently poses the greatest limitation to fully exploiting the isospin relations.

• Predictions of $\mathcal{B}(B^0 \to \pi^0 \pi^0)$ from perturbative QCD and QCD factorization are significantly lower than the measured value


Channel	Leading Order (LO)	Next to LO	Next to LO	QCDF	Measured
$\mathcal{B}(B^0 \to \pi^0 \pi^0)$	0.12×10^{-6}	0.29×10^{-6}	0.23×10^{-6}	0.3×10^{-6}	$1.59 \pm 0.26 \times 10^{-6}$


- Various approaches, which predict a wide range of values for $\mathcal{B}(B^0 \to \pi^0 \pi^0)$ and $A_{CP}(B^0 \to \pi^0 \pi^0)$ have been proposed as possible solutions to this disagreement
- Most approaches can explain the BF measured by Belle but not BaBar
- Only Belle II can study the $\mathcal{B}(B^0 \to \pi^0 \pi^0)$

	Belle	BaBar	PDG value
$\mathcal{B}(B^0 \to \pi^0 \pi^0)$	$1.31 \pm 0.19 \pm 0.19$	$1.83 \pm 0.21 \pm 0.13$	1.59 ± 0.26
$\mathcal{A}_{CP}(B^0 \to \pi^0 \pi^0)$	$0.14 \pm 0.36 \pm 0.10$	$0.43 \pm 0.26 \pm 0.05$	0.33 ± 0.22

• Belle II is the successor to the Belle experiment that ran from 1999 to 2010 and is located in Tsubuka, Japan

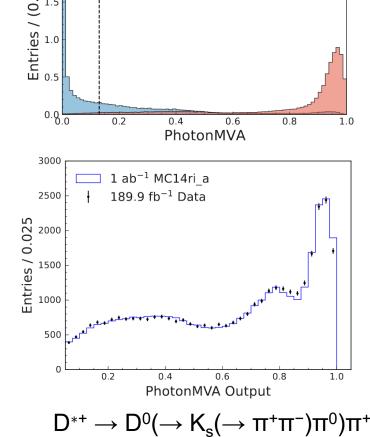
- Belle II Detector: general purpose detector situated at the interaction point of SuperKEKB
- SuperKEKB: asymmetric e^+e^- collider operating at Υ (4S) resonance to produce BB pairs

lisreconstructed photons Genuine photons Entries / (0.013) 1.0 1.2 1.0 1.2 0.0 0.2 0.4 0.6 0.8 **PhotonMVA** 3000 1 ab⁻¹ MC14ri a 189.9 fb⁻¹ Data 2500 0.025 Entries / 1200 500 0.2 0.6 0.8 1.0 0.4 PhotonMVA Output

• **Challenge**: The π^0 decays \approx 99% of the time into two photons

➢ Final state consist of only four photon

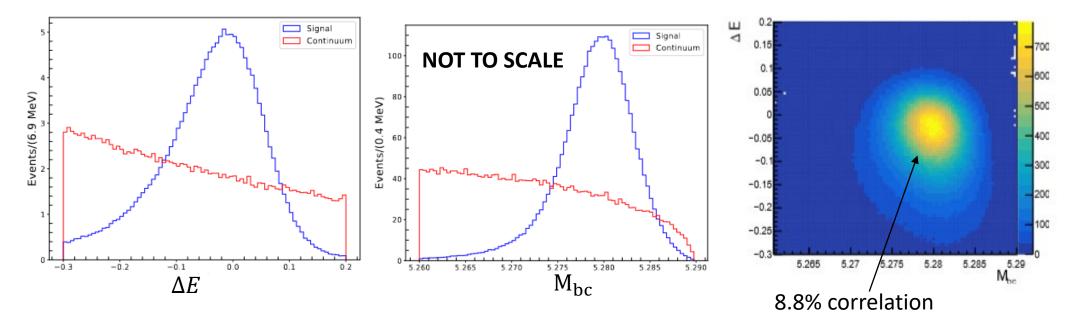
Belle II


➢ Must exclude misreconstructed photons such as from residual energy in the electromagnetic calorimeter (ECL)

> Beam background scales with luminosity

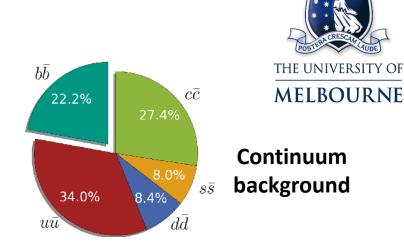
- Solution: Train a boosted decision tree (PhotonMVA) to distinguish between genuine and misreconstructed photons
 - ➢ Signal purity increases from 98.0% to 98.6% with a 5.5% decrease in yield
 - \succ Reduces the number of background by approximately 15%

Suppressing misreconstructed photons



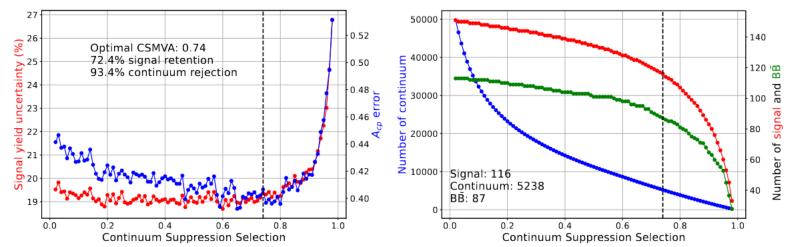
7

Reconstruct the signal and define two variables


$$\Delta E = E_B - E_{beam} \text{ and } M_{bc} = \sqrt{E_{beam}^2 - |\vec{p}_B|^2}$$

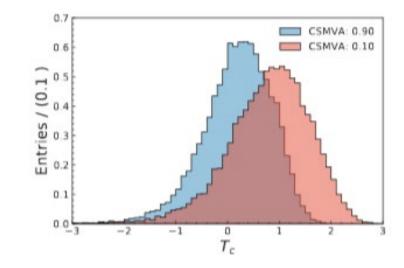
where E_{beam} is the beam energy and (E_B, \vec{p}_B) is the reconstructed four

momentum of the B candidate in frame of the γ (4S) resonance



- **Problem:** $B^0 \rightarrow \pi^0 \pi^0$ mode dominated by continuum > Approximately 50,000 continuum and 150 signal
 - Continuum must be well modelled

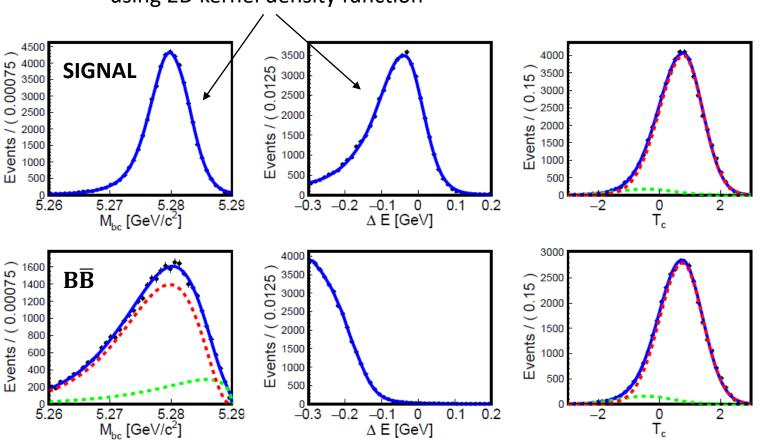
• Solution: Train a boosted decision tree and use experimental data that contains only continuum ($0.1 < \Delta E < 0.5$ GeV, $5.22 < M_{bc} < 5.27$ GeV/c²) i.e., sideband


- Reject 89.4% of continuum and retains 80.7% of signal
- Signal efficiency of 35.5% and purity of 98.6%

• Create Gaussian-like variable from continuum suppression output

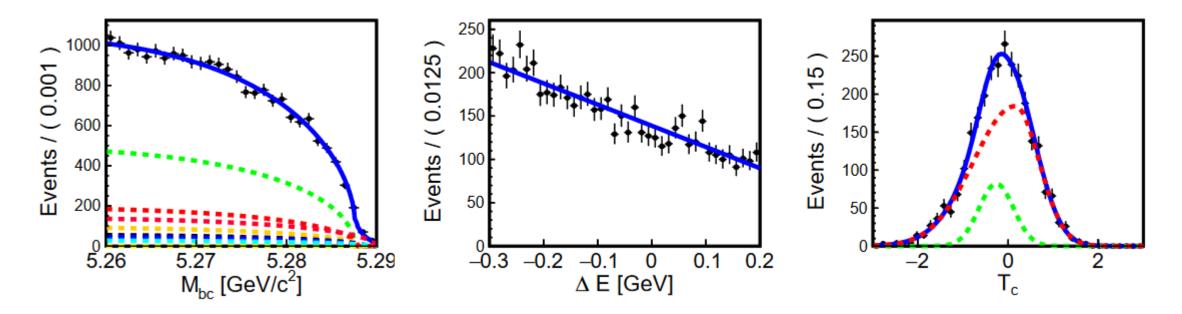
$$T_c = \log(\frac{x - x_{cut}}{x_{max} - x})$$

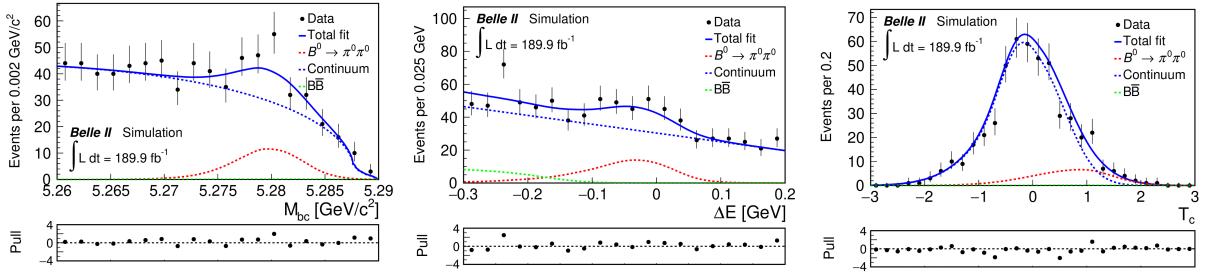
where x is the continuum suppression variable, x_{cut} is the continuum suppression selection and x_{max} is the maximum value of the continuum suppression output



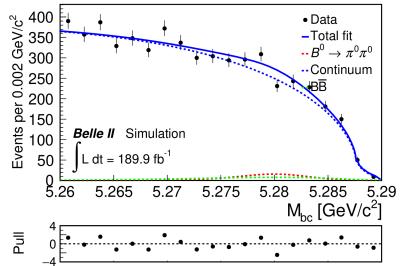
Whether the tag-side B-meson is a B^0 or \overline{B}^0 is determined by a FlavorTagger algorithm. It assigns a q.r value where q is the b-flavor charge (q = ±1) and r is the confidence (0 < r < 1).

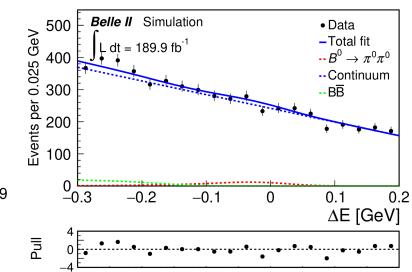
- Events with q.r closer to ±1 are less likely to be continuum
- **Problem:** Incorporate q.r information to improve precision
- **Solution:** Break data into 7 bins of q.r and fit simultaneously

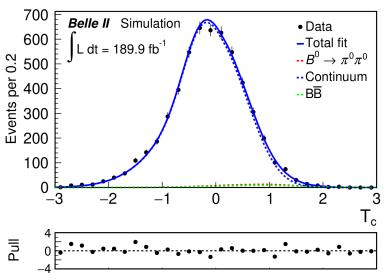

M_{bc}-ΔE correlation accounted for using 2D kernel density function

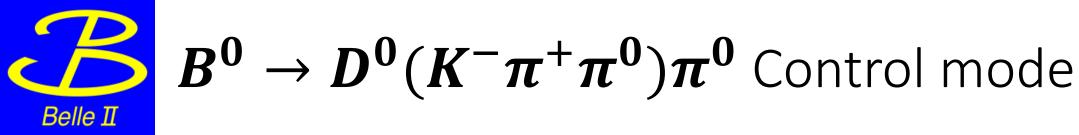

- Continuum PDF fitted to sideband data
- Distribution in the sideband and signal region are expected to be identical

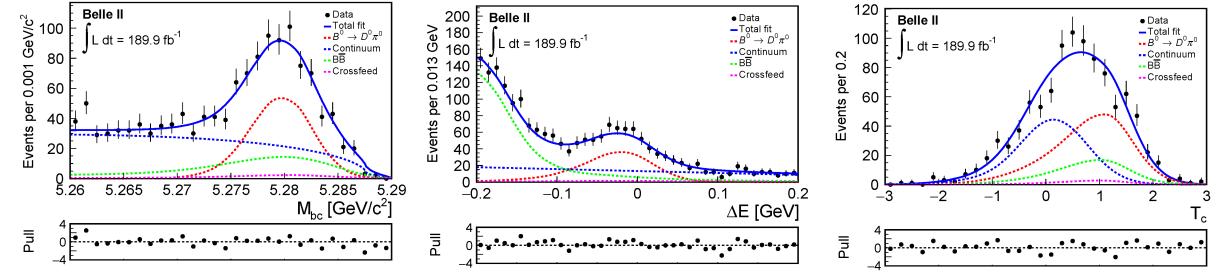
Fitting on simulated data


- The branching fraction and A_{CP} for the $B^0 \rightarrow \pi^0 \pi^0$ decay are determined with a three-dimensional (M_{bc} , ΔE , T_c) simultaneous maximum likelihood fit in 7 bins of q.r
- Expect 116 ± 19 signal, 5238 continuum and 87 $B\overline{B}$
- Plots are signal enhanced (2.75 < M_{bc} < 2.85 GeV/c², -0.1 < ΔE < 0.05 GeV, T_c > 0) and corresponds to 189.9 fb⁻¹




Plotting without signal-enhancement



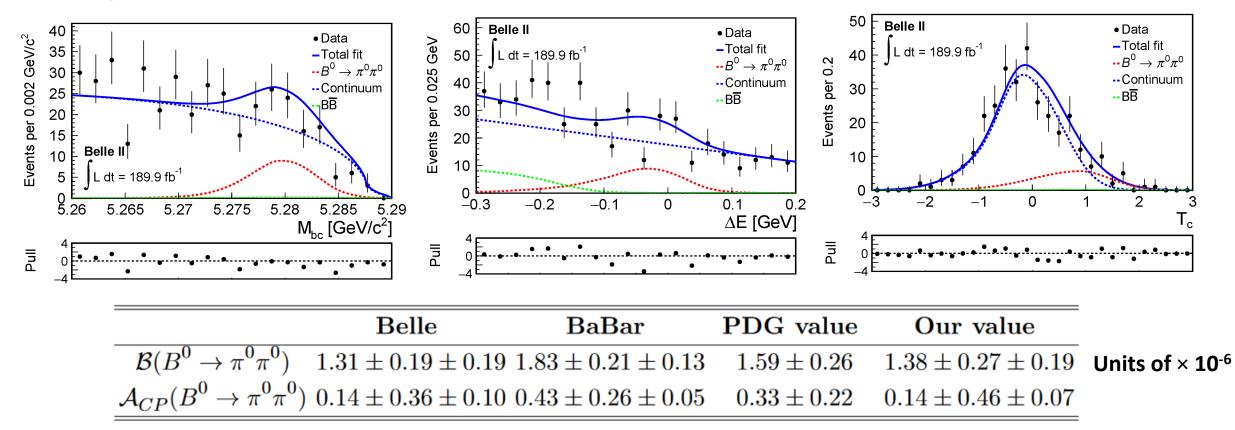


Validate reconstruction and fitting procedure with control mode
 > BF and A_{CP} agree within uncertainty

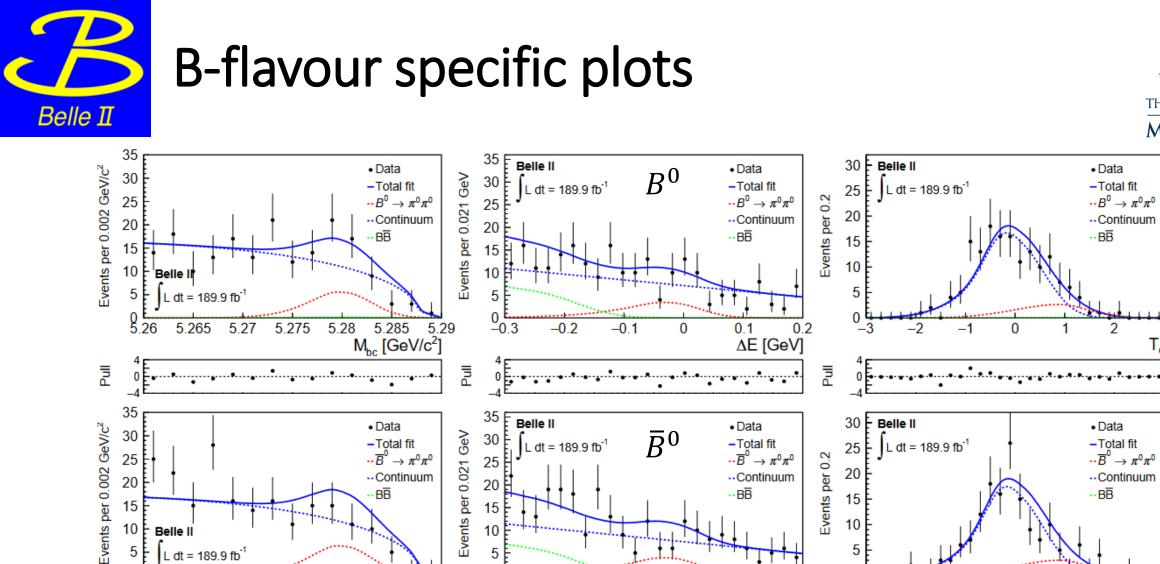
Expected BF = $3.73 \pm 0.24 \times 10^{-5}$

Expected $A_{CP} = 0$ **Extracted** $A_{CP} = 0.14 \pm 0.16$

Extracted BF = $4.01 \pm 0.27 \times 10^{-5}$



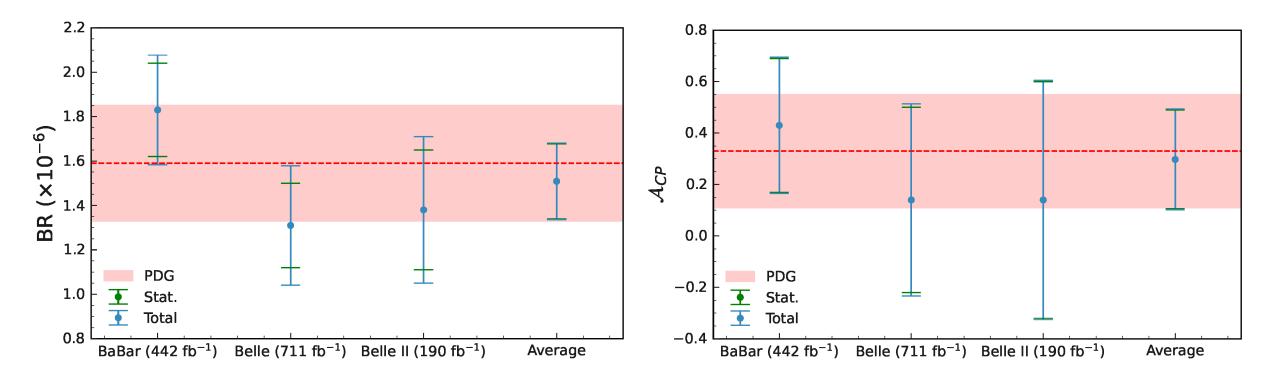
Results



Signal Yield: 93 ± 18

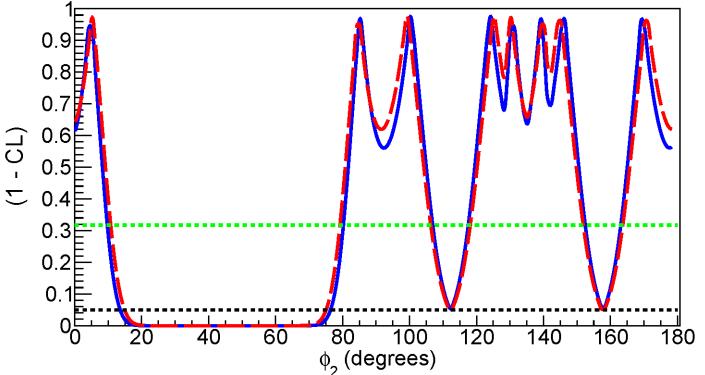
Our results agreement with world-averaged results within uncertainty but favour the Belle result

THE UNIVERSITY OF

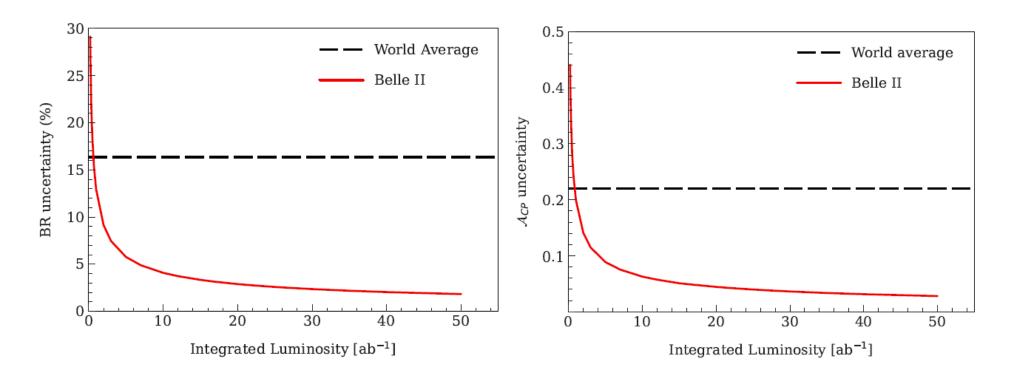

MELBOURNE

Comparison with Belle and BaBar

Current: $\mathcal{B}(B^0 \to \pi^0 \pi^0) = 1.59 \pm 0.26 \times 10^{-6}$ With our result: $\mathcal{B}(B^0 \to \pi^0 \pi^0) = 1.54 \pm 0.17 \times 10^{-6}$ Current: $A_{CP}(B^0 \to \pi^0 \pi^0) = 0.33 \pm 0.22$ With out result: $A_{CP}(B^0 \to \pi^0 \pi^0) = 0.30 \pm 0.20$



Determination of ϕ_2 has a four-fold ambiguity


- Current constraints: Exclude at 1σ : $11 < \phi_2 < 79.5$ Exclude at 2σ : $15.5 < \phi_2 < 75$
- Including our results: Exclude at 1σ : $10 < \phi_2 < 80.5$ Exclude at 2σ : $14 < \phi_2 < 76.5$

• Expect to surpass Belle at 240/fb and the world-averaged results for branching fraction and A_{CP} at 300/fb and 500/fb respectively

- Updated measurement of the branching fraction and A_{CP} of $B^0 \rightarrow \pi^0 \pi^0$
 - Branching Fraction: $1.38\pm0.27\pm0.19\times10^{\text{-6}}$
 - A_{CP} : 0.14 ± 0.46 ± 0.07
- Results in agreement with world averages but favor Belle results
- The BF statistical uncertainty (19.7%) is comparable to Belle (14.5%) and BaBar (11.4%)

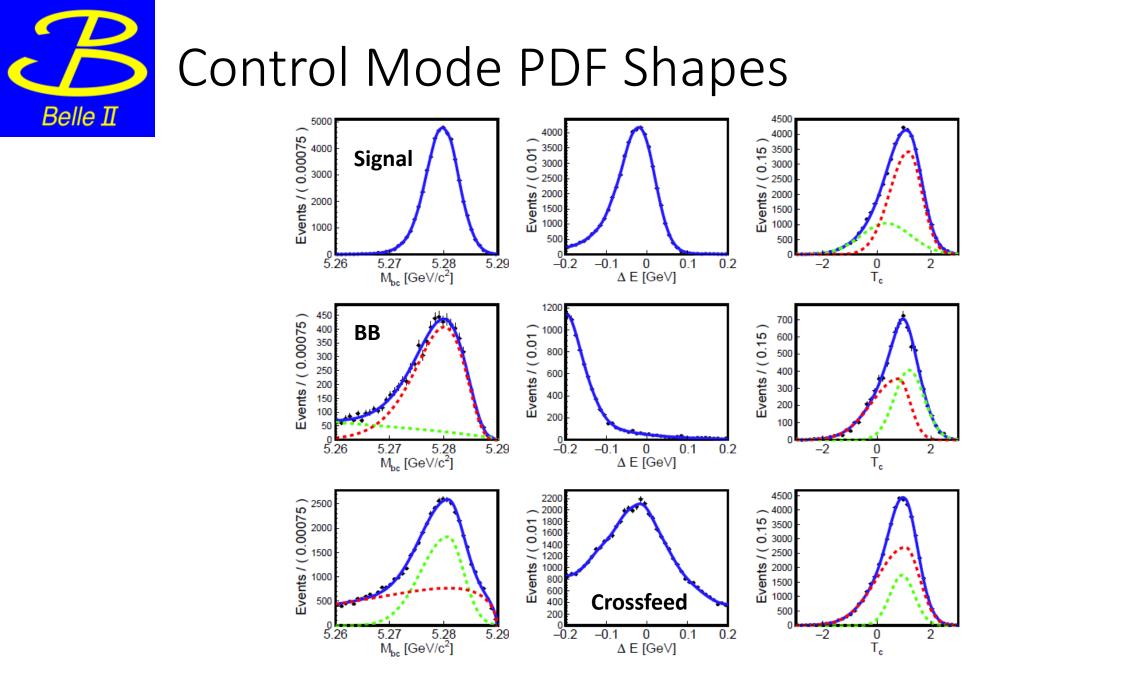
	Belle	BaBar	PDG value	Our value
$\mathcal{B}(B^0 \to \pi^0 \pi^0)$	$1.31 \pm 0.19 \pm 0.19$	$1.83 \pm 0.21 \pm 0.13$	1.59 ± 0.26	$1.38 \pm 0.27 \pm 0.19$
$\mathcal{A}_{CP}(B^0 \to \pi^0 \pi^0)$	$0.14 \pm 0.36 \pm 0.10$	$0.43 \pm 0.26 \pm 0.05$	0.33 ± 0.22	$0.14 \pm 0.46 \pm 0.07$

• These results demonstrate the improved precision of Belle II and the potential for strong constraints on ϕ_2 through the full exploitation of the $B \rightarrow \pi \pi$ isospin relations.

QUESTIONS?

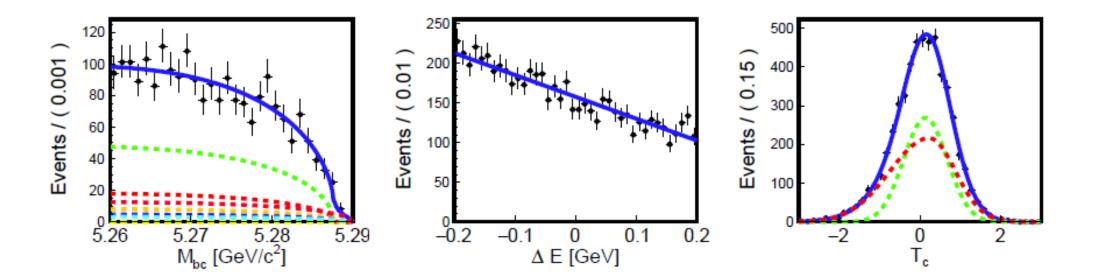
Systematic uncertainty

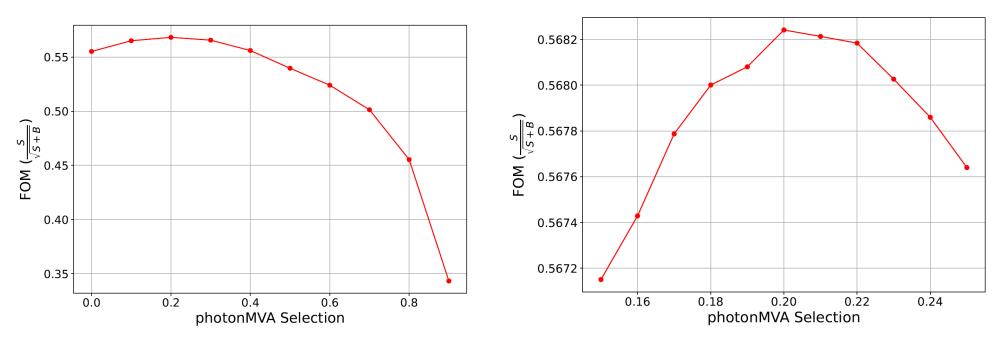
	Source	B (%)	\mathcal{A}_{CP}	MELBOURNE
Also includes photonMVA systema	tic $\longrightarrow \pi^0$ reconstruction efficiency	7.6		
Continuum	Continuum parametrization Continuum discriminator efficiency	7.4 6.5←	0.02	Data-MC discrepancy
parameters extracted	f^{+-}/f^{00}	4.9		for CS output
from sideband	Fixed $B\overline{B}$ background yield	2.3	0.01	Ratio between neutral
	Signal $q \cdot r$ bin fractions	2.2	0.01	and charged B-mesons
BB background dominated by	Knowledge of the photon-energy scale	2.0		
two modes	Assumption of independence of ΔE from $q\cdot r$	1.8		
	Number of $B\overline{B}$ meson pairs	1.5		
	Choice of signal model	1.3	0.02	Choice of using a KDE
	Signal $q \cdot r$ bin fractions	1.0	0.01	vs analytical function
	 Branching fraction fit bias 	1.0		
	Best candidate selection	0.2		
Possible bias in our	Mistagging parameter		0.05	
modellings	Potential $B\overline{B} q \cdot r$ asymmetry		0.03	Possible A _{CP} in
	\mathcal{A}_{CP} fit bias		0.02	continuum and BB
	Continuum $q \cdot r$ asymmetry		0.01	
	Total	14.2	0.07	


BACKUP

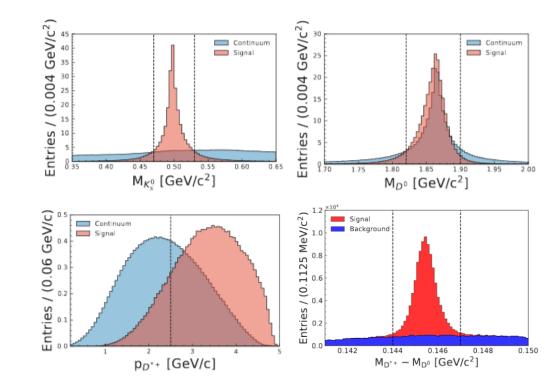
• No HLT_hadron skim since $B^0 \to \pi^0 \pi^0$ contains no signal-side charged tracks ε_{total} : 44.8% \to 58.4%

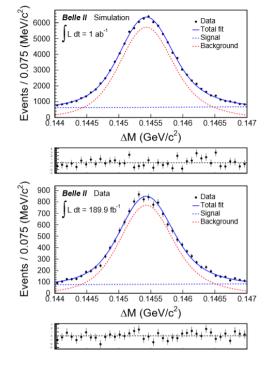
Particle	Selection	Skim efficiency (%) Skim	Channel $\varepsilon_{\rm total}$	
	E > 0.020 GeV in barrel/backwards,	00.4	$ \frac{B^0 \to \pi^+ \pi^-}{B^0 \to K^+ \pi^-} $	$B^0 \rightarrow 2 \text{ tracks}$ 88 $B^0 \rightarrow 2 \text{ tracks}$ 88	
γ	E > 0.0225 GeV in forwards	99.4	$B^+ \to \pi^+ \pi^- \pi^+$	$B^+ \to 3 \text{ tracks}$ 73	
π^0	$0.105 < M < 0.150 ~{ m GeV}/c^2$	99.9	$B^+ \to K^+ \pi^- \pi^+$ $B^+ \to K^+ K^- \pi^+$	$B^+ \rightarrow 3 \text{ tracks}$ 73 $B^+ \rightarrow 3 \text{ tracks}$ 75	
	massKFit $\chi^2 > 0$	99.2	$\begin{array}{ccc} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$	$B \rightarrow 3 \text{ tracks}$ 72 $B^+ \rightarrow 3 \text{ tracks}$ 72	
B^0	$ \Delta E < 0.5$	99.9	$\frac{B^+ \to K_{\rm S}^0 \pi^+}{\pi^0 \pi^0 \pi^+}$	$B^+ \rightarrow 3 \text{ tracks}$ 70	
	$M_{\rm bc} > 5.20 \ { m GeV/c}^2$	99.0	$-\frac{B^0 \to K_{\rm S}^0 \pi^+ \pi^-}{B^0 \to \pi^0 \pi^0}$	$\frac{B^0 \to 4 \text{ tracks}}{B^0 \to 2 \pi^0 \text{s}} \frac{65}{58}$	
			$B^+ \to K^+ \pi^0$	$B^+ \rightarrow 1 \text{ tracks} + \pi^0 \int 6'$	
umber of	events		$B^+ o \pi^+ \pi^0$	$B^+ \rightarrow 1 \text{ tracks} + \pi^0 / 6'$	7
ter skim		17			
٤	$\varepsilon_{\rm skim} = \frac{N_{\rm skim}}{N} = 98.8\%$ and	$\varepsilon_{\text{total}} = \frac{N_{\text{skim}}}{N} =$	58.4%	/ Difficult to reconstru	uct
	^T v _{all}	¹ V _{gen}		without tracks	
umber of	events	N	lumber of		
th no selections generated events					
		C C		27	



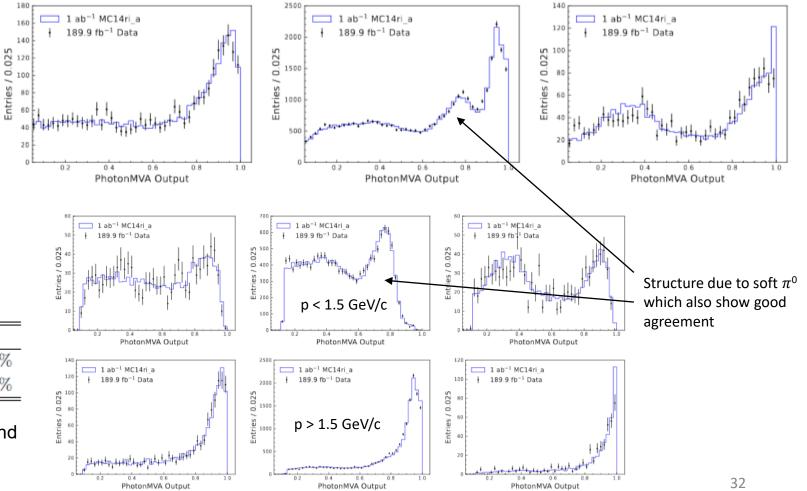

- Continuum PDF extracted from experimental sideband region
- Use 8-ARGUS PDF to model $\rm M_{bc}$

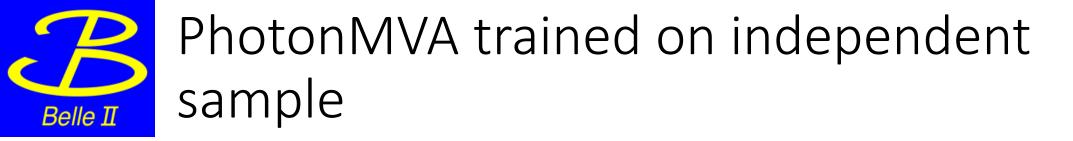
- Optimize photonMVA selections with scan of possible parameters, maximise FOM; $\frac{s}{\sqrt{s+b}}$,
- Optimal selection is 0.2, which is used instead of 0.1



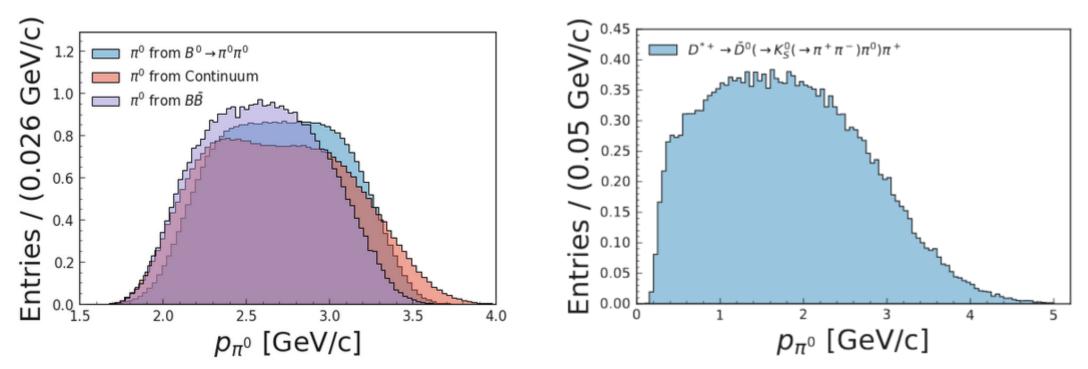

• photonMVA validated using $D^* \rightarrow D^0(K^+\pi^-\pi^0)\pi^0$ mode

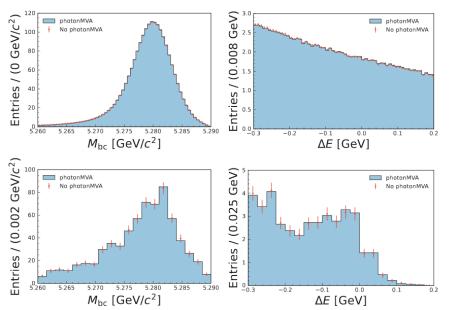
	Standard loose list	
Particle	Selection	Particle retention (%)
	thetaInCDCAcceptance = 1	98.7
	nCDCHits > 20	82.7
π^{\pm}	$ dz < 3.0~{ m cm}$	94.2
	$ dr < 0.5~{ m cm}$	86.9
	PID > 0.1	90.5
K_s^0	$0.47 < M < 0.53 ~{ m GeV}/c^2$	81.8
D^0	$1.82 < M < 1.90 ~{ m GeV}/c^2$	89.2
D^{*+}	$0.144 \ { m GeV}/c^2 < \Delta M < 0.147 \ { m GeV}/c^2$	89.5
	$p_{C.M} > 2.5 ~{ m GeV}/c$	84.4



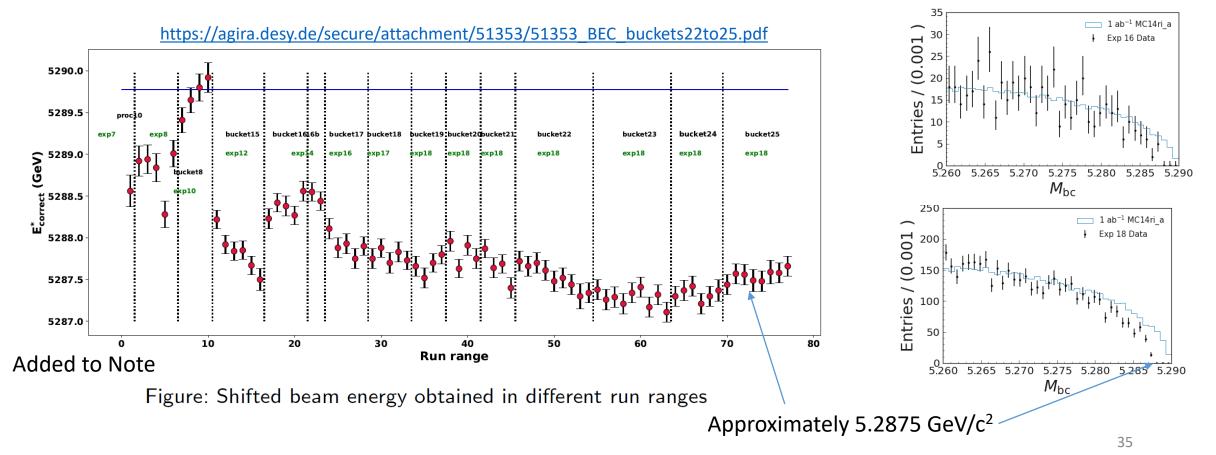


	\mathbf{MC}	Data	
Signal retention	$92.3\pm0.2\%$	$92.3\pm0.4\%$	
Background rejection	$8.9\pm0.9\%$	$13.0\pm2.9\%$	
↑ Data and MC agree on signal retention and background rejection			

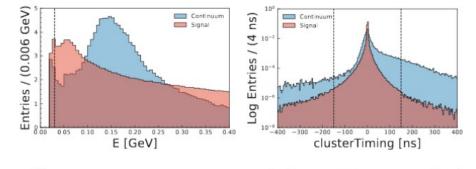

• photonMVA validated using $D^* + \rightarrow D^0(K^+\pi^-\pi^0)\pi^0$ mode

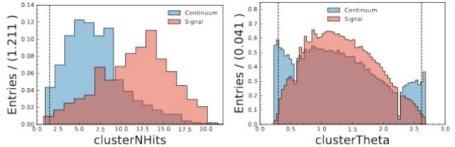

• The photonMVA is also trained using π^0 from an independent sample, D*+ \rightarrow D⁰($\pi^+\pi^-\pi^0$) π^+ mode, restricting the momentum to p > 1.5 GeV/c

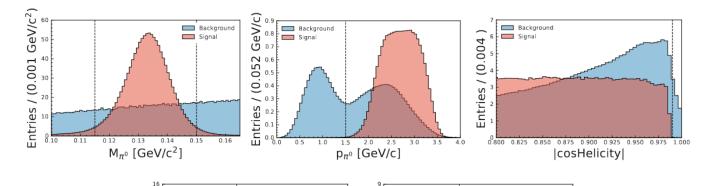
• We also check the effect of the photonMVA and find there is no sculpturing

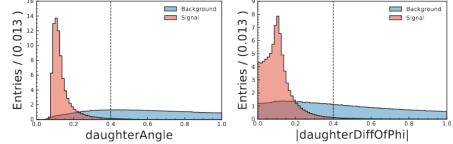

 Compared to standard charmless selections the photonMVA reduces signal by 2.7%, continuum by 9.9% and BB by 5.9%

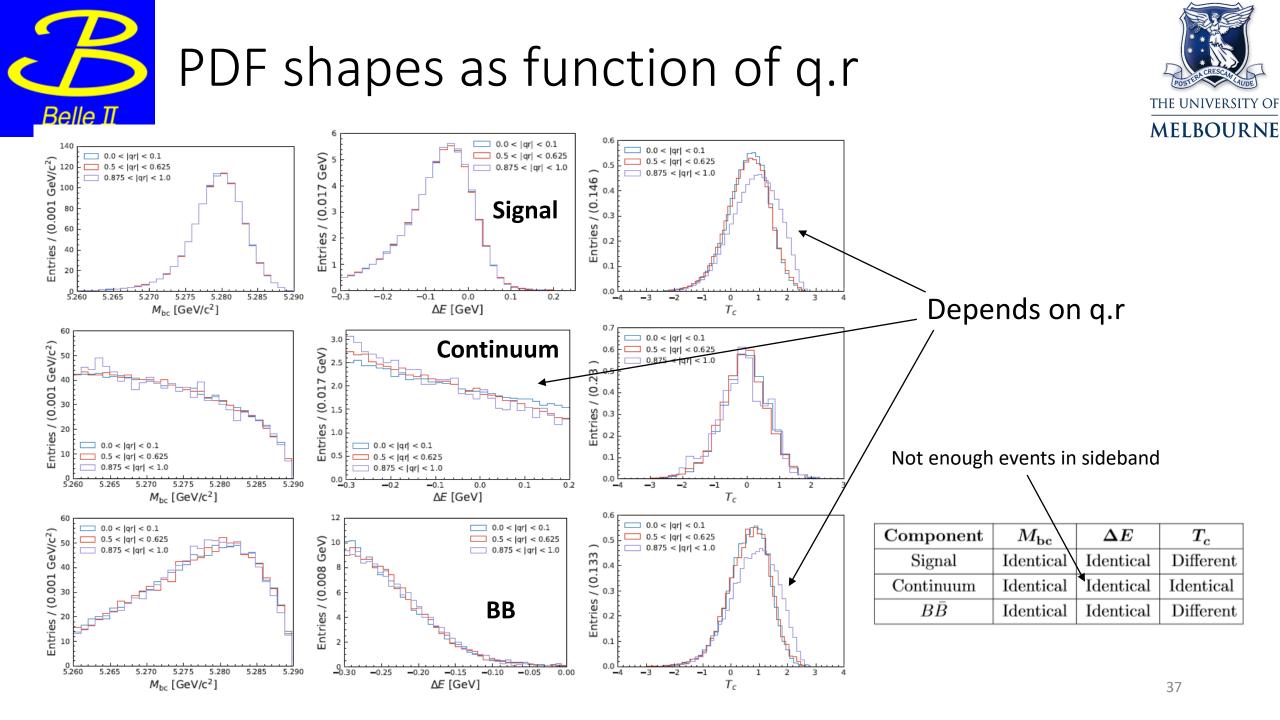
	Signal (10 M)	Continuum $(1 ab^{-1})$	$B\overline{B} \ (1 \mathrm{ab}^{-1})$
without photonMVA	4,880,781	$336,\!194$	586
with photonMVA	4,631,398	287,317	541


• We find that 2021 beam energy was lower than 2020, which is reflected in our data

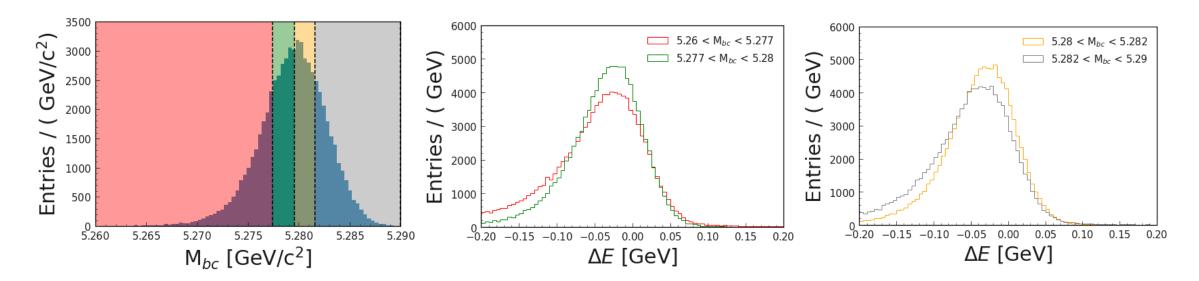




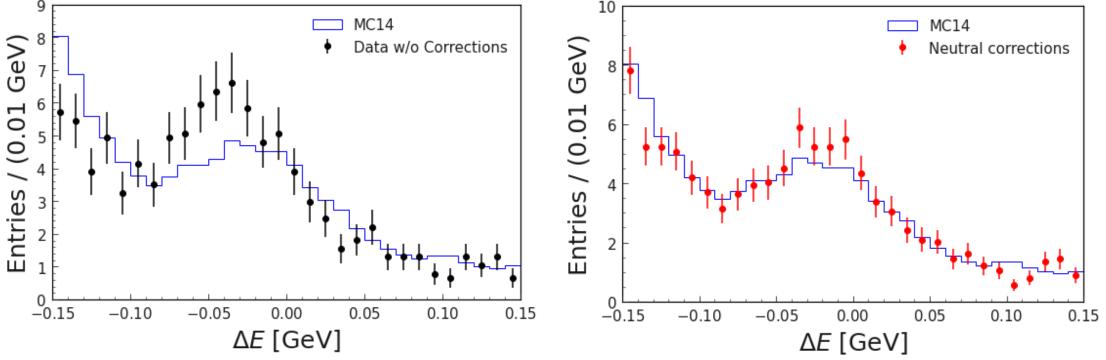

Selection	Signal γ loss (%)
photonMVA > 0.2	4.0
E > 0.03	1.17
abs(clusterTiming) $<$ 200	0.0330
${\tt clusterNHits}$ $>$ 1.5	0.210
0.2967 $<$ clusterTheta $<$ 2.6180	0.608

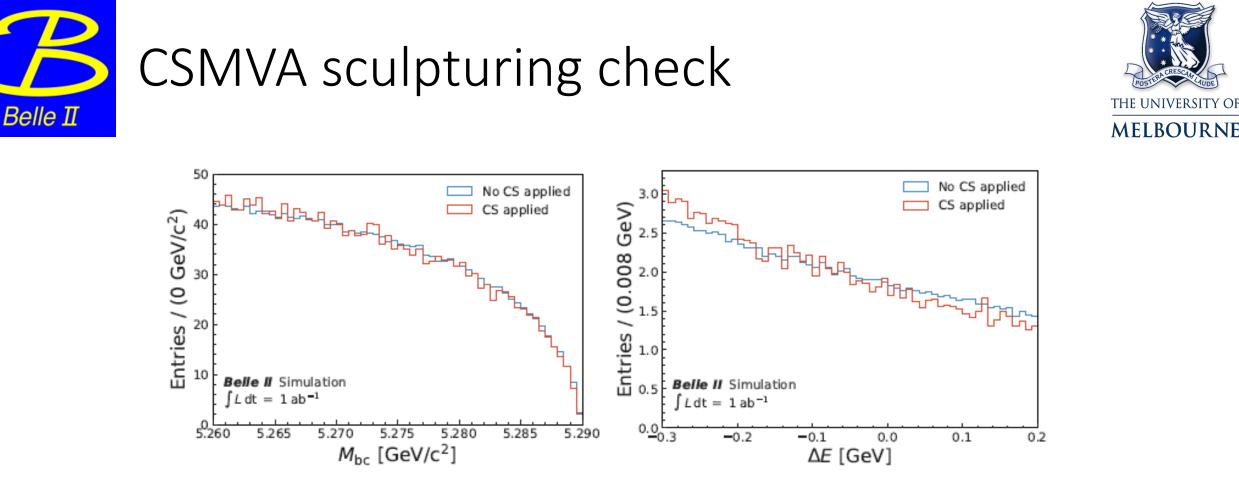


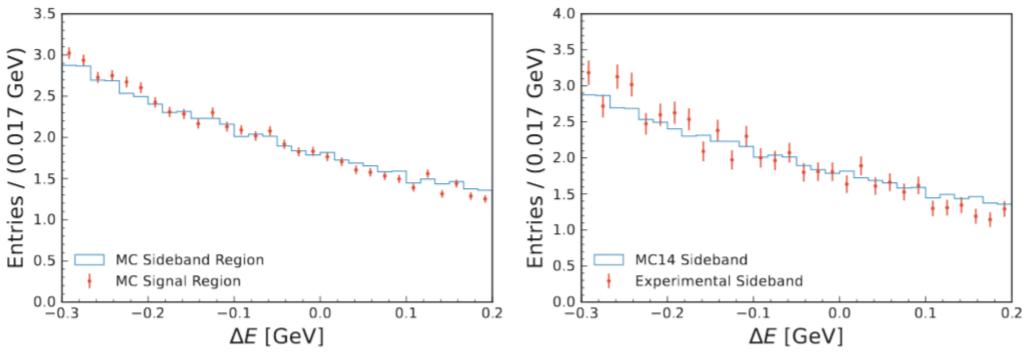
Selection	Signal π^0 loss (%)
daughterAngle < 0.4	1.592
daughterDiffOfPhi < 0.4	1.547
cosHelicityAngleMomentum < 0.99	0.0004
p > 1.5	0.094
0.115 $<$ InvM $<$ 0.150	6.828



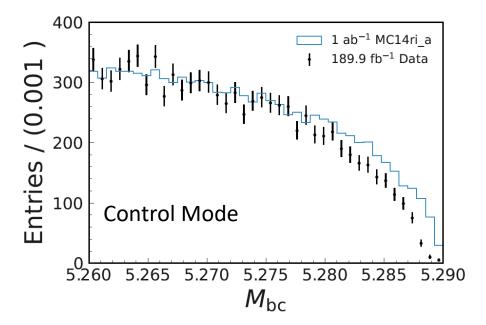
Correlation between ΔE and $M_{\rm bc}$


- ΔE does depend on M_{bc} in a non-linear way
 - Shape of ΔE depends on M_{bc} : the M_{bc} tail and peak region have a different ΔE distribution Kernel Density Estimation (KDE) PDF is required
 - Peak of ΔE depends on M_{bc} : different in the tail region (red and gray) but is identical in the peak region (green and yellow)

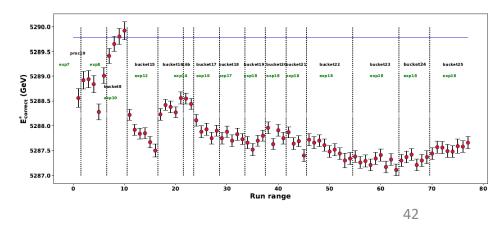


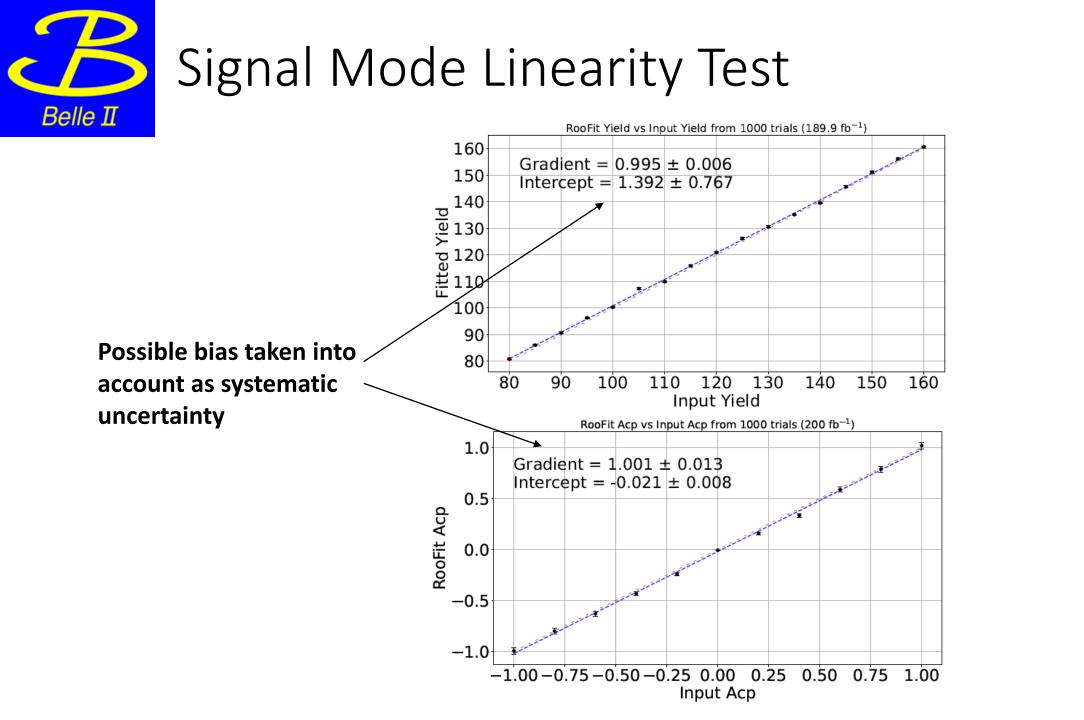

- On data ONLY we apply the "Photon Energy Bias Corrections"
- With the neutral corrections applied, the Data-MC discrepancy decreases
- Included in systematics uncertainty

- Applying the continuum suppression changes the shape of ΔE for the continuum, true for both MC and sideband training
- Not an issue as continuum is modelled using experimental sideband

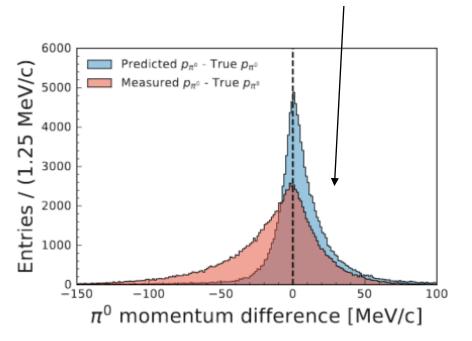

Belle II

- From MC we expect ΔE in the sideband and signal region to be identical
- Experimental sideband and MC sideband agree within uncertainty

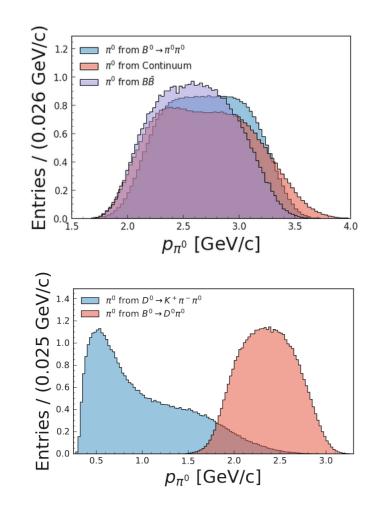




- Beam energy varied significantly throughout 2019-2021 data collection, shifting the M_{bc} endpoint as a result
- Instead of one ARGUS, we use 8 ARGUS functions with weight depending on the fraction of events in each E_{CMS} bin and endpoint as the upper edge of bin

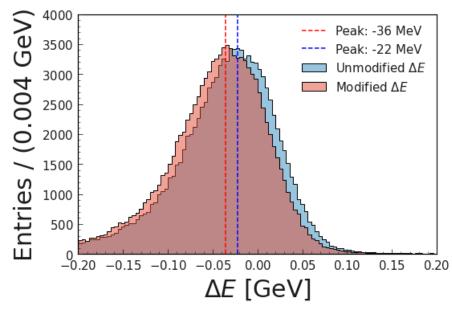


The difference between predicted π^0 momentum and the true π^0 momentum is skewed in the positive direction



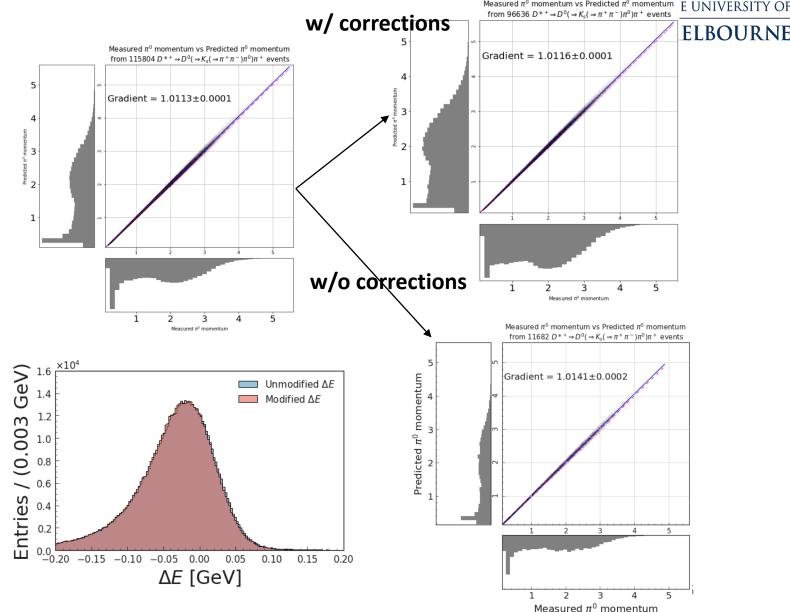
The "correction factor" between the predicted and measured π^0 momentum is estimated using best fit line in MC and data Measured π^0 momentum vs Predicted π^0 momentum leasured π^0 momentum vs Predicted π^0 from 123780 $D^{*+} \rightarrow D^{\circ}(\rightarrow K_{*}(\rightarrow \pi^{+}\pi^{-})\pi^{\circ})\pi^{+}$ events m 16805 $D^{*+} \Rightarrow D^0 (\Rightarrow K_{*}(\Rightarrow \pi^+\pi^-)\pi^0)\pi^+$ events $Gradient = 1.0139 \pm 0.0002$ $Gradient = 1.0114 \pm 0.0001$ momentum 4 w Predicted π^0 momentum 02 Predicted MC Data 0 Measured π^0 momentum Measured π^0 momentum

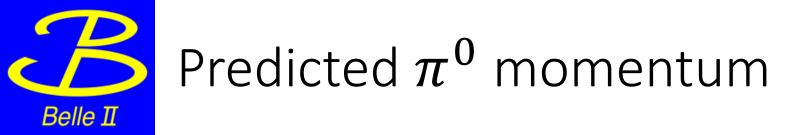
The difference between these ``correction factor" represents the data-MC discrepancy, i.e. we want the MC gradient to equal the data gradient, 0.25%



Does the ΔE shift scale with energy?

- Select only events that are similar to background, i.e. π^0 momentum is greater than 1.5 GeV/c
- The shift is now 14 MeV, similar to the shift expected in signal (15 MeV)





• Yes, it was able to correctly determine the ΔE shift

Belle II

- It can test the neutral corrections, i.e. only a 0.003 difference w/ correction vs 0.028 w/o correction in a momentum dependent way
- Shift can still be applied, but now it is much smaller, 15 MeV -> 1 MeV

Use the charged pions and energy-momentum conservation to predicted the π^0 momentum

Momentum/energy resolution of π^+ is excellent at Belle II

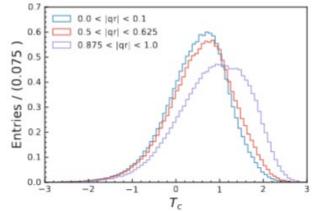
$$(M_{D^0})^2 = (E_{K_S^0} + E_{\pi^0})^2 - (p_{K_S^0} + p_{\pi^0})^2$$

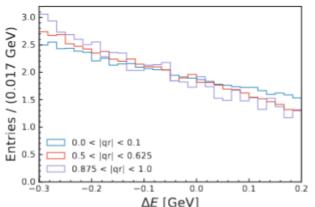
= $M_{K_S^0}^2 + M_{\pi^0}^2 + 2E_{K_S^0}E_{\pi^0} - 2p_{K_S^0}p_{\pi^0}\cos\theta$

 $e^+e^- \rightarrow D^{*+} \rightarrow D^0(K^0_S(\rightarrow \pi^+\pi^-)\pi^0)\pi^+ \longleftarrow$

Solve the equation exactly for p_{π^0} using $E_{\pi^0} = \sqrt{M_{\pi^0}^2 + p_{\pi^0}^2}$:

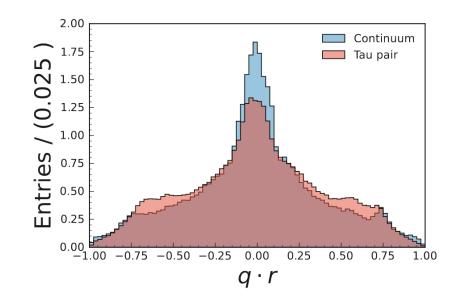
 π^+ less affected by possible ECL $p_{\pi^0} = \frac{\sqrt{-4a^2B^2m^2 + 4B^4m^2 + B^2M^2} + aM}{2[a^2 - B^2]}$

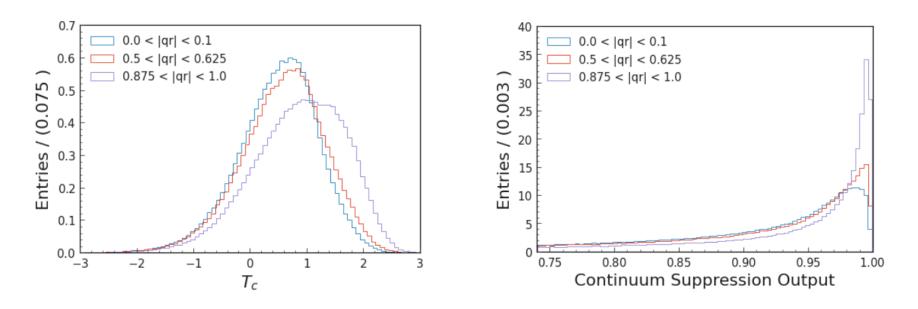

where a is
$$E_{K_S^0}$$
, B is $p_{K_S^0} \cos \theta$, M is $M_{D^0}^2 - M_{K_S^0}^2 + M_{\pi^0}^2$ and m is the mass of the π^0 , taken from the PDG.

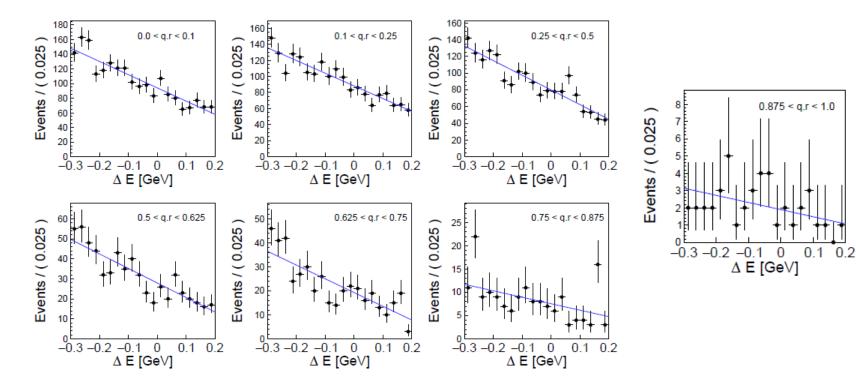


ToyMC Datasets now generated with distributions different for each q.r bin for signal and BB T_C

Component	$M_{ m bc}$	ΔE	T_c
Signal	Identical	Identical	Different
Continuum	Identical	Identical	Identical
$B\bar{B}$	Identical	Identical	Different


- Previously used the distribution averaged all over bins to generate identical distributions for each bin.
- Negligible effect on linearity plots, but in future continuum ΔE will depend on q.r bin


- Currently continuum bin fraction parameters are from MC, however this neglects the tau pair contribution, which have a different q.r distribution compared to continuum
- The ratio between tau pairs in the sideband and signal region is identical, 2.455% and 2.453%, respectively
- Get continuum bin fraction from experimental sideband
- Difference is small, at most 1% in each bin

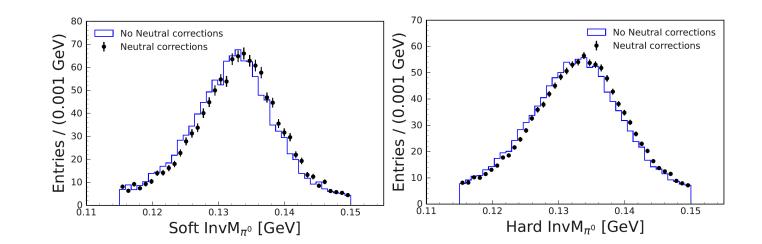

- Although we do not use q.r as a CS variable and all CS variables used have less than 5% correlation with q.r, we find the T_c distribution of the signal and BB depends on q.r
- Not surprising that the flavor tagger perform better on events with good q.r tagging
- Model the T_c distribution in each bin with a different PDF

- Ideally the continuum ΔE PDFs would different as well, however we do not have enough experimental sideband data for good fits
- Taken into account in systematic uncertainty

• The branching fraction and A_{CP} for the $B^0 \rightarrow \pi^0 \pi^0$ decay are determined with a three-dimensional (M_{bc} , ΔE , T_c) simultaneous maximum likelihood fit in 7 bins of q.r

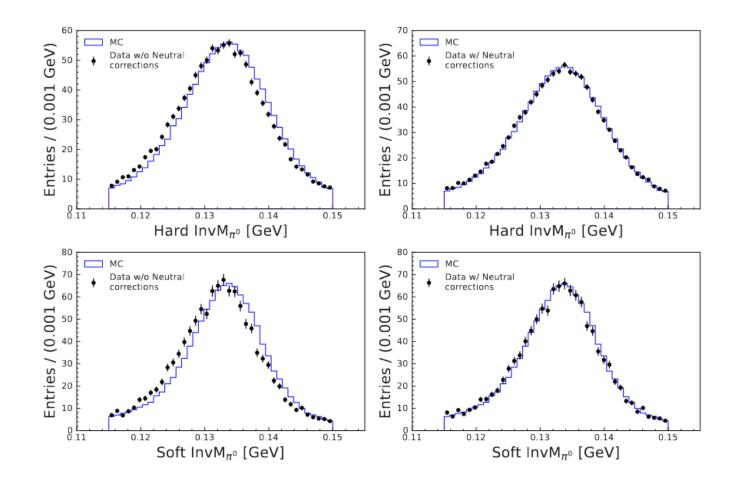
 $P_i^s(M_{\rm bc}, \Delta E, T_c, q) = [1 - q \times \Delta w_i + q \cdot \mu_i \cdot (1 - 2w_i) + [q \cdot (1 - 2w_i) + \mu_i \cdot (1 - q \times \Delta w_i)](1 - 2\chi_d)\mathcal{A}_{CP}]P^s(M_{\rm bc}, \Delta E, T_c)$

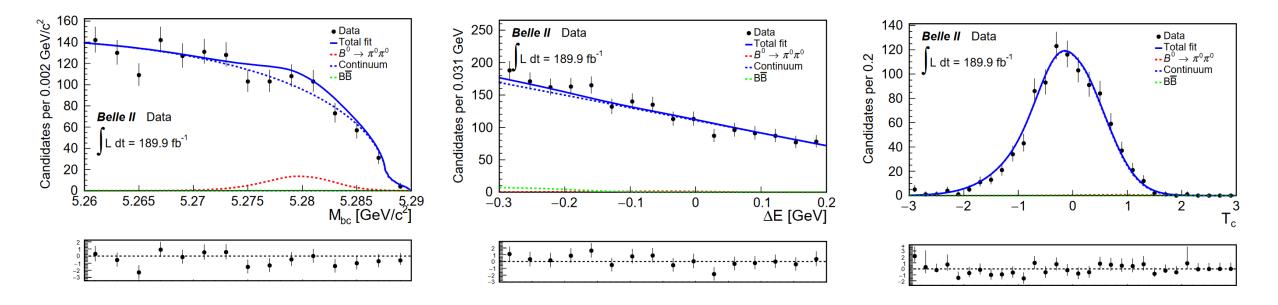
where $\chi_d = 0.1858 \pm 0.0011$ is the time-integrated $B\overline{B}$ -mixing parameter, w_i is the wrong tag fraction, Δw_i is the difference in wrong tag fraction between positive and negative b-flavor tags, and μ_i is the difference in tagging efficiency between positive and negative b-flavor tags.


Control Mode distribution checks

- Change is small for soft π^0 and this might explain why the ΔE difference in the control mode is so large compared to $B^+ \rightarrow$ $D^0(K^+\pi^-\pi^0)\pi^+$
- But more investigation is required since these corrections only depend on energy and not on the polar angle, and it could be that π^0 from B^0 are mostly located in a different region of the ECL which might affect the energy measured.
- Overall MC-DATA agreement is better

	No Corrections (MeV)	Corrections (MeV)	Difference (MeV)
Hard π^0 peak	$132.39\ {\pm}0.09$	$133.44\ {\pm}0.06$	1.05 ± 0.11
Soft π^0 peak	$132.39\ {\pm}0.09$	$133.25\ {\pm}0.08$	0.86 ± 0.12
Hard π^0 width	$6.54\ {\pm}0.08$	5.57 ± 0.10	0.97 ± 0.13
Soft π^0 width	5.55 ± 0.09	5.57 ± 0.10	0.02 ± 0.13


TABLE 39. Mean and width of invariant mass distribution of soft and hard π^0 before and after the 'Photon Energy Bias Correction' is applied along with the difference.

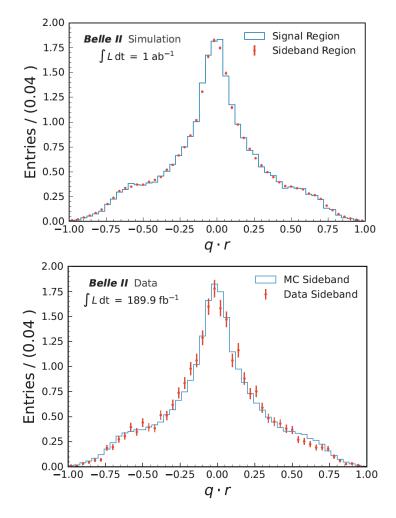

• Significant smaller MC-DATA discrepancy

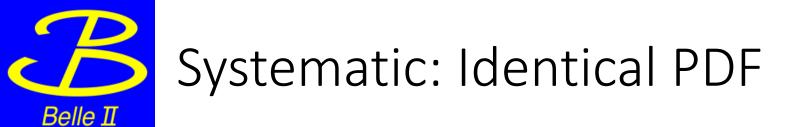
- Continuum appears mostly well modelled, particularly the M_{bc} endpoint
- Possible mismodelling on T_c (main contributor to continuum parameters systematic, 7.8%)

Systematics: q.r bin fractions

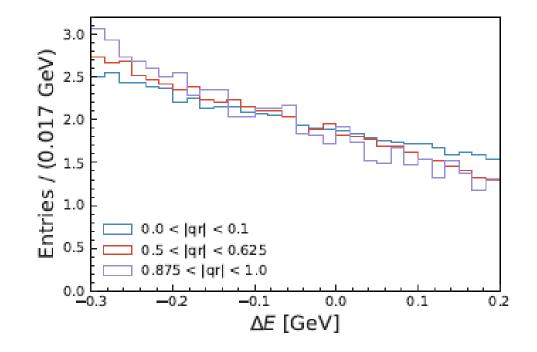
- For the mistagging parameters, we use the values obtained by the recent FlavorTagger paper
- Previously q.r bin fraction used MC
- Fluctuate q.r fraction by the uncertainty, and adjust all other parameters so the sum of all fractions equals one

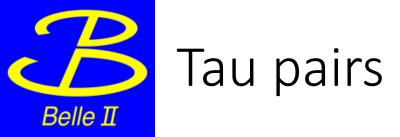
$B^0 \to D^{(*)}$	$h^{-}h^{+}$				
Parameter	$\Delta E \text{ PDF}$	Fit bias	Model	Total syst.	uncty. Fit results
ε_1	0.01	0.00	0.09	0.1	$19.0 \pm 0.3 \pm 0.1$
ε_2	0.01	0.00	0.09	0.1	$17.1 \pm 0.3 \pm 0.1$
ε_3	0.01	0.03	0.09	0.1	$21.3 \pm 0.3 \pm 0.1$
ε_4	0.01	0.01	0.07	0.1	$11.3 \pm 0.3 \pm 0.1$
ε_5	0.01	0.01	0.07	0.1	$10.7 \pm 0.3 \pm 0.1$
ε_6	0.00	0.01	0.06	0.1	$8.2 \pm 0.2 \pm 0.1$
ε_7	0.02	0.00	0.07	0.1	$12.4 \pm 0.2 \pm 0.1$
w_1	0.03	0.03	0.45	0.5	$47.1 \pm 1.6 \pm 0.5$
w_2	0.01	0.01	0.46	0.5	$41.3 \pm 1.7 \pm 0.5$
w_3	0.07	0.04	0.40	0.4	$30.3 \pm 1.4 \pm 0.4$
w_4	0.17	0.18	0.53	0.6	$22.9 \pm 1.8 \pm 0.6$
w_5	0.01	0.01	0.49	0.5	$12.4 \pm 1.8 \pm 0.5$
w_6	0.02	0.02	0.50	0.5	$9.4 \pm 1.9 \pm 0.5$
w_7	0.01	0.01	0.37	0.4	$2.3\pm1.3\pm0.4$
μ_1	0.01	0.03	0.91	0.9	$4.4 \pm 3.2 \pm 0.9$
μ_2	0.15	0.13	0.93	0.9	$3.9 \pm 3.3 \pm 0.9$
μ_3	0.05	0.00	0.82	0.8	$6.8 \pm 2.9 \pm 0.8$
μ_4	0.04	0.01	1.12	1.1	$3.2 \pm 4.0 \pm 1.1$
μ_5	0.16	0.23	1.06	1.1	$-0.5 \pm 4.1 \pm 1.1$
μ_6	0.02	0.04	1.14	1.1	$10.8\pm4.3\pm1.1$
μ_7	0.37	0.27	0.86	1.0	$-3.7 \pm 3.2 \pm 1.0$
Δw_1	0.16	0.12	0.57	0.6	$8.8 \pm 2.0 \pm 0.6$
Δw_2	0.12	0.15	0.59	0.6	$6.1 \pm 2.1 \pm 0.6$
Δw_3	0.12	0.11	0.54	0.6	$2.7\pm1.9\pm0.6$
Δw_4	0.05	0.01	0.77	0.8	$5.5 \pm 2.6 \pm 0.8$
Δw_5	0.05	0.03	0.74	0.7	$0.7\pm2.9\pm0.7$
Δw_6	0.08	0.07	0.84	0.9	$7.7\pm3.2\pm0.9$
Δw_7	0.19	0.17	0.66	0.7	$0.6\pm2.4\pm0.7$


(*) - - +

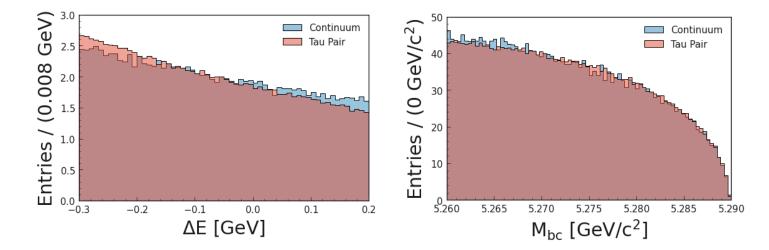


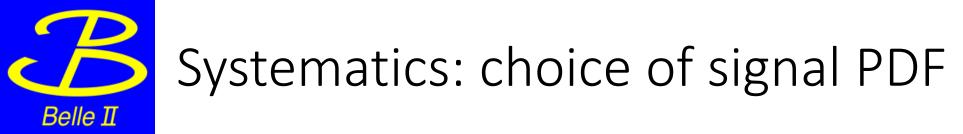
- Instrumental asymmetry observed
- Signal and sideband region q.r distribution agree
- Assume this is true in experimental Data, and extract the $A_{\rm CP}$ from the sideband region
- Add A_{CP} term to the continuum PDF
- Repeat fit with continuum A_{CP} shifted by uncertainty, difference in A_{CP} assigned as systematic uncertainty: 0.01

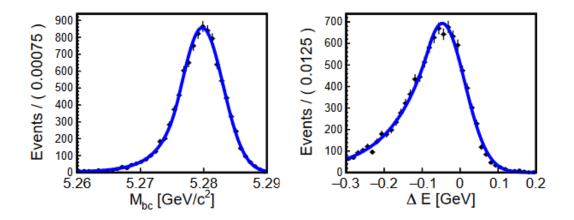

	\mathcal{A}_{CP}
MC Signal Region	-0.024 ± 0.006
MC Sideband Region	-0.025 ± 0.003
Data Sideband Region	-0.033 ± 0.002



- The shape of ΔE for the continuum depends on q.r, however there are not enough events in the sideband region to fit.
- The continuum parameters are identical in all bins, to account for this we estimate the ΔE parameters in each q.r bin using MC and refit



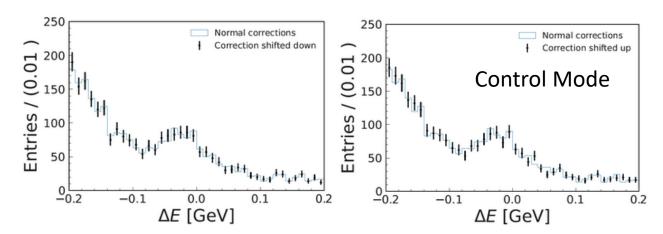

• To account for the systematics uncertainty due to the choice of best candidate, i.e. $|dM_1| + |dM_2|$, the sum of the absolute mass deviation of the π^0 from the known value, we randomly select a candidate and refit. The difference in signal yield is taken as systematic; **0.2%**


- Since we get the continuum PDF parameters from the sideband region (which contains taupairs), our continuum should also include taupairs
- Expect 215 in 189.9/fb (2.4% of continuum) which is absorbed into continuum background
- Uncertainty is covered by continuum parameterisation systematic

- We model the signal $M_{\rm bc}$ and ΔE using a 2D Kernal Density Estimation (KDE) to account for the correlation
- To estimate the systematic associated with this choice, we refit using analytical functions (Crystal Ball) for M_{bc} and ΔE
- The BF and $A_{CP}\,$ systematic uncertainty is $\textbf{1.3\%}\, \textbf{and}\, \textbf{0.02}$

$$\epsilon^{\pi^0} = \frac{N(K^-\pi^+\pi^0)}{N(K^-\pi^+)} \cdot \frac{\mathcal{B}(\bar{D}^0 \to K^+\pi^-)}{\mathcal{B}(\bar{D}^0 \to K^+\pi^-\pi^0) \cdot \mathcal{B}(\pi^0 \to \gamma\gamma)}$$

- π^0 selections are identical, and hence systematic associated with the photonMVA is also included
- The ratio between π^0 efficiencies in data and in simulation is found to be 1.030 \pm 0.038
- 3.8% per π^0 efficiency but signal has two completely correlated π^0 , so 7.6% for systematic uncertainty



Neutral group has prepared two more payload:

- PhotonEnergyBiasCorrection_MC14a_Jan2022_lower_V3, with each point decreased by its uncertainty
- PhotonEnergyBiasCorrection_MC14a_Jan2022_upper_V3, with each point increased by its uncertainty

We then refit and take the difference in yield as the systematic uncertainty;

BF systematic uncertainty: 2.0%.

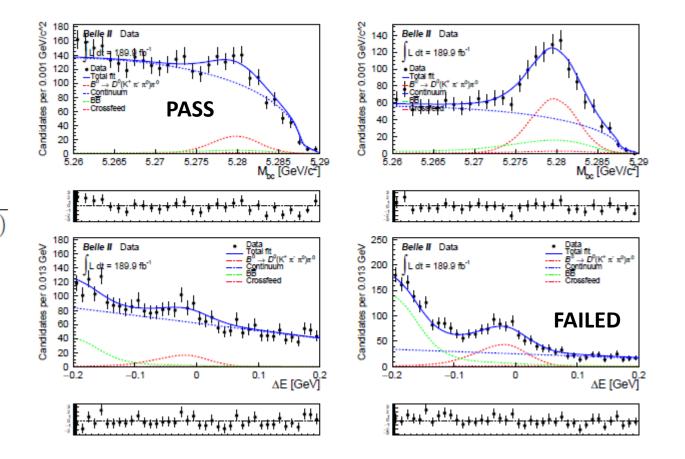
 The number of BB is fixed from MC, but has a PDG uncertainty associated

$Bar{B}$ decay	Branching ratio	\mathcal{A}_{CP}	Efficiency	189.9 fb^{-1} estimation
$B^+ \to \rho^+ \pi^0$	$1.09 \pm 0.14 \times 10^{-5}$	0.02 ± 0.11	4.28%	101 ± 13
$B^0 \to K_s (\to \pi^0 \pi^0) \pi^0$	$3.04 \pm 0.15 \times 10^{-6}$	0.00 ± 0.13	1.54%	9.6 ± 0.5

- To estimate the uncertainty, we repeat 1000 ToyMC fit but with an additional or deficiency in BB events corresponding to 1 sigma, then we take which one creates a larger difference in yield as the systematic.
- Systematic uncertainty: 1.8%

- Fit repeated with each parameter fluctuated by its uncertainty
- The effect of all 21 parameters are added in quadrature
- Contribution of each mistagging parameter, correlations are zero or negligible
- As expected the bins with poor tagging contribute the least to ${\rm A}_{\rm CP}$
- A_{CP} uncertainty is 0.05

Bin	\boldsymbol{w}	Δw	μ
1	0.017	0.0021	0.00071
2	0.0091	0.0024	0.0013
3	0.0071	0.0045	0.003
4	0.0086	0.0079	0.0066
5	0.012	0.023	0.019
6	0.0096	0.014	0.013
7	0.0073	0.012	0.014


Systematic: Continuum suppression

 Fit two control mode samples, pass or failed CSMVA selection and determine:

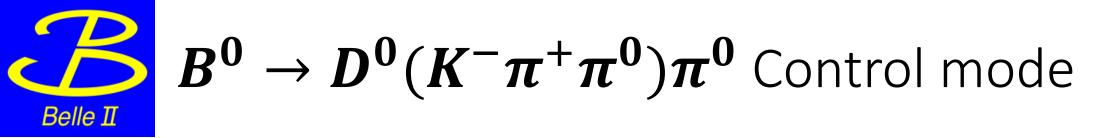
 $\epsilon = \frac{\text{Signal events that pass the selection}}{\text{Total signal events (pass and fail the selection)}}$

	$B^0 \to D^0 (\to K^- \pi^+ \pi^0) \pi^0$
$\epsilon_{\rm data}$	0.6928 ± 0.0386
ϵ_{MC}	0.7201 ± 0.0207

• 1.040 ± 0.065, assign stat. uncertainty as syst.

- Parameters and their uncertainties obtained from fits to sideband
- Fluctuate each parameter by one standard deviation, shifted all other parameters by their correlation
- Add all contributions in quadrature: **7.5% and 0.02** systematic uncertainty on BF and A_{CP} respectively

Parameter	Yield Uncertainty (%)) \mathcal{A}_{CP} Uncertainty
Tc Fraction	4.38	0.013
Tc Mean Gaussian 1	5.12	0.017
Tc Width Gaussian	2.50	0.008
Tc Mean Gaussian 2	1.38	0.004
Tc Left Width Bi-Gaussian	0.90	0.002
Tc Right Width Bi-Gaussian	0.93	0.002
$M_{ m bc}$ ARGUS shape	0.36	0.001
ΔE Chebyshev	0.31	0.001

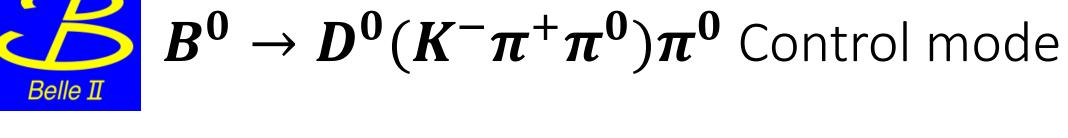


$Bar{B}$ decay	Branching ratio	\mathcal{A}_{CP}	Efficiency	189.9 fb^{-1} estimation
$B^+ o ho^+ \pi^0$	$1.09 \pm 0.14 \times 10^{-5}$	0.02 ± 0.11	3.53%	83 ± 11
$B^0 \to K_s (\to \pi^0 \pi^0) \pi^0$	$3.04 \pm 0.15 \times 10^{-6}$	0.00 ± 0.13	1.22%	7.6 ± 0.4

- The dominant BB background come from $B^+ \to \rho^+ (\to \pi^0 \pi^+) \pi^0$ and $B^0 \to K_s (\to \pi^0 \pi^0) \pi^0$ which are expected to have $A_{CP}=0.0$
- Generate BB background with $A_{\rm CP}$ one standard deviations away from the accepted value.
- Perform 189.9/fb ToyMC with different BB background $A_{\rm CP}$ and use the deviation from BB background $A_{\rm CP}{=}0.0$

•	System	atic	is:	0.03
---	--------	------	-----	------

$\mathcal{A}_{CP} \ (B^+ \to \rho^+ \pi^0)$	$\mathcal{A}_{CP} \ (B^0 o K^0_S \pi^0)$) Average Extracted \mathcal{A}_{CP}
0	0	-0.339
-0.09	-0.13	-0.351
0.13	0.13	-0.318
-0.09	0.13	-0.354
0.13	-0.13	-0.327



Selection	Control efficiency (%)
Skimming	58.0
Control selections	11.1
Continuum Suppression	8.50

- Signal mode continuum suppression is applied to the control mode to allow for continuum suppression systematic uncertainty to be estimated
- For the control mode, there is much more self-cross feed due to having two charged particles where a particle from the tag side is used in the reconstruction of the control mode
- For the fit, the cross-feed yield is constrain to be 9% of the control yield

3.0

The control mode efficiency is 11.1%

Particle	Selection
	Transverse impact parameter $ dr < 0.5$ cm
	Longitudinal impact parameter $ dz < 2$ cm
π^+	Binary PID between kaons and pions, <code>binaryPID(321,211)</code> < 0.4
	Polar angle θ within the range $17^{\circ} < \theta < 150^{\circ}$
	Number of CDC hits associated to the track <code>nCDCHits</code> > 20
	Transverse impact parameter $ dr < 0.5$ cm
	Longitudinal impact parameter $ dz < 2$ cm
K^{-}	binaryPID(321,211) > 0.6
	Polar angle θ within the range $17^{\circ} < \theta < 150^{\circ}$
	Number of CDC hits associated to the track $nCDCHits > 20$
D^0	1.84 < M < 1.88
	massKFit $\chi^2 > 0$
B^0	$5.26 < M_{\rm bc} < 5.29 \ { m GeV/c}^2$
	$-0.2 < \Delta E < 0.2 { m ~GeV}$

